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Abstract: Rollover prevention of partially filled tank trucks is an ongoing challenge in the road
transportation industry, with the core challenge being real-time perception and observation of the
liquid state inside the tank. In order to realize reliable observation of a sloshing liquid, this article
first proposes a sloshing modeling method based on a multi-degree-of-freedom pendulum model
and derives the double mass trammel pendulum model (DMTP, 2DOF) accordingly, which accurately
reflects the sloshing dynamics under wider operating conditions. Second, a free surface fluctuation
sensor is designed based on magnetostriction, capable of measuring the inclination and height of the
liquid level inside tanks filled with hazardous chemicals. Finally, the unscented Kalman filter (UKF)
is utilized to synthesize the information of the two, establishing a credible real-time observation of
the sloshing liquid. Verified using a vehicle–fluid coupled co-simulation, under the condition of a
consecutive double lane change, the observation error of the proposed method is only 25.9% of that
of the open-loop calculation, providing a secure guarantee for the observation of the state variables
of the single pendulum model (SP) used for most kinds of anti-rollover control.

Keywords: liquid sloshing; observer; multi-DOF pendulum model; free surface fluctuation sensor

1. Introduction

Tank trucks account for about 18% of the total number of commercial trucks and play a
significant role in highway transportation; they also account for over 30% of truck rollover
accidents [1], attributed to their poor rollover stability and caused not only by their high
center of mass or heavy loading but also the coupling of the roll movement of the vehicle
and a sloshing liquid [2,3]. Moreover, with 80% of hazardous liquid chemicals, such as
gasoline, diesel, chlorinated hydrocarbons, strong acids, etc., relying on tank trucks to
be transported on highways [4], severe accidents ensue once rollover occurs. Therefore,
anti-rollover control of tank trucks is essential, for which the main technical approaches are
establishing a more accurate surrogate model based on a sloshing mechanism and designing
anti-rollover control algorithms considering the sloshing effect, as well as measuring or
estimating the required state variables for control by designing sensors and observers.

Existing models describing sloshing liquid in tanks can be generalized into three categories:
quasi-static (QS) models, mechanical equivalent models, and fluid dynamics models [5].

QS models ignore sloshing dynamics and only model the static-state position of the
liquid’s center of mass based on the tank’s geometric cross-section [6–9], thus having low
accuracy in transient conditions.

Mechanical equivalent models approximate the force output characteristics of a liquid-
filled system by establishing a mechanical model that meets the equivalence principle [10]
with the original system. The commonly used models include single pendulum (SP) [11–13],
spring-mass-damper [14], particle–cluster–rod [15], and trammel pendulum (TP) [16–19].
Most mechanical equivalent models perform well in terms of accuracy and solving speed
under dynamic conditions and can reflect first-order sloshing, and thus can be used for
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real-time control. However, they usually neglect higher-order sloshing such as hydraulic
jump and splash, so they can only describe approximately linear sloshing well.

Fluid dynamic models, including models based on potential flow theories and finite
element models based on Navier–Stokes equations (referred to as the CFD method in the
following text), etc., can be used, but potential flow theory [20,21] can only be applied for
certain tanks with specific section geometries under linear sloshing. Although the finite-
element-based CFD method [22–26] is almost accurate under various transient conditions, it
requires a daunting amount of computation, and thus cannot be used for real-time control.

Although not suitable for usage in real-time control, the CFD method is suitable for
parameter calibration of mechanical models and offline co-simulation for control algo-
rithm verification, with its results reckoned as true values. Efforts have been made in
the CFD field to better simulate sloshing behavior. Tang et al. [27] found that compared
with the LES method, using the k-ε model reduces the computing time by 40% under
similar error rates for liquid sloshing in 3D LNG tanks. Ganuga et al. [28] established a
three-dimensional, fully coupled FSI model, which revealed that the behavior of internal
structures in a sloshing tank is subjected to resonance, highlighting the role of flexible baffles.
Jadon et al. [29] used an integrated experimental and multi-physics numerical approach
to predict automotive fuel tank sloshing noise by simulating the fluid sloshing, dynamic
forces, vibration displacement, and noise radiation. Zheng et al. [30] proposed the ISPH
method to accurately simulate violent sloshing with complex baffles, providing insights
into effective engineering solutions for dampening sloshing and reducing impact pressures.

For controller and observer design, real-time computation is essential, so the most
commonly used models are various pendulum models in mechanical equivalent models,
especially the SP model, whose accuracy directly affects the performance of the controller
and observer.

However, the pendulum described in the model has no real-world equivalent other
than liquid, so the swing state of the pendulum cannot be directly measured. Therefore,
it is necessary to establish an observer to estimate and update the state variables of the
pendulum model for the controller according to the measuring of the dynamics of the free
surface of the liquid. The collection of dynamic liquid-level data is usually based on cam-
eras [31–33] or ultrasonic sensors [34]. However, it is not proper to apply transparent tanks
in reality, precluding measurement based on visual information. Furthermore, ultrasonic
sensors need to be as perpendicular as possible to the measuring interface, making it almost
impossible to utilize them for a sloshing liquid.

In this article, a multi-degree-of-freedom (multi-DOF) pendulum model is proposed
to address the limited range of applicable working conditions of existing mechanical
equivalent models. Furthermore, a free surface fluctuation sensor is designed based on
magnetostriction, and an unscented Kalman filter (UKF) is applied as an observer to
synthesize the multi-DOF pendulum model and sensor data, which solves the problem
of model phase mismatch and provides an accurate state estimation for the equivalent
pendulum model (generally the SP model) used for the anti-rollover control of tank trucks.

2. Spectral Analysis of Sloshing Liquid
2.1. CFD Modeling of Liquid Sloshing

To accurately model the liquid sloshing phenomenon in the tank, we used a precise
finite volume-based computational fluid dynamics (CFD) method to simulate the gas–liquid
two-phase flow inside the tank. Figure 1 illustrates our research focus, which is the lateral
sloshing behavior of an elliptical section tank found in a semi-trailer tank truck. The tank
has dimensions of 1240 mm for the long axis and 900 mm for the short axis.

