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Abstract: Aiming at the problem of the low cooperative positioning accuracy and robustness of
multi-UAV formation, a cooperative positioning method of a multi-UAV based on an adaptive fault-
tolerant federated filter is proposed. Combined with the position of the follower UAV and leader
UAV, and the relative range between them, a cooperative positioning model of the follower UAV is
established. On this basis, an adaptive fault-tolerant federated filter is designed. Fault detection and
isolation technology are added to improve the positioning accuracy of the follower UAV and the
fault tolerance performance of the filter. Meanwhile, the measurement noise matrix is adjusted by the
adaptive information allocation coefficient to reduce the impact of undetected fault information on the
sub-filter and global estimation accuracy. The simulation results show that the adaptive fault-tolerant
federated algorithm can greatly improve the positioning accuracy, which is 83.4% higher than that of
the absolute positioning accuracy of a single UAV. In the case of a gradual fault, the method has a
stronger fault-tolerant performance and reconstruction performance.

Keywords: multi-UAV formation; cooperative positioning; adaptive fault-tolerant federated filter;
fault-tolerant performance

1. Introduction

UAVs have the characteristics of a low cost, simple operation and easy deployment,
which not only saves a lot of manpower and material resources but also makes them less
restricted by the environment and plays a great role in military and civilian fields [1,2].
However, in recent years, the tasks that need to be performed by UAVs have become
more and more complex, and the environment has become more and more extensive. A
single UAV is prone to mission failure due to its small coverage area and failure of the
UAV. Inspired by natural biological clusters, UAVs have gradually developed into cluster
formations and have great potential application value in battlefield reconnaissance, disaster
relief, communication relay, 3D reconstruction and other fields [3–7]. Compared with
a single UAV, a UAV swarm can fully take advantage of clusters, so that members can
perform tasks in parallel. Through cooperation among members, UAV swarms broaden the
way and field of task execution. They have the advantages of functional distribution, a high
system survival rate and a high efficiency and have great potential application value [8–10].

In the process of multi-UAV formation flights, navigation and positioning are required
for the whole flight process, and high-precision positioning is the key technology to ensure
UAVs’ safety and path planning [11,12]. The existing mainstream navigation methods
mainly rely on the combination of a high-precision inertial navigation system (INS) and
a global navigation satellite system (GNSS) to achieve high precision [13]. However, due
to cost and load constraints, each UAV cannot be equipped with high-precision naviga-
tion equipment. Therefore, in the case of load permitting, other low-cost sensors can be
equipped for UAVs to perform cooperative positioning through information interaction
among UAVs to improve the positioning accuracy of multi-UAV formation flights [14,15].
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Multi-UAV cooperative positioning has become a hot topic for scholars at home and
abroad. Chen M [16] proposed a hybrid cooperative navigation (CN) method for UAV
swarm based on a factor graph and the Kalman filter. The global factor graph is used to
combine the global navigation satellite system (GNSS) and ranging information to provide
position estimation for the modified distributed Kalman filter; then, a distributed Kalman
filter is established on each UAV to fuse inertial information and optimize position esti-
mation and modify navigation states. Simulation results show that it can provide a more
precise and efficient CN solution than traditional CN methods. Aiming at the real-time
positioning requirements of UAV clusters, Tang C [17] proposed a multi-source fusion
UAV cluster collaborative positioning method based on information geometry, which can
effectively suppress abrupt errors and realize rapid positioning. Zhu X [18] proposed a
cooperative positioning method following the motion vector of the UAV. The leader UAV
obtains high-precision positioning information through the INS/GPS, and the follower
UAV fuses the position information of the leader UAV and its own INS positioning infor-
mation through the improved extended Kalman filter to improve its positioning accuracy.
Wan J [19] proposed a dynamic nonparametric belief propagation (dNBP) algorithm to cal-
culate the posterior distribution of the UAV’s position conditioned on all observations made
in the entire UAV group. This method is suitable for dealing with nonlinear models and
highly non-Gaussian distributions that appear in applications. However, the authors of the
above articles have carried out a lot of research on the positioning accuracy of cooperative
positioning but have not considered the fault detection and fault-tolerance performance of
multi-UAV formation, and the algorithm implementation is very cumbersome.

