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Abstract: In the Internet of Things, sensor nodes collect environmental information and utilize lossy
compression for saving storage space. To achieve this objective, high-efficiency compression of
the continuous source should be studied. Different from existing schemes, lossy source coding is
implemented based on the duality principle in this work. Referring to the duality principle between
the lossy source coding and the channel decoding, the belief propagation (BP) algorithm is introduced
to realize lossy compression based on a Gaussian source. In the BP algorithm, the log-likelihood
ratios (LLRs) are iterated, and their iteration paths follow the connecting relation between the check
nodes and the variable nodes in the protograph low-density parity-check (P-LDPC) code. During
LLR iterations, the trapping set is the main factor that influences compression performance. We
propose the optimized BP algorithms to weaken the impact of trapping sets. The simulation results
indicate that the optimized BP algorithms obtain better distortion–rate performance.

Keywords: lossy source coding; P-LDPC code; trapping set; BP algorithm

1. Introduction

In the rapid development of Internet of Things (IoT) technology, some new technolo-
gies have been introduced in recent works, such as energy harvesting [1], backscatter [2],
network virtualization [3], radar-communication [4], and a new battery [5]. These high-tech
methods effectively promote the development of the wireless communication system of
IoT. More importantly, high-efficiency and low-cost requirements are two objectives in the
physical layer of the communication system. In IoT, the sensor nodes collect the environ-
ment data and send them to the receiving nodes. Generally, the collected data are modeled
as the Gaussian source. Here are two useful techniques for gaining the two objectives in
the physical layer. First, to achieve high efficiency, lossy source coding [6] is implemented
to compress the source data for reducing source redundancy [7–9]. Second, to obtain low
cost, the existing channel decoding algorithm is reused to realize the lossy source coding
according to the duality principle [10–12].

The low-density parity-check (LDPC) code performs excellently in the fields of channel
coding and source coding, especially in joint source channel coding [13,14]. Moreover,
their code design and decoding improvement provide better system performance, which
demonstrates that the LDPC codes have good coding property. However, most of the
existing works focus on realizing lossless compression of the binary source, which is
difficult to promote to the continuous source, and its compression efficiency needs to be
improved. Furthermore, there is little research paying attention to the design of lossy
compression schemes that are more appropriate for practical applications. Therefore, it
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is critical to study lossy compression of the continuous source based on LDPC code with
lower complexity and higher performance.

Recently, protograph-LDPC (P-LDPC) code [15] was introduced to compress a Gaus-
sian source via lossy source coding in [16] since P-LDPC is a simplified structure of the
LDPC code. Furthermore, the traditional channel decoding algorithm, i.e., the belief prop-
agation (BP) algorithm, completes the quantization of lossy source coding to compress
a Gaussian source. In [17], a multilevel coding (MLC) structure with a binary mapping
scheme was designed to compress a Gaussian source. These two works have some dif-
ferences. First, ref. [16] is a concatenated coding system and ref. [17] is an MLC system.
Second, ref. [16] directly compresses a float into one bit, whereas [17] maps a float into a
binary string.

In summary, refs. [16,17] are two different kinds of lossy source coding systems.
However, it was found that their compression performance could not approach the rate–
distortion limit. In this work, we focus on optimizing the MLC structure and aim to decrease
the number of trapping sets in the BP algorithm. Technically, the BP algorithm is an efficient
method for realizing the lossy source coding [18–22] and the channel decoding [23–28]
simultaneously, where the trapping sets influence the iteration performance and derive a
series of bit errors both in the source and the channel coding [29,30]. In this case, there are
some works concentrating on improving the BP algorithm.

In the BP algorithm, log-likelihood ratios (LLRs) are iterated based on the connecting
relation between the check nodes (CNs) and the variable nodes (VNs) in the P-LDPC
code [31–33]. The compression principle is shown in detail inn Figure 1. If the P-LDPC
code is determined, the connection relation between CNs and VNs is fixed. Each Gaussian
variable is input as the initial LLR, and it is iterated following the connection relation
to obtain the binary sequence. During the iteration, the trapping sets will stop the LLR
convergence to find the optimal codeword [34]. To resolve this problem, the multi-stage BP
(MSBP) [35], the backtracking BP (BBP) [36], and the two-stage BP (TSBP) [29] algorithms
are proposed to weaken the influence of the trapping sets in the BP algorithms. These
three algorithms are optimized from reducing the number of trapping sets to obtain good
performance. In the MSBP algorithm, the trapping set is eliminated by setting zero to
correct the target node, which improves the performance in high signal-to-noise ratio
regions. The DBBP algorithm is proposed to roughly locate the trapping sets, so that
the selection accuracy of the target nodes can be enhanced. In addition, two kinds of
target nodes can be selected by the TSBP algorithm without increasing the complexity and
reducing the reliability, which further improves the performance.

 …

CNs

VNs{
{Gaussian source

Binary sequence

LLR iteration

Figure 1. The compression principle of the BP algorithm based on P-LDPC code for a Gaussian source.

Generally, the aforementioned algorithms, including the MSBP, the BBP, and the TSBP,
are implemented for channel decoding functions. According to the duality principle,
these three algorithms are introduced to realize the lossy source coding in this work. An
optimized MLC system is considered to compress the Gaussian source. Each employed
algorithm is analyzed with its advantage in the lossy source coding system. Furthermore,
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the optimized MSBP (OMSBP) and the optimized TSBP (OTSBP) algorithms are proposed
to improve the rate–distortion performance in the lossy source coding system.

Overall, two contributions are summarized as follows:
(1) The MLC structure is improved to realize the lossy compression of the Gaussian

source with high efficiency. The improved MLC structure is a typical communication
scheme applied in IoT, which will not only promote the distributed source coding, but also
the cascading system will be ameliorated.