Considering the legal requirements that mandate the installation of longitudinal wave-
proof plates at specific intervals, as well as the fact that the longitudinal acceleration is
relatively negligible compared to the lateral acceleration during cruising, we solely focused
on the sloshing within the trailer’s roll plane. Consequently, for the sake of computational
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efficiency and by neglecting longitudinal sloshing effects, we used a 2-dimensional modeling
approach for the two-phase flow using the CFD software Star-CCM+ 2021.3 (16.06.008-R8).

In line with the typical sloshing velocity near the wall and using an empirical boundary
layer selection method, we established a 3 mm thick boundary layer consisting of five
sub-layers of grids. Following a grid independence analysis, we ensured that the maximum
side length of the grid globally was controlled within 10 mm while maintaining a minimum
length of approximately 5 mm. This approach guaranteed the accurate capture of the
dynamic state of liquid sloshing within the tank’s scale.
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Figure 1. Elliptical cross-section tank and its 2D mesh modeling in Star-CCM+.

The primary focus of this study is on low-viscosity light liquids that resemble gasoline
or diesel. In such fluids, the flow demonstrates significant turbulent behavior due to high
Froude and Reynolds numbers. In these scenarios, volume forces dominate the flow rather
than viscosity. Consequently, the influence of viscosity is relatively small, rendering the
system robust against variations in liquid viscosity parameters. Liquids like water, gasoline,
and diesel exhibit similar oscillation characteristics when subjected to sloshing in tanks,
with comparable frequencies across different modes of oscillation.

In our research, we used gasoline and air as the medium for the simulation. The
parameters for the two Euler phases are detailed in Table 1, while other relevant continuum
parameters are provided in Table 2.

Table 1. Parameters for Euler phases.

Euler Phase Name Phase Material Dynamic
Viscosity

Density
(Constant)

Gasoline Liquid C8H17(Gasoline) 5.0272 × 10−4 Pa·s 751 kg/m3

Air Gas Air 1.85508 × 10−5 Pa·s 1.18415 kg/m3

Table 2. Other continuum parameters.

Model Settings

Wall distance Implicit tree
Multiphase interaction Phase interaction between phases

Euler phases See Table 1
Mixture Dynamic viscosity: Volume-weighted mixture

Adaptive time step Time step provider: Free-surface CFL condition
Volume of fluid, VOF HRIC→ HRIC gradient smoothing

Dimension Two-dimensional
Flow regime Segregated flow

Turbulent Model

kε turbulence
Realizable k-ε two-layer model

Reynolds-averaged Navier–Stokes
two-layer full y+ wall treatment

Gravity Yes
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In terms of solver settings, an implicit unsteady solver with adaptive time stepping
is used to balance the computational efficiency and solution time for a large number of
simulations. The volume of fluid (VOF) method is used to track the interface fluctuations
between the gas and liquid phases. The k − ε turbulence model is utilized for solving,
according to [27]. The implicit unsteady solver has a time step of 0.005 s, and the minimum
step size for the adaptive time step is set as 10−5 s to ensure good convergence while
maintaining fast simulation speed.

2.2. Spectral Analysis of Liquid Sloshing

According to the concept of spectral analysis, the sloshing of liquid can be decomposed
into an approximate linear combination of its 0- to ∞-order sloshing mode. An illustration
of sloshing modes of liquid is shown in Figure 2a, where the zero-order sloshing embodies
the inertia of fluid as a rigid body, the first mode reflects the sloshing planar free surface,
and the second mode and higher-order sloshing depict the sinusoidal fluctuation of free
surface. The higher the order of sloshing, the less liquid participates but characterizes
more details.
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Figure 2. (a) Different sloshing mode of liquid in a tank; (b) CFD simulation under step excitation
ay = 1, 3, 5 m/s2; (c) lateral forces from liquid to tank; and (d) FFT transformation of side forces.

To better understand the characteristics of the output force of sloshing liquid in the
tank, CFD simulations are carried out under three conditions: lateral acceleration step
excitation ay = 1, 3, 5 m/s2, filling rate f = 50%, and the fast Fourier transform (FFT) of
side-force output. Lateral force output is shown in Figure 2b, where the amplitude and
nonlinearity of sloshing increase with ay, and hydraulic jump and splash also become
obvious. From Figure 2c, it can be seen that the lateral force output shows more high-
frequency components with an increase in ay. According to Figure 2d, it is found that in
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addition to the first mode, the second and higher-order modes cannot be ignored, which
explains why it is difficult to thoroughly describe liquid sloshing using linear models, as
they ignore the higher-order sloshing components.

3. Multi-Degree-of-Freedom Pendulum Model
3.1. Generalized Pendulum Model

The most commonly used models to describe liquid sloshing are various pendulum
models. Based on these models, the generalized pendulum model is proposed, as illustrated
in Figure 3. This model comprises single pendulums, trammel pendulums, and all possible
linear and/or nonlinear combinations of them. Yang et al. introduced a 1DOF multi-
mass trammel pendulum to simulate liquid sloshing in an elliptical sectioned tank [35,36].
However, this model did not increase the degrees of freedom (DOF) of the pendulum;
it only split and redistributed the concentrated swing mass, as depicted in Figure 3c.
Consequently, it exhibits no substantial difference in terms of swing mode compared
to a trammel pendulum with one swing mass. Different pendulum models vary in the
number of swinging DOF and the number of concentrated masses, which allows for diverse
potential in describing liquid sloshing. Theoretically, a higher number of DOF enhances
the fitting ability of the model but also increases the risk of overfitting and requires more
computational resources. Therefore, it is crucial to select an appropriate generalized
pendulum model that balances computational complexity and accuracy.
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Figure 3. Examples of general pendulum models: (a) single pendulum, 1DOF, 2 concentrated masses
(1 swinging, 1 fixed); (b) trammel pendulum, 1DOF, 2 concentrated masses (1 swinging, 1 fixed);
(c) 1DOF multi-masses trammel pendulum [35,36], 1DOF, n + 1 concentrated-masses (n swinging,
1 fixed); (d) multi-DOF trammel pendulum, n DOF, n + 1 concentrated masses (n swinging, 1 fixed);
(e) linear combination of SPs and TPs, n DOF, n + 1 concentrated-masses (n swinging, 1 fixed); and
(f) non-linear combination of SPs and TPs, n DOF, n + 1 concentrated masses (n swinging, 1 fixed).