For feedback control and sensor faults, Xu H [20] proposed an event-triggered pre-
defined time decentralized output feedback control method, whereby they designed a
predefined time filter to solve the computational complexity problem. Yu D [21] proposed
a new adaptive fuzzy tracking control algorithm. This fault-tolerant control algorithm
utilizes Lyapunov functions to ensure that all signals in the system are bounded when mul-
tiple faults occur. This paper considers feedback control and sensor failures and proposes
a cooperative positioning method of a multi-UAV based on the adaptive fault-tolerant
federated filter algorithm. The designed adaptive fault-tolerant federated filter is applied
to fuse the positioning information of the follower UAV itself, the position information of
the leader UAV and the relative ranging information of them for cooperative positioning.
The information allocation coefficient is continuously adjusted according to the observation
forecast residual, and the adaptive adjustment of the measurement noise matrix is realized
by using the information allocation coefficient. Combined with fault detection and isolation
technology, the global optimal estimation of positioning errors is realized. As a result, the
positioning accuracy of the follower UAV is improved, and the fault tolerance performance
of the system can also be guaranteed. The innovations and contributions of this paper are
as follows:

(1) Aiming at the problem of the cumbersome algorithm of multi-UAV cooperative
positioning, a federated filter is designed to realize cooperative localization in this paper.
This method is simple and easy to implement and can improve the positioning accuracy of
the follower UAVs.

(2) Based on the traditional federated filter, this paper introduces an adaptive informa-
tion allocation coefficient to adjust the measurement matrix so as to change the utilization
rate of observation data and improve the fault-tolerance performance of multi-UAV cooper-
ative positioning.

2. The Principle of the Federated Filter and Cooperative Positioning Scheme
2.1. The Principle of the Federated Filter

The federated filter is evolved on the basis of decentralized filtering, which is a two-
stage filter. The general structure of the federated filter is shown in Figure 1 [22].
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Figure 1. The general structure of the federated filter.

The federated filter is composed of multiple sub-filters and a master filter. The sub-
filters process the data in parallel. The state estimates of them are acquired by their
measurements, respectively; the state estimates X̂i and the estimated covariance matrix Pi
are transmitted to the master filter as the input information. The master filter outputs the
optimal solution of the state estimates Xg and the covariance matrix Pg after the optimal
fusion of the sub-filter data. Meanwhile, the state estimates and covariance matrix of
each sub-filter are reset by the obtained optimal result; βi(0 ≤ β ≤ 1) is the information
allocation coefficient [23]. The federated filter mainly fuses the estimated values and
variances transmitted by the sub-filters, which is essentially a weighted average.

2.2. Multi-UAV Cooperative Positioning Scheme

Aiming at the cooperative positioning problem of a multi-UAV, this paper designs a
cooperative positioning scheme of follower UAVs following leader UAVs. In this scheme,
a small number of UAVs are equipped with high-precision GPS/INS integrated naviga-
tion equipment, and these UAVs are defined as the leader UAVs. The remaining UAVs
are defined as the follower UAVs, which are equipped with low-precision GPS and INS
navigation equipment. In addition, all follower UAVs and leader UAVs are equipped with
ranging equipment. Based on the advantages of the UWB ranging module, such as strong
anti-interference ability, fast data transmission speed and accurate ranging [24], this paper
selects the UWB ranging module as the ranging equipment. The cooperative positioning
scheme is shown in Figure 2.
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The leader UAVs realize high-precision positioning through the high-precision GPS/INS
carried on them and provide the reference points for the relative navigation of the follower
UAVs. The follower UAVs use their own low-precision INS as a public navigation system.
On the one hand, the INS and the low-precision GPS carried by the follower UAV itself
realize integrated navigation. On the other hand, the INS fuses the position and relative
range of the leader UAV to realize relative navigation and realizes the optimal fusion of the
two through an adaptive fault-tolerant federated filter, thereby improving the positioning
accuracy and fault-tolerant performance of the follower UAV. In this scheme, every follower
UAV only performs range measurement with the nearest leader UAV for cooperative
positioning, so the adaptive fault-tolerant federated filter generally has only two sub-filters,
namely, sub-filter 1 and sub-filter 2.