3.2. Spectral Analysis of Models

A spectral analysis was conducted on various sloshing models, with results shown in
Table 3. The rigid body model can only embody the inertia of the rigid body (zero-order
sloshing), whereas the QS model can express the inertia together with the free surface
inclination angle (and the movement of the liquid center of gravity caused by it), but it
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cannot express the sloshing dynamic. A linearized SP model can only express up to the
first mode; SP and TP can express the second and third modes, but their accuracy is low
for higher-order sloshing. A multi-DOF pendulum model can express high-order sloshing,
but its accuracy is not as accurate as that of the finite volume method-based CFD model
(FVM-CFD), and the latter is too clumsy to compute in real-time. Therefore, in order to
obtain a more accurate model while balancing computational complexity, the DOF of the
pendulum model can be appropriately increased.

Table 3. Spectral analysis of different sloshing models.

Slosh Mode 0 Order Surface
Incline First Second Third Higher

Order ∞

Model Name
Rigid body

√

QS
√ √

Linearized SP
√ √ √

SP/TP
√ √ √ √ √

Multi-DOF
Pendulum

√ √ √ √ √ √

FVM-CFD
√ √ √ √ √ √

Real liquid
√ √ √ √ √ √ √

√
suggests the highest expressing ability of the model.

3.3. Pendulum Models with 2DOF

On the basis of the existing SP and TP models, dual-mass trammel pendulum (DMTP)
and combined trammel and single pendulum (TPSP) models with 2DOF are proposed, as
shown in Figure 4, which are nonlinear and linear combinations (series and parallel) of
SP and TP, respectively. According to the Lagrange equation, their dynamic model can
be deduced, and the details can be found in Appendix A. Utilizing the derived function,
simulations are carried out in the following sections.
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′
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′
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′
t is the coordinate fixed on the tank with o′t located at the center

of the elliptical center. (a) Geometry parameters of DMTP; (b) degrees of freedom and dynamics of
DMTP; (c) geometry parameters of DMTP; and (d) degrees of freedom and dynamics of DMTP.



Sensors 2023, 23, 8831 7 of 26

4. Simulation Analysis of Pendulum Models
4.1. Parameter Fitting for Pendulum Models

To obtain the parameters of the pendulum model and compare SP and TP models, as
well as the proposed DMTP and TPSP models, a lateral acceleration step excitation CFD
simulation dataset: dataset No.1, as shown in Figure 5, was established, which includes 30
sets of simulation data, reflecting the free sloshing of liquid. Secondly, the loss function
representing model fitness is defined in (1).

J =

∥∥∥∥∥ Fy,ay − Fy0,ay

Fy0,ay

∥∥∥∥∥
2

2

+

∥∥∥∥∥ Fz,ay − Fz0,ay

Fz0,ay

∥∥∥∥∥
2

2

+

∥∥∥∥∥Mx,ay −Mx0,ay

Mx0,ay

∥∥∥∥∥
2

2

, ay = 1, 2, 3, 4, 5 (1)

where Fy0,ay , Fz0,ay , and Mx0,ay are the time average values of Fy, Fz, and Mx. Fy,ay , Fz,ay , and
Mx,ay are the lateral force, vertical force, and roll moment output of the model under step
excitation of ay.
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Figure 5. CFD simulation dataset No.1: with step excitation of lateral acceleration ay(t) = Const,
Const = 1, 2, 3, 4, 5 m/s2 and (a–f) f = [25, 40, 50, 60, 75, 90]%, respectively.

The genetic algorithm is applied to optimize the loss function so as to fit the optimal
structural parameters of the model. To ensure convergence, each model is recalculated
eight times at each filling rate, and the optimal result is taken as the fitting parameter. The
optimization results are shown in Figure 6. SP is better than TP at medium to high filling
rates, whereas DMTP is the optimal model under all examined filling rates, followed by
TPSP, reflecting the higher fitting potential of the two proposed 2DOF models compared
with conventional 1DOF models.
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4.2. Map Analysis of Pendulum Models

To verify the generalization ability of models in other working conditions, firstly,
another CFD simulation dataset: dataset No.2 with 150 sets of data is established, as shown
in Figure 7, with lateral acceleration sinusoidal excitation to reflect the forced sloshing of liquid.
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(

2π
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)

, A = 1, 2, 3, 4, 5 m/s2, and (a–e) T = [10, 8, 6, 4, 2] s, respectively. f = [25, 40, 50, 60, 75, 90]%.
A total of 150 CFD simulations.
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On top of that, the orthogonal conditions of sinusoidal excitation ay with different
amplitude and frequency are verified on datasets No.1 and No.2, and the normalized errors
of force outputs Fy,ay , Fz,ay , and Mx,ay of the four pendulum models calculated using
the optimal fitting parameters are compared with the CFD results. The errors are shown
in Figure 8. The larger and darker the blue area, the better the model conforms to more
working conditions. DMTP is the optimal model at medium to low filling rates ( f ≤ 60%),
whereas at higher filling rates, the sloshing effect attenuates, and all models achieve almost
the same performance; therefore, the optimal model in this case is SP, which requires the
least computation. To some extent, the advantages of DMTP as a more accurate pendulum
model have been verified.
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DMTP is a nonlinear pendulum model with more computation than traditional 1DOF
models, but it can still be real-time computed even on an STM platform for general use
with a main frequency of only 24 MHz. Although limited by the high operation frequency
of model predictive controllers, it would be difficult to use DMTP as a predictive model in
MPC controllers, but it is proper to use it as the system motion equations in the observer
with a lower frequency (about 1000 times of simulation per second and below) to improve
observation accuracy.

5. Sloshing Observer Design
5.1. Free Surface Fluctuation Sensor Design

As mentioned in Section 1, considering computational burden, existing research
typically uses linearized SP within the controller to describe liquid sloshing so as to exert
anti-rollover control. However, linear models are not precise enough and thus require
external measurements or estimates to unremittingly update model states. As shown
in Figure 9a, state variables of the vehicle model are all available using direct/indirect
measurements of existing sensors or estimated, like lateral velocity vy (or the sideslip
angle β, tanβ = vy/vx) [37–39]. Nevertheless, state variables related to liquid (pendulum)

models, such as the swing angle θ and angular velocity
.
θ, can neither be obtained with

existing sensors nor estimation from available vehicle states since information on a liquid
in vehicle states is limited; therefore, theoretically, an unrealistic extremely accurate vehicle
model is needed to estimate liquid state.