3. Model of the Adaptive Fault-Tolerant Federated Filter
3.1. State Equation of the Adaptive Fault-Tolerant Federated Filter

The INS was adopted for the public system of the adaptive fault-tolerant federated
filter, so it was decided to select the output parameter error of the INS and the inertial
instrument error as the state quantity of the two sub-filters. The east–north–up (ENU)
geographic coordinate system was selected as the navigation coordinate system, and the
state quantity is:

X = [ϕE, ϕN , ϕU , δvE, δvN , δvU , δL, δλ, δh, εbx, εby, εbz,∇bx,∇by,∇bz]
T (1)

where ϕE, ϕN , ϕU are the platform error angles, δvE, δvN , δvU are the velocity errors in the
ENU direction output by the INS of the follower UAV, δL, δλ, δh are the latitude, longitude
and height error output by it, respectively, εbx, εby, εbz are the constant drifts of the gyro
of the INS and ∇bx,∇by,∇bz is the bias of the accelerometer of the INS. Then, the state
equation of the two sub-filters is:

.
X(t) = F(t)X(t) + G(t)W(t) (2)

where F(t) is the state transition matrix, G(t) is the system noise driving matrix and W(t)
is the system noise vector.

3.2. Measurement Equation of Sub-Filters
3.2.1. Measurement Equation of Sub-Filter 1

Sub-filter 1 is the position loose integration filter of the INS/GPS. The position differ-
ence between the INS and the GPS is selected as the observation, and the position of the
INS is expressed as: 

LINS = Lt + δL
λINS = λt + δλ
hINS = ht + δh

(3)

The position of the GPS is expressed as: LGPS
λGPS
hGPS

 =

 Lt
λt
ht

−VGPS (4)

where Lt, λt and ht represent the true values of latitude, longitude and height, and VGPS
represents the measurement noise of the GPS in three directions of latitude, longitude and
height. Then, the measurement equation of sub-filter 1 is:

Z1(t) =

 LINS − LGPS
λINS − λGPS
hINS − hGPS

 = H1(t)X(t) + V1(t) (5)



Sensors 2023, 23, 8823 5 of 14

where the measurement matrix H1(t) is:

H1(t) = [03×6 I3×3 03×6]3×15 (6)

The noise vector V1(t) of the measurement system is equal to VGPS, which is composed
of the positioning error of the GPS in three directions. It is expressed as:

V1(t) = [δLGPS δλGPS δhGPS]
T (7)

3.2.2. Measurement Equation of Sub-Filter 2

Sub-filter 2 is a filter that combines the output position a of the follower UAV’s INS,
the range b measured by the UWB and the high-precision position c of the leader UAV.
The measured value can be expressed as c− a− b. The range b is measured in the body
coordinate system. If the UWB ranging module has been calibrated before installation
and coincides with the body coordinate system of the follower UAV, the range b can be
expressed as follows:

Pd =

 Pt
x

pt
y

Pt
z

−VUWB (8)

where Pt
x, Pt

y and Pt
z represent the true values of the leader UAV in three directions under

the body coordinate system of the follower UAV, and VUWB represents the random error
of the UWB. Considering that the range between the follower UAV and the leader UAV is
small, the Earth’s surface can be assumed to be a plane. And then, the relative range in the
body coordinate system of the follower UAV can be expressed as follows:

PL − PINS
W = Cb

n

 R cos LINS(λL − λINS)
R(LL − LINS)

hL − hINS

 (9)

where R is the semi-major axis of the Earth, LL, λL and hL are the latitude, longitude and
height position of the leader UAV obtained by the follower UAV, LINS, λINS and hINS are
the latitude, longitude and height position output by the INS of the follower UAV and Cb

n
is the transition matrix from the ENU navigation coordinate system to the body coordinate
system. Combining with Equation (3), Equation (9) can be further organized as:

PL − PINS
W =

 Pt
x

pt
y

Pt
z

− Cb
n

 R cos LINSδλ
RδL

δh

 (10)

Therefore, the measurement equation of sub-filter 2 is:

Z2(t) = PL − PINS
W − Pd = H2(t)X(t) + V2(t) (11)

where the measurement matrix H2(t) is:

H2(t) =

03×6 − Cb
n

 0 R cos LINS 0
R 0 0
0 0 1

 03×6


3×15

(12)

The noise vector V2(t) is equal to VUWB.