Existing works invoking pendulum model assumptions to control vehicles do not
involve real vehicle tests, with only simulations in which pendulum substitute liquid were
carried out [12,13,18,19]. In addition, state variables (e.g., the swing angle θ) are directly
fed back to the controller for state updates, ignoring the fact that instead of a pendulum,
there exists only liquid in the actual tank, which is currently unable to be measured.

The error characteristics of the open-loop calculation of the models are shown in
Figure 9b. After a single maneuver, such as steering or a lane change, starting from a stable
state, the response can be divided into 0–3 stages based on the error characteristics between
the open-loop model and the actual liquid trilateral force output.

Stage 0: In this stage, when the vehicle is in a stable state, there is minimal fluid
sloshing, and the lateral acceleration is almost zero. The difference between the model and
the actual system is negligible.

Stage 1: When a maneuver is initiated from a stable state, the fluid undergoes forced
sloshing. As the natural sloshing frequency of the model and the real system may not match
exactly, phase errors start to accumulate gradually. However, during forced oscillation,
the system output closely follows the variations in the input frequency, with minimal
impact from the natural frequency. Therefore, the output error increases over time, but at a
relatively slow rate.

Stage 2: Once the maneuver is completed, the vehicle returns to stable straight-line
motion, and the fluid enters free sloshing. In this stage, with no external forces acting on
the system, its oscillation is solely determined by its natural frequency. Consequently, the
output error rapidly increases with time.

Stage 3: Due to the presence of fluid damping, both the model and the actual system
tend to stabilize under the damping effect. The error gradually decreases, and eventually,
the system returns to Stage 0, where the discrepancies between the model and the actual
system are minimal once again.

Throughout this process, the errors are not significant enough to cause controller
failure. However, if another maneuver is initiated without allowing the system to settle
after completing a previous operation, while the system is in Stage 2 or Stage 3, the
errors quickly accumulate, potentially leading to model mismatch, which further leads to
controller failure and eventually rollover. Therefore, a free surface fluctuation sensor is
designed to measure the liquid state so as to estimate the states of a pendulum model.
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As shown in Figure 10, a magnetostrictive liquid level meter constitutes the main
part of the fluctuation sensor. Floating balls containing a permanent magnet slide on the
measuring rod, and the level meter functions by timing the round-trip of torsional stress
wave from the digital head to the magnets in balls.
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The existing level meter is capable of simultaneously measuring the positions of
multiple floating balls and reaches an accuracy of 0.5%/0.3 mm (larger one), and the
maximum measurement frequency reaches 2500–4000 Hz.

Based on the level meter, a rocker arm as well as a retractable floating board are
complemented to form a measurement triangle, as shown in Figure 10b. Parameters of
the measuring triangle are selected in advance, and the distance between the upper and
lower floating balls differs with the liquid-free surface inclination angle. Using the law of
cosines in (2)

θsur f = cos−1
(

r2 + x2 − l2

2rx

)
− π

2
(2)

the inclination angle fitted by the floating board can be obtained, where θsur f is the average
inclination of the liquid surface measured with the sensor, r is the center distance between
the upper floating ball and the hinge on one side of the central float board, x is the distance
between the upper and lower floating balls measured with the sensor, and l is the designed
length of the rocker’s arm.
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The common range of surface inclination is generalized by analyzing simulation
results. It is found that under large acceleration step excitation (ay = 5 m/s2 ≈ 0.51 g), the
liquid level inclination does not exceed ±15◦, and in reality, such a large lateral acceleration
is scarce. For safety consideration, ±20◦ is chosen as the measurement range. Due to
regulatory limitations [2,3], the maximum filling rate must not exceed 95%, and since the
impact of liquid sloshing at high filling rates can even be ignored, in order to ensure a
measurement range of ±20◦ at the highest design filling rate f = 90% and cover at least
one-half of the free surface width at the lowest design filling rate f = 50% to filter out
the impact of the third mode and higher-order sloshing, the geometric parameters of the
floating board are designed, as shown in Figure 10c.

As in Figure 10d, by using a lightweight pulley block with a specific magnification,
the floating board length can be automatically adjusted according to the filling rate under
the balance of the buoyancy of the floating board and the elastic restoring force of the
recovery spring.

Under general sloshing conditions that do not cause severe breakage of the liquid
surface, the swing angle θ of SP in the controller can be approximated as the linear transform
of θsur f , i.e.,

θ = Kθsur f (3)

where K is a constant.

5.2. Observer Based on DMTP and Senser Data

According to the accurate nonlinear DMTP model and the data of the fluctuation
sensor, an observer based on an unscented Kalman filter (UKF) can be designed to estimate
the swing angle of the linearized SP required in the controller, as shown in Figure 11.
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Figure 11. Unscented Kalman filter based on DMTP and fluctuation sensor data.

5.2.1. Fusion of Angles of DMTP to Linearized SP

From Section 4, it can be seen that the open-loop accuracy of DMTP is optimal at
medium filling rates and below ( f ≤ 60%), but linearized SP in the controller has only one
DOF, i.e., θ. Similarly, the fluctuation sensor can only measure the average inclination angle
θsur f , so identifying how to equal the angles of two DOF of DMTP, i.e., θ1, θ2, to θ is an
urgent problem.

There are two methods for fusing two angles, as shown in Figure 12b,c.
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Figure 12. Method to convert DMTP into LSP. (a) Problem Description. How to convert two DOF
into one: (b) the center of mass conversion method and (c) the convex combination method. (d)
Verification in the left cornering condition. I Verification in the single-lane change condition. (f)
Verification in the double-lane change condition. CG method in the legend correspond to (4–5), conv1
method to (7), conv2 method to (8). “?” means the conversion method is under discussion.