4. Design of the Adaptive Fault-Tolerant Federated Filter

Based on the model established above, in order to reduce the influence of faults on
global estimation and improve the robustness of the cooperative positioning system, an
adaptive fault-tolerant federated filter, shown in Figure 3, is designed.
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4.1. Fault Detection and Isolation

Aiming at a gradual fault in the GPS, the χ2 test method based on the residual is
adopted to diagnose the gradual fault and isolate the faulty subsystems to improve the
fault tolerance performance [25]. The residual of the sub-filter i at time k is:

ri,k = Zi,k − Hi,kX̂i,k/k−1 (13)

When no fault occurs, the residual ri,k is a Gaussian white noise with a zero mean, and
its variance is:

Ai,k = Hi,kPi,k/k−1HT
i,k + Ri,k (14)

where the fault detection function is:

λi,k = rT
i,k A−1

i,k ri,k (15)

where λi,k is the distribution of χ2 with three degrees of freedom. The fault decision
criterion is: {

λi,k > TD f ault
λi,k ≤ TD no f ault

(16)

where TD is the preset threshold, which is determined by the false alarm probability Pf . If
sub-filter 1 fails, it does not share in the global fusion. If sub-filter 2 fails, another leader
UAV needs to be selected for ranging.

4.2. Adaptive Measurement Noise Matrix Adjustment

The χ2 test method based on the residual has a detection delay for gradual faults,
which may result in missed detections [26]. At this time, the faulty sub-filter will pollute
the global estimation. In order to reduce the influence of the faulty sub-filter on the global
estimation before isolating the faulty sub-filter, the measurement noise matrix of the sub-
filter is adjusted by the adaptive information allocation coefficient to change the degree of
utilization of the observed information. The information allocation coefficient depends on
the observation forecast residual [27], and the sub-filter information allocation coefficient is:

βi,k =

{
1

∣∣∆Vi,k
∣∣ ≤ d

d
|∆Vi,k|

∣∣∆Vi,k
∣∣ > d (17)

where d is generally taken as 0.85~0.1, and 0.85 is taken in this paper. ∆Vi,k is a statistic
constructed by the residual ri,k. ri,k can be expressed as:

ri,k = Zi,k − Hi,kX̂i,k/k−1 (18)
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Then, the expression of ∆Vi,k is:

∆Vi,k =
rT

i,kri,k

tr(Hi,kPi,k/k−1HT
i,k + Ri,k)

(19)

Since the information allocation coefficient satisfies the principle of information con-
servation, it is necessary to normalize the allocation coefficient obtained in Equation (17):

βt
i,k =

βi,k
2
∑

i=1
βi,k

(20)

where βt
i,k is the information allocation coefficient of the normalized sub-filter i at time k.

When the observation information of the sub-filter is fault-free, the information allocation
coefficient is 0.5, and the measurement noise matrix is the same as the initial measurement
noise matrix. When the observation information of the sub-filter is faulty, the utilization
of the observation information should be reduced by increasing the measurement noise
matrix. On the contrary, the fault-free sub-filter needs to increase the utilization of its own
observation information by reducing the measurement noise matrix, thereby reducing
the impact of the feedback global estimation on its own accuracy. The adjustment of
the measurement noise matrix can be determined by the number of sub-filters and the
information allocation coefficient, so the measurement noise matrix of sub-filter i at time
k is:

Ri,k = Ri + 2(0.5− βt
i,k)Ri (21)

where Ri is the initial measurement noise matrix, and 2 represents the number of sub-filters.
In the adaptive fault-tolerant federated filter designed in this paper, sub-filter 1 based

on the INS/GPS and sub-filter 2 based on the INS/UWB ranging position of the leader
UAV run in parallel. Because the state quantities of the two sub-filters are the same, the
time update of each sub-filter is performed in the main filter, and the measurement update
is still performed in each sub-filter. In addition, the independence and irrelevance of each
sub-filter’s state estimation can be guaranteed without changing it by the variance upper
bound technique and the information allocation principle. And then, the state estimation
of the sub-filter and the covariance matrix are fused to achieve global optimal estimation.
The specific design steps of the adaptive fault-tolerant federated filter are as follows:

(1) Information allocation. Since the master filter in the adaptive fault-tolerant feder-
ated filter does not allocate information, according to the principle of information conserva-
tion, the information allocation coefficient is:

βm = 0,
2

∑
i=1

βt
i = 1 (22)

where βm is the information allocation coefficient of the master filter, and βt
i is the infor-

mation allocation coefficient of the sub-filter i. The calculation formula for βt
i is shown in

Equation (20). The global state estimation, covariance matrix and process noise matrix are
assigned to each sub-filter, that is:

X̂i,k−1 = X̂g,k−1

Pi,k−1 = (βt
i)
−1Pg,k−1

Qi,k−1 = (βt
i)
−1Q f

(23)

where X̂i,k−1 is the state estimate of the sub-filter i at time k− 1, Pi,k−1 is the covariance
matrix of the sub-filter i at time k− 1, Qi,k−1 is the process noise matrix of the sub-filter i at
time k− 1 and X̂g,k−1, Pg,k−1 and Q f are the global state estimate, covariance matrix and
process noise matrix.
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(2) Time update of each sub-filter in the master filter. The state equation and measure-
ment equation of each sub-filter are discretized before the time update as follows:

Xi,k = Φi,k,k−1Xi,k−1 + Γi,k−1Wi,k−1 (24)

Zi,k = Hi,kXi,k + Vi,k (25)

where Φi,k,k−1 is the discrete state transition matrix, Xi,k is the state estimate of the sub-filter
i at time k, Zi,k is the measurement of the sub-filter i at time k, Hi,k is the measurement
matrix of the sub-filter i at time k,Γi,k−1 is the noise driving matrix of the sub-filter i at time
k− 1 and Wi,k−1 and Vi,k are the system noise and measurement noise of the sub filter i at
time k− 1 and k, respectively. Then, the time update of each sub-filter in the master filter
can be expressed as follows:

X̂i,k/k−1 = Φi,k,k−1X̂i,k−1 (26)

Pi,k/k−1 = Φi,k,k−1Pi,k−1ΦT
i,k,k−1 + Γi,k−1Qi,k−1ΓT

i,k−1 (27)

where X̂i,k/k−1 is the one-step prediction of the state of the sub-filter i from time k− 1 to
time k. Pi,k/k−1 is the one-step prediction of the covariance matrix of the sub-filter i from
time k− 1 to time k.

(3) Independent measurement updates for each sub-filter. Each sub-filter processes its
own measurement information, and the measurement updates as follows:

Ki,k = Pi,k/k−1HT
i,k(Hi,kPi,k/k−1HT

i,k + Ri,k)
−1

(28)

X̂i,k = X̂i,k/k−1 + Ki,k(Zi,k − Hi,kX̂i,k/k−1) (29)

Pi,k = (I − Ki,k Hi,k)Pi,k/k−1 (30)

where Ri,k is the measurement noise matrix of the sub-filter i at time k. Ri,k needs to be
adaptively adjusted before the measurement is updated, and its calculation formula is
shown in Equation (21).

(4) The global optimal estimation of the master filter fused with the local estimation of
the sub-filter. Before fusion, each sub-filter needs to perform fault detection and isolation
steps, and the fault sub-filter does not participate in the fusion. The master filter obtains
global optimal state estimates based on the estimates of each sub-filter, which is optimally
synthesized according to Equation (31):

Pg,k = (
2
∑

i=1
P−1

i,k )
−1

X̂g,k = Pg,k(
2
∑

i=1
P−1

i,k X̂i,k)

(31)

where Pg,k is the covariance matrix of the global estimation error at time k, and X̂g,k is the
optimal estimates of the global error states at time k. The global estimation at time k has
been completed and returned to step 1 the next time.

5. Simulation Verification and Analysis
5.1. Simulation Conditions Set

In the multi-UAV formation, all the leader UAVs are equipped with the same high-
precision INS/GPS integrated navigation equipment and UWB ranging module, and all the
follower UAVs are equipped with the same low-precision GPS, low-precision INS naviga-
tion equipment and UWB ranging module. In addition, there is a wireless communication
network between the leader UAVs and the follower UAVs, which ensures that the follower
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UAVs can obtain the high-precision position of the leader UAV. The simulation conditions
are set as shown in Table 1. The settings of the simulation conditions are consistent with the
typical values in real situations. After setting the simulation conditions, they are imported
into the PINS navigation toolbox to generate the data needed for simulation. The PINS
navigation toolbox can ensure the reliability of data sources.