The center of mass conversion method takes the angle of C.G. of m1 and m2 in DMTP
as θ, i.e., (4) and (5),

km =
m2

m1 + m2
(4)

θeql = tan−1 lsinθ1 + kmrsin(θ1 + θ2)

lcosθ1 + kmrcos(θ1 + θ2)
(5)

The convex combination method assumes θ as the convex combination of θ1 and θ2,
i.e., (6),

θeql = kconvθ1 + (1− kconv)θ2 (6)

where the combination proportion kconv ∈ [0, 1] is determined by the relationship between
m1 and m2, as in (7),

kconv = km =
m2

m1 + m2
(7)
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or in (8),

kconv =
m1 + m2

m1 + 2m2
(8)

By simulating the two methods above in extreme maneuvering conditions, i.e., left
cornering, (high speed) single lane change, and (short distance) double lane change, on
the vehicle–fluid coupling co-simulation platform, which will be constructed in Section VI,
A, the equivalent fusion angle θeql is obtained. The value is then input into force output
calculating equations for SP. The results are shown in Figure 12d,f.

It can be concluded that the convex combination method with (6) and (8) is the most
apropos one, since the time average error of force outputs (Fy, Fz, and Mx) of the whole
simulation process are the lowest (corresponding to the final value of the last inset in
Figure 12d,f), and the fusion results are superior to that of the open-loop calculation of SP.

5.2.2. Angle Decomposition and UKF Construction

Before harnessing DMTP, there are still two essential questions to address.
To start with, the question is how can the angle θsur f measured with the fluctuation

sensor be decomposed into two angles θ1 and θ2 in DMTP in the process of inputting sensor
data in order to correct the model state with measurement. The solution is simple but
intuitive: make the best guess of θ1 and θ2 based on measurement θsur f . The exact process
is: now that we have the values of θ1 and θ2 for the last discrete time step, these values
can be denoted as known values θ1,k−1 and θ2,k−1. Furthermore, the relationship between
the current values required to estimate θ1,k, θ2,k, and the known measurement θsur f was
already derived in (6) and (8). Then, a convex optimization problem for θ1,k and θ2,k can be
constructed to find θ1,k and θ2,k with the least deviation to θ1,k and θ2,k while subject to the
relationship described in (6) and (8). The details of the solution derivation can be found in
Appendix B.1.

The second question is how can the model nonlinearity be addressed when putting
it into a filtering algorithm. The answer is to use an unscented Kalman filter since the
equations for system motion involve DMTP, which is difficult to linearize, and UKF does
not even need the analytical form of the motion and observation equations as it simply
regards the system as a black box. In the solution of this paper, UKF is applied for observer
construction. The construction of UKF is contained in Appendix B.2.

UKF cannot guarantee convergence in general nonlinear systems, but its iterative
version, the iterated unscented Kalman filter (IUKF), can theoretically converge to the
posterior mean of the true value. However, due to the assumption that the observation
equation is linear as (3), IUKF is equivalent to UKF. In theory, UKF converges to the
posterior mean of the equivalent pendulum angle of linearized SP.

In practical applications, it is found that there exist some local fluctuations in the
sensor data that are difficult to filter out, which will cause an impact when calculating the
force output. Therefore, a Luenberger observer is appended after the sensor data to smooth
it, and its two poles are designed as [–5, –5].

6. Simulation and Analysis of Sloshing Observation
6.1. Simulation Model

To better validate the effectiveness of the observer constructed in the last section, a
vehicle–fluid coupling co-simulation verification platform is built, as shown in Figure 13.
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Figure 13. Vehicle–fluid co-simulation platform construction by bridging TruckSim and StarCCM+
by Matlab/Simulink.

By writing a MATLAB function and Java macro, Simulink and StarCCM+ are con-
trolled to read and write data automatically in the simulation process, and two flag-
bit sharing files and two data exchange sharing files are constructed to realize the co-
simulation of vehicle dynamics and finite element-based CFD. With the help of this sim-
ulation platform, real-time interaction between vehicles and fluid dynamics can be more
realistically simulated.

A simulation model is built in Simulink, as shown in Figure 14, to validate the pro-
posed observation method based on a multi-DOF pendulum model (specifically, DMTP
model) and the free surface fluctuation sensor.
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6.2. Acquisition of Fluctuation Sensor Data

Currently, no physical prototype of a fluctuation sensor is available; therefore, simu-
lation methods are used to simulate it. As shown in Figure 15, sensor data are obtained
with image processing using CFD simulation images output by Star-CCM+. The specific
method is:
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Figure 15. Graphical processing method to simulate a fluctuation sensor. (a) Original image output
from Star-CCM+. (b) Grayscale the image and extract edges, then mask irrelevant parts. (c) Trim the
free surface according to float board length and fit the free surface with a straight line to calculate the
slope angle as θsur f .

Step 1: At each simulation moment, Star-CCM+ outputs an image of liquid shaking.
Step 2: Grayscale the image and extract edges.
Step 3: Mask the parts of the image irrelevant to the free liquid level and trim the free

surface according to the length of the floating board.
Step 4: Obtain equivalent sensor data θsur f by fitting scatter points of the trimmed

liquid surface with a straight line.

6.3. Results Analysis

As analyzed in Figure 9b, the error of the open-loop calculation of the model accu-
mulates swiftly under continuous maneuvering conditions, making it the most effective
condition to test the performance of the proposed observation method. Therefore, the con-
secutive double-lane change condition is designed, as shown in Figure 16a. The reference
path is two double-lane change paths with an interval of only 100 m. Each double-lane
change path completes a lane change within 45 m, with a 45 m straight line, and a change
back within another 45 m. The initial speed of the semi-trailer tank truck is 70 km/h.
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Figure 16. Simulation of the consecutive double-lane change condition (CDLC). (a) CDLC introduc-
tion. (b) Trajectory observations. (c) Observer input: lateral acceleration of the trailer. (d) Observer
input: rolling angular velocity of the trailer. (e) Estimated swing angle θ; (f) Estimated roll moment
Mx. (g) Time average error of Mx.
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The simulation results are shown in Figure 16b,g, which were obtained using the
lateral acceleration a of the trailer ay2 and roll angular velocity

.
ϕ2 from TruckSim (in real

vehicles, they can be measured using the IMU fixed at the bottom of the liquid tank). White
noise was added to ay2 and

.
ϕ2 with a variance of 0.001 to reflect the measured noise of IMU

as the input of the UKF equations of system motion, and the fluctuation sensor measured
result θsur f is supplemented for state estimation.

Figure 16e compares the angle fusion results with the angle calculated using open-
loop SP and DMTP. Figure 16f compares the roll moment Mx obtained by inputting the
fusion results and the equivalent angle calculated/estimated using open-loop SP into the
force calculation formula of SP and the roll moment output of CFD as a true value for
observer validation.