Table 1. Simulation conditions.

UAVs Items Data

Leader UAVs

INS/GPS eastward error 1 m
INS/GPS northward error 1 m

INS/GPS vertical error 1 m
UWB ranging noise 0.03 m

Follower UAVs

GPS eastward error 10 m
GPS northward error 10 m

GPS vertical error 10 m
Gyro drift 1 deg/h

Gyroscope random walk 0.1◦/
√

h
Accelerometer bias 100 µg

Accelerometer random walk 5 µg/
√

Hz
UWB ranging noise 0.03 m

5.2. Simulation Results and Analysis

Based on the above simulation conditions, two follower UAVs and the nearest leader
UAV in the multi-UAV formation are selected to simulate the cooperative positioning
of the follower UAV. The filter frequency of the sub-filter and the master filter is set as
1Hz. MATLAB was used to verify the feasibility of the algorithm. First, in the case
where the GPS of the follower UAV does not fail, Figures 4–9 show the comparison of
the positioning error of follower UAV 1 and follower UAV 2 in three directions by three
different schemes, respectively: 
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Figure 4. Comparison of the eastward positioning error of follower UAV 1.
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Figure 5. Comparison of the northward positioning error of follower UAV 1.
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Figure 6. Comparison of the vertical positioning error of follower UAV 1.
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Figure 7. Comparison of the eastward positioning error of follower UAV 2.
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Figure 8. Comparison of the northward positioning error of follower UAV 2.
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Figure 9. Comparison of the vertical positioning error of follower UAV 2.

(1) Scheme 1: The follower UAV only relies on its own low-precision GPS and INS for
positioning, without range measurement or information interaction with the leader UAV.
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(2) Scheme 2: The follower UAV adopts the traditional federated filter with fault
detection and isolation for cooperative positioning. The information allocation coefficients
of the two sub-filters satisfy the principle of equal division. The measurement noise matrix
does not change.

(3) The proposed scheme: The follower UAV adopts the adaptive fault-tolerant feder-
ated filter designed in this paper for collaborative positioning. Different from Scheme 2,
this scheme can adjust the measurement matrix of the sub-filter through the adaptive
information allocation coefficient so as to determine the degree of influence of the observed
information on the estimated results.

It can be seen from Figures 4–9 that the positioning errors in three directions are
relatively large when only the low-precision navigation equipment of the follower UAV is
adopted for positioning without GPS failure. The positioning accuracy is greatly improved
when Scheme 2 and the proposed scheme in this paper for cooperative positioning are
adopted. In order to further analyze the influence of the three schemes on the positioning
accuracy of the follower UAV, the root mean square error (RMSE) and mean based on the
three schemes of the follower UAV 1 are counted, as shown in Table 2.

Table 2. RMSE and mean of positioning errors of follower UAV 1.

Positioning Error
m m

Scheme 1 Scheme 2 The Proposed Scheme Scheme 1 Scheme 2 The Proposed Scheme

Eastward 2.10 0.45 0.41 1.68 0.35 0.33
Northward 2.43 0.45 0.40 1.99 0.36 0.32

Vertical 1.85 0.27 0.25 1.44 0.20 0.20

According to Figures 4–9, combined with the results shown in Table 2, the results show
that, under the condition of normal observation, the positioning errors of the follower UAV
are optimally estimated by Scheme 2 and the proposed scheme in this paper for cooperative
positioning, which can greatly improve the positioning accuracy of the follower UAV, and it
is close to that of the leader UAV. Shown as RMSE, the positioning accuracy is improved by
81.7% when Scheme 2 is adopted for cooperative positioning, and the positioning accuracy
is improved by 83.4% when the proposed scheme in this paper is adopted. Considering the
RMSE and mean, the positioning accuracies of Scheme 2 and the proposed scheme in this
paper are basically the same when no fault occurs.