In Figure 16g, the time average error of the predicted roll moment is compared
between the proposed observation method (data fusion method) and the open-loop method
with CFD results. The error at each moment is the average of all previous moments’
errors, and the value at the last moment represents the mean error throughout the entire
simulation process.

Before the 10th second, the open-loop model exhibits sufficient accuracy. However, as
the first double lane change concludes, the liquid in the tank enters a free-sloshing state. At
this point, the slight difference between the model’s natural frequency and that of the actual
liquid-filled system begins to manifest, leading to an accumulation of phase differences.
Before the damping effect of the system can eliminate the accumulated errors, the vehicle
initiates the second double-lane change, causing a rapid accumulation of errors in the
open-loop calculation.

However, the proposed observation method, which incorporates fluctuation sensor
data, consistently maintains high measurement accuracy. The time mean observation error
during the entire process is only 25.9% of the time average error of the open-loop calculation,
significantly improving the observation accuracy by about four times. Particularly, during
the second maneuver, the instantaneous error is only about one-seventh of that observed in
the open-loop calculation.

7. Conclusions

In order to realize reliable observation of states of the pendulum model (reflecting
liquid sloshing dynamics) for anti-rollover control of tank trucks, to begin with, this article
proposes a modeling method for liquid sloshing of tank trucks based on a multi-degree-of-
freedom (multi-DOF) pendulum model. We conducted a spectral analysis of the output
force characteristics of liquid sloshing in the tank and designed a double mass trammel
pendulum model (DMTP, 2DOF) and a combined trammel and single-pendulum model
(TPSP, 2DOF) that reflect the sloshing dynamics more accurately, especially under medium
and low filling rates ( f ≤ 60%). Using simulations under orthogonal working conditions
of step and sinusoidal lateral acceleration excitation, DMTP and TPSP are proven to have
advantages over conventional one-degree-of-freedom pendulum models (i.e., SP and TP)
in terms of generalization ability and fitting precision.

In addition, a free surface fluctuation sensor is designed that can measure the incli-
nation and average height of the sloshing liquid surface. It includes a retractable floating
board that can automatically adjust its length according to changes in the filling rate. The
characteristic that the measurement part has no electronic components makes it suitable for
applications in tanks containing hazardous fluid chemicals. Furthermore, an unscented
Kalman filter (UKF) is applied to observe the liquid sloshing.

In the end, using the constructed vehicle-fluid coupling co-simulation verification
platform, the simulation in the working condition of a consecutive double-lane change
is carried out with tight coupling between vehicular dynamics and CFD. The simulation
verifies the feasibility of the proposed observation method based on the multi-DOF pen-
dulum model and free surface fluctuation sensor. Its advantages over the conventional
open-loop calculation method include providing reliable observation for the state observa-
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tion of the controllers and ensuring the safety of practical application of control algorithms
under extremities.

It is important to note that this study focuses solely on liquid sloshing in the roll plane
and neglects the longitudinal flow of liquid in the tank and its impact on lateral sloshing
under conditions involving significant acceleration and/or braking. Future research should
consider the coupling of lateral and longitudinal sloshing in modeling, prototype the
fluctuation sensor, and conduct model car tests with an integrated control algorithm for
rollover prevention and trajectory tracking based on model predictive control.
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Appendix A

The following provides a detailed derivation of the proposed DMTP model. To realize
the input of lateral, vertical, and roll angular acceleration of the trailer into the model, three
additional DOFs in addition to those two of DMTP should be considered, which are the
lateral and vertical translational DOF, y, z, and rotational DOF ϕ around the o′t x′t axis. The
derivation of the dynamic equation using the Lagrange method is shown as follows.

Sensors 2023, 23, x FOR PEER REVIEW 23 of 28 
 

 

  
(a) (b) 

Figure A1. Proposed 2DOF pendulum model DMTP, where 𝑜ଶ஻𝑥ଶ஻𝑦ଶ஻𝑧ଶ஻ is the coordinate fixed on 
the trailer body and 𝑜௧ᇱ𝑥௧ᇱ𝑦௧ᇱ𝑧௧ᇱ is the coordinate fixed on the tank with 𝑜௧ᇱ located at the center of 
elliptical center. (a) Geometry parameters of DMTP. (b) Degrees of freedom and dynamics of DMTP. 

Next, derive the position vectors in (A2), (A3), and (A4) to obtain velocity vectors in 
(A5) and acceleration vectors in (A6). 𝑅௣పሬሬሬሬሬ⃗ሶ = 𝑑𝑑𝑡 𝑅௣పሬሬሬሬሬ⃗ = 𝑣ଵ௬𝚥 + 𝑣ଵ௭𝑘ሬ⃗ , 𝑖 = 0,1,2 (A5)

𝑅௣పሬሬሬሬሬ⃗ሷ = 𝑑ଶ𝑑𝑡ଶ 𝑅௣పሬሬሬሬሬ⃗ = 𝑎ଵ௬𝚥 + 𝑎ଵ௭𝑘ሬ⃗ , 𝑖 = 0,1,2 (A6)

where 𝑣௜௫ is velocity component of the 𝑖th mass along the positive direction of axis 𝑥, 
and the same expression is true for acceleration component 𝑎௜௫. 

The kinetic energy of system is as stated in (A7), 

𝑇 = ෍ 12 𝑚௜൫𝑣௜௬ଶ + 𝑣௜௭ଶ ൯ଶ
௜ୀ଴ , 𝑖 = 0,1,2 (A7)

where 𝑚௜ is the 𝑖 th concentrated mass. 
When taking 𝑥ଶ஻𝑜ଶ஻𝑦ଶ஻ as the reference potential energy surface, the potential energy 

of the system is as stated in (A8), 

𝑈 = ෍ 𝑚௜𝑔𝑝௜௭ଶ
௜ୀ଴ , 𝑖 = 0,1,2 (A8)

where 𝑔 is the gravitational acceleration. 
The Lagrangian of the system is defined as (A9). 𝐿 = 𝑇 − 𝑈 (A9)