In order to verify the fault-tolerance performance of the three schemes, it is simulated
for the case of the gradual GPS failure of the follower UAV. It is assumed that after flying for
500 s, the GPS of follower UAV 1 has a gradual fault. The fault rate in the three directions
is 0.1 m/s, and the duration is 100 s. The false alarm probability is 0.01, so the detection
threshold is TD = 11.34. The simulation results are shown in Figures 10–12.
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Figure 10. Comparison of the eastward positioning error of follower UAV 1.



Sensors 2023, 23, 8823 12 of 14

Sensors 2023, 23, x FOR PEER REVIEW 4 of 5 
 

 

 

 

Figure 11. Comparison of the northward positioning error of follower UAV 1.Sensors 2023, 23, x FOR PEER REVIEW 5 of 5 
 

 

 

Figure 12. Comparison of the vertical positioning error of follower UAV 1.

Figures 10–12, respectively, show the comparison of the positioning errors of two
different schemes when the gradual fault occurs. It is shown that when the gradual fault
occurs, the positioning accuracy and fault tolerance of Scheme 1 are very poor in the
three directions, while Scheme 2 and the proposed scheme in this paper have a good
fault tolerance, but the error of the proposed scheme in the data abnormal time period
of 500–600 s is lower than that of Scheme 2. In order to quantitatively analyze the fault
tolerance performance of Scheme 2 and the proposed scheme in this paper, the RMSE and
mean are counted, as shown in Table 3.

Table 3. RMSE and mean comparison among 500–600 s.

Positioning Error
m m

Scheme 2 The Proposed Scheme Scheme 2 The Proposed Scheme

Eastward 1.84 0.95 0.54 0.40
Northward 1.34 0.76 0.49 0.36

Vertical 1.77 0.50 0.49 0.26

The results in Table 3 show that the RMSE and mean in the three directions of the
proposed scheme in this paper are lower than those of Scheme 2 during the 500–600 s
when the fault occurs. This shows that the positioning accuracy of the proposed scheme for
cooperative positioning is significantly higher than that of Scheme 2 after the occurrence
of the fault. The proposed scheme has a stronger fault tolerance than Scheme 2, which is
mainly due to the adaptive adjustment of the measurement noise matrix. When the fault
occurs, the proposed scheme can effectively reduce the influence of the fault on global
estimation by adjusting the measurement noise matrix. Finally, the comparison of the
elapsed time of each scheme is shown in Table 4 to compare the accuracy improvement
cost of multi-UAV positioning.
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Table 4. Comparison of the elapsed time of each scheme.

Simulation
Elapsed Time/s

Scheme 1 Scheme 2 The Proposed Scheme

No fault 0.23 0.94 0.95
Fault 0.25 0.96 0.98

From Table 4, it can be seen that the consumption times of Scheme 2 and the proposed
scheme are longer than that of Scheme 1, and the consumption times of Scheme 2 and
the proposed scheme are basically the same. In general, the difference in the calculation
amount of the three schemes is not very large and is within the acceptable range.

Based on the above simulation results, it can be seen that the proposed scheme in this
paper balances the positioning accuracy and fault-tolerance performance of the federated
filter by adjusting the measurement noise matrix, and the consumption time of the proposed
scheme is basically consistent with that of Scheme 2. The proposed scheme in this paper
can meet the requirements of the cooperative positioning accuracy of the follower UAV,
and it can also make the cooperative positioning process of the follower UAV have a strong
fault tolerance performance.

6. Conclusions

Aiming at the cooperative positioning problem of multi-UAV formation, a method
based on an adaptive fault-tolerant federated filter is studied. This method adopts the χ2

test method based on the residual to detect and isolate the gradual faults. Considering that
the χ2 test method based on the residual has a detection delay for the gradual fault, the
adaptive information allocation coefficient is used to adjust the measurement noise matrix
to reduce the impact of the fault on the global estimation in this paper. The simulation
results show that the positioning accuracy of the adaptive fault-tolerant federated filter
algorithm is greatly improved compared to the absolute positioning accuracy of a single
UAV, which is close to the positioning accuracy of the leader UAV. In addition, compared
with the traditional fault-tolerant federated filter, the adaptive fault-tolerant federated
filter designed in this paper can better reduce the impact of gradual faults on the global
estimation, which is suitable for the flight positioning scene of a multi-UAV formation in
complex environments.
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