Differential equation results can be obtained according to (A7), and exact expressions 
can be acquired using the built-in function of MATLAB: 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒(𝐿，[𝜃ଵ, 𝜃ଶ]) == [0, 0]. The results are rearranged to obtain the second-order differential equa-
tions of 𝜃ଵ, 𝜃ଶ as in (A10) and (A11). 𝜃ଵሷ = 𝑓ଵ൫𝑦ሷ , 𝑧ሷ, 𝜑, 𝜑ሶ , 𝜑ሷ , 𝜃ଵ, 𝜃ଵ ሶ , 𝜃ଶ, 𝜃ଶሶ ൯ − 𝑐ଵ𝜃ଵሶ  (A10)𝜃ଶሷ = 𝑓ଶ൫𝑦ሷ , 𝑧ሷ, 𝜑, 𝜑ሶ , 𝜑ሷ , 𝜃ଵ, 𝜃ଵ ሶ , 𝜃ଶ, 𝜃ଶሶ ൯ − 𝑐ଶ𝜃ଶሶ  (A11)

Note that a damping term is added after (A10) and (A11) to mimic the damping effect 
of liquid system, where 𝑐ଵ and 𝑐ଶ are constant damping coefficients. 

Numerical integration is used to solve the dynamic process of DMTP, where the in-
puts of Equations (A10) and (A11) are 𝑦ሷ , 𝑧ሷ, 𝜑ሷ  from the trailer and the other variables are 

Figure A1. Proposed 2DOF pendulum model DMTP, where oB
2 xB

2 yB
2 zB

2 is the coordinate fixed on the
trailer body and o′tx

′
ty
′
tz
′
t is the coordinate fixed on the tank with o′t located at the center of elliptical

center. (a) Geometry parameters of DMTP. (b) Degrees of freedom and dynamics of DMTP.

Generalized coordinates: y, z, ϕ, θ1, θ2, degrees of freedom: five (two swinging DOFs
θ1, θ2 are of DMTP, three additional y, z, ϕ are essentially that of the trailer), and only two
differential equations of θ1, θ2 is needed since DMTP has two DOFs.

According to the Lagrange equation

d
dt

∂T

∂
.

θi

− ∂T
∂θi

+
∂U
∂θi

= Qi, i = 1, 2 (A1)
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where T is the kinetic energy of the system, U is the potential energy of the system, and
Qi is the corresponding generalized force of the i th DOF, the kinetic and potential energy
expression T and U of the 2DOF system consisting of concentrated masses m0, m1, and m2
are needed.

The vectorized expression of concentrated mass positions are shown in (A2)–(A4).

→
Rp0 =

→
y +

→
z +

→
b −

→
b0

= [y− (b− b0)sinϕ]
→
j + [z + (b− b0)cosϕ]

→
k

= p0y
→
j + p0z

→
k

(A2)

→
Rp1 =

→
y +

→
z +

→
b +

→
r1

=
[
y− bsinϕ + apsinθ1cosϕ + bpcosθ1sinϕ

]→
j

+
[
z + bcosϕ + apsinθ1sinϕ + bpcosθ1cosϕ

]→
k

= p1y
→
j + p1z

→
k

(A3)

→
Rp2 =

→
y +

→
z +

→
b +

→
r1 +

→
r2

=

[
y− bsinϕ + apsinθ1cosϕ + bpcosθ1sinϕ

+rsin(ϕ + θ1 + θ2)

]
→
j

+

[
z + bcosϕ + apsinθ1sinϕ + bpcosθ1cosϕ

−rcos(ϕ + θ1 + θ2)

]
→
k

= p2y
→
j + p2z

→
k

(A4)

where
→
j and

→
k are unit vectors along axis oB

2 yB
2 and axis oB

2 zB
2 , geometry parameters b, b0,

ap, bp and r are as shown in Figure A1a, and pix is the position component of the ith mass
along positive direction of axis x.

Next, derive the position vectors in (A2)–(A4) to obtain velocity vectors in (A5) and
acceleration vectors in (A6).

.
→

Rpi =
d
dt

→
Rpi = v1y

→
j + v1z

→
k , i = 0, 1, 2 (A5)

..
→

Rpi =
d2

dt2

→
Rpi = a1y

→
j + a1z

→
k , i = 0, 1, 2 (A6)

where vix is velocity component of the ith mass along the positive direction of axis x, and
the same expression is true for acceleration component aix.

The kinetic energy of system is as stated in (A7),

T =
2

∑
i=0

1
2

mi

(
v2

iy + v2
iz

)
, i = 0, 1, 2 (A7)

where mi is the i th concentrated mass.
When taking xB

2 oB
2 yB

2 as the reference potential energy surface, the potential energy of
the system is as stated in (A8),

U =
2

∑
i=0

migpiz, i = 0, 1, 2 (A8)

where g is the gravitational acceleration.
The Lagrangian of the system is defined as (A9).

L = T −U (A9)
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Differential equation results can be obtained according to (A7), and exact expressions can be
acquired using the built-in function of MATLAB: f unctionalDerivative(L, [θ1, θ2]) == [0, 0].
The results are rearranged to obtain the second-order differential equations of θ1, θ2 as in
(A10) and (A11).

..
θ1 = f1

( ..
y,

..
z, ϕ,

.
ϕ,

..
ϕ, θ1,

.
θ1 , θ2,

.
θ2

)
− c1

.
θ1 (A10)

..
θ2 = f2

( ..
y,

..
z, ϕ,

.
ϕ,

..
ϕ, θ1,

.
θ1 , θ2,

.
θ2

)
− c2

.
θ2 (A11)

Note that a damping term is added after (A10) and (A11) to mimic the damping effect
of liquid system, where c1 and c2 are constant damping coefficients.

Numerical integration is used to solve the dynamic process of DMTP, where the inputs
of Equations (A10) and (A11) are

..
y,

..
z,

..
ϕ from the trailer and the other variables are taken as

state variables of the system. The solution of three generalized forces (namely, the lateral
force Fy, vertical force Fz, and roll moment Mx) is as follows.

Fy = −
2

∑
i=0

miayi, i = 0, 1, 2 (A12)

Fz = −
2

∑
i=0

mi(a zi + g), i = 0, 1, 2 (A13)

Mx = −
2

∑
i=0

mi

[
pziayi − pyi(a

zi
+ g
)
], i = 0, 1, 2 (A14)

In (A12)–(A14), the negative sign represents the reversion of force direction, represent-
ing the force exerted by the liquid on the tank. The derivation of the TPSP model is the

same for DMTP, which needs just slight modifications to the expression of
→

Rpi in (A2)–(A4),
accordingly.

Appendix B

Appendix B.1. Decomposition of the Angle from Linearized SP to DMTP

Except for the fusion method, the construction of system equations of motion (A15)
for UKF is

θk = f (θk−1, vk, wk) (A15)

where k symbolizes discrete time, θ is the swing angle of linearized SP, vk is the system

input, vk =
[

ay2
..

φ2

]T
, and wk is the process noise, which requires the decomposition of

θ̌k−1 to θ̌1,k−1 and θ̌2,k−1 (in this article, a check above variables implies prior, and a hat
implies posterior) if DMTP is to be engaged. But the direct conversion of low dimensional
data into a higher dimension is impossible because the conversion exists in null space,
thus θ10,k−1, θ20,k−1, which, being calculated at time step k− 1, are needed to support the
estimation. The decomposition of θ into θ1 and θ2 can be seen as an optimization problem:
to find θ10,k−1, θ20,k−1 closest to θ̌1,k−1, θ̌2,k−1, while subject to the relationship found in (6)
and (8), i.e., θ̌ = kconv θ̌1 + (1− kconv)θ̌2, the problem can be described as (A16).

min
θ1,θ2

J =
((

θ̌1 − θ10
)2

+
(
θ̌2 − θ20

)2
)

s.t.θ̌ = kconv θ̌1 + (1− kconv)θ̌2

(A16)

Let a = θ̌/(1− kconv) and b = kconv/(1− kconv), and the constrain is converted to (A17).

θ̌2 = a− bθ̌1 (A17)

After substituting the constraint conditions, the cost function is

J =
(
θ̌1 − θ10

)2
+
(
bθ̌1 + θ20 − a

)2
(A18)
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let the partial of J to θ̌1 be 0

∂J
∂θ̌1

= 2
(
θ̌1 − θ10

)
+ 2b

(
bθ̌1 + θ20 − a

)
= 0 (A19)

the optimal solution is  θ̌1 =
ab + θ10 − bθ20

1 + b2

θ̌2 = a− bθ̌1

(A20)

Construct decomposition function (A21) according to (A20).[
θ̌1,k−1 θ̌2,k−1

]
= g1

(
θ̌k−1, θ10,k−1, θ20,k−1

)
(A21)

Construct angle fusion function (A22) according to (6) and (8).

θ̌k = g2(θ10,k, θ20,k) (A22)

The partial differential function of DMTP can be generalized as (A23).

dxk = DMTP(xk−1, vk) (A23)

where x contains the state variables of DMTP x =
[
y

.
y ϕ

.
ϕ θ1

.
θ1 θ2

.
θ2

]T
, and

the equation of system motion is as (A24).

θ̌k = f
(
θ̌k−1, vk, wk

)
=

g2
(
xk−1 + DMTP

(
g1
(
θ̌k−1 + wk, θ10,k−1, θ20,k−1

)
, vk
)) (A24)

Since the equations of system motion involve DMTP, which is difficult to linearize,
and UKF does not even need the analytical form of the motion, the observation equations
simply regard the system as a black box, so UKF is applied for observer construction.

Appendix B.2. Construction of UKF

Firstly, for the prediction part, write the state and motion noise together in a joint form,
assume their dimension as N, and define a new variable z,

z =

[
θ̂
w

]
(A25)

and

µz =

[
θ̂k−1

0

]
, Σzz =

[
P̂k−1 0

0 Qk

]
(A26)

where µz is the mean of z, Σzz is the covariance matrix of z, P̂k−1 is the covariance of
posterior θ̂k−1 in time step k− 1, and Qk is the covariance of process noise wk in time step k.

Step 1: substitute the unscented transformation of z in the equations of system motion
in (A24).

Perform the Cholesky decomposition of Σzz

LLT = Σzz (A27)

where L is a lower triangular matrix
z0 = µz

zi = µz +
√

N + κcoliL

zi+N = µz −
√

N + κcoliL

i = 1, 2, · · · , N (A28)
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in which

zi =

[
θ̂k−1,i

wk, i

]
(A29)

and substitute θ̂k−1,i and wk, i into (32).

θ̌k,i = f
(
θ̂k−1,i, vk, wk,i

)
i = 1, 2, · · · , N (A30)

The mean of the predicted prior is θ̌k, and its covariance is P̌k

θ̌k =
2N

∑
i=0

αi θ̌k,i (A31)

P̌k =
2N

∑
i=0

αi
(
θ̌k,i − θ̌k

)(
θ̌k,i − θ̌k

)T
(A32)

where the coefficient ai is

αi =


κ

N + κ
i = 0

1
2

1
N + κ

i 6= 0
(A33)

Step 2: correct the prediction with observation.
Similarly, z is defined as the joint form of the prediction mean and the observation noise

z =

[
θ̌
n

]
(A34)

and

µz =

[
θ̌k
0

]
, Σzz =

[
P̌k 0
0 Rk

]
(A35)

where Rk is the covariance of observation noise nk. An unscented transformation is also
performed as in (A27) and (A28), where

zi =

[
θ̌k,i
nk,i

]
(A36)

Substituting θ̌k,i and nk,i into observation function

y̌k,i = Kθ̌k,i + nk,i i = 1, 2, · · · , N (A37)

The posterior is constructed and the mean µy,k of observation y, covariance Σyy,k of
observation y, and covariance Σθy,k of θ and y are obtained.

µy,k =
2N

∑
i=0

αiyk,i (A38)

Σyy,k =
2N

∑
i=0

αi

(
yk,i − µy,k

)(
yk,i − µy,k

)T
(A39)

Σθy,k =
2N

∑
i=0

αi
(
θ̌k,i − θ̌k

)(
yk,i − µy,k

)T
(A40)

The Kalman gain is defined in (A41)

Kk = Σθy,kΣ−1
yy,k (A41)



Sensors 2023, 23, 8831 25 of 26

The posterior mean is
θ̂k = θ̌k + Kk

(
yk − µy,k

)
(A42)

whose covariance is
P̂k = P̌k − KkΣT

θy,k (A43)

At this point, the UKF used in simulations is derived.
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