(2) The BP algorithms are optimized to obtain coding gains for the lossy source coding
system with low complexity. It should be noted that the optimal methods are different,
and their common objective is to reduce the number of trapping sets. The optimized
BP algorithms can be further utilized as the channel decoding schemes according to the
duality principle.

The rest of this paper is arranged as follows. Section 2 introduces the system model.
Section 3 presents the principles and characteristics of the MSBP, the BBP, and the TSBP
algorithms, while their optimizations are shown correspondingly. Section 4 gives some
system simulation results to demonstrate the effectiveness of the optimizations. Section 5
concludes this paper.

2. System Model

The lossy compression system based on the MLC structure for the Gaussian source is
shown in Figure 2. In the encoder, there are three modules, including the preprocessing,
the encoding, and the compressing. The source y is a memoryless Gaussian sequence
signified as y = {y0, · · · , yn−1}, where yn−1 ∈ R, n ∈ N, R is the set of real numbers,
and N is the set of natural numbers. The source sequence y is preprocessed, and its
corresponding log-likelihood ratio (LLR) is calculated as L(y). The encoding module
employs the multilevel BP (MLBP) algorithm, which changes the LLR into bit. C is the
encoded binary sequence. After that, C is compressed as the short binary sequence S for
transmission. In the decoder, the transmission sequence S is decoded as Ĉ by using the
multiple linear decoding algorithm [17]. Finally, Ĉ is reconstructed as the receiving source
X by demapping.

Sy C( )L y
Preprocessing

( Calculating LLR)

Encoding

(MLBP algorithm)

 Decoding

(Multiple linear 

decoding algorithm)

Reconstructing

(De-mapping)

 Compressing

(Extracting 

information bits)

C x


The Encoder The Decoder

Figure 2. The lossy compression system based on the MLC structure for the Gaussian source.

It is found that the original MLBP algorithm has incorrect convergence during the
iteration process. The main reason is that the LLR iterations will fall into the trapping set,
which occurs the error floor. To solve this problem, the MLBP algorithm is optimized in
this paper.

3. Optimization of BP Algorithms
3.1. OMSBP Algorithm

In [35], the MSBP algorithm is proposed as an optimized BP algorithm and aims
to solve the trapping set problem. The optimization principle is to reduce the influence
of unreliable information that comes from the iteration algorithms without locating the
trapping sets. In the BP algorithm, the erroneous nodes can be divided into three types,
namely, the unstable, the stable, and the oscillatory, where the oscillatory nodes account
for the majority. The MSBP algorithm mainly optimizes the performance by addressing
stable and oscillatory nodes, and it proposes a universal selection method for these two
target nodes.



Sensors 2023, 23, 8805 4 of 11

The main process of the original MSBP algorithm is stated as follows. First, the BP
algorithm is applied to realize the initialized encoding. Then, the number of the CNs is
determined. If this number satisfies the maximum coding stage, the encoding is terminated;
otherwise, move to the next step. During the coding stage, two classes of indicators are
selected as two objective VNs. These two classes of VNs are postprocessed, and the iteration
is skipped to the previous step for implementing the next encoding stage.

The two classes of indicators are signified as

• Nsc(j) : The number of symbol changes of LLR in the j-th VN, i.e., the number of node
information symbol changes.

• Nsd(j) : The different times of the symbol between the LLR in the j-th VN and the
input LLR, i.e., the different times of node information symbol.

In the MSBP algorithm, the VNs are arranged in descending order according to Nsc(j)
or Nsd(j); then, the first Nselect nodes are selected as the target nodes, where Nselect indicates
the number of preset target nodes.

In this paper, we find that if the selected VNs are reliable, the ratio of the correct
information will decline in the iteration. This is contradictory to the correct encoding
process. To repair this bug, a new postprocessing method is proposed to minimize the loss
of correct information when the corresponding nodes are selected with errors. Here, the
postprocessing is modified as follows:

Lin,i
(
yj
)(s+1)

=
1
2

(
Lin,i

(
yj
)(s)

+ Lout,i
(
yj
)(s)) (1)

where Lin,i
(
yj
)(s) and Lout,i

(
yj
)(s) represent the LLRs of the j-th VN at the i-th level before

and after the s-th encoding stage, respectively. The values of s are arranged from 0 to S− 1,
where S is the total stage number.

3.2. DBBP Algorithm

From the aforementioned contents, it can be seen that the existing two multi-stage
algorithms may have erroneous LLR observations on confirming the unreliable VNs. In
addition, their batch-processing methods cannot guarantee the correctness of each objective
VN. To resolve the low credibility, the BBP algorithm performs a rough localization on the
main trapping set, according to the degrees that do not satisfy the CNs. Furthermore, the
target nodes are processed with some appropriate methods to determine their correctness.
In this case, the BBP algorithm achieves higher accuracy than the MSBP algorithm.

In detail, the BBP algorithm is shown in Algorithm 1. Different from the MSBP
algorithm, the BBP will select the minimum set of CNs that are unsatisfied with the
initialized encoding until the maximum iteration. After that, the BP principle is used as the
backtracking encoding. Here, the LLR of the VN associated with the selected CN is flipped.
In Algorithm 1, Hi and Lin,i(y) denote the check matrix and the input LLR sequence of
the i-th level, respectively. Ω0 represents the minimum set of the unsatisfied CNs in the
first encoding process, and N(Ω0) is the set of VNs associated with Ω0. The parameter u0
represents the output codeword corresponding to Ω0.

However, the BBP algorithm cannot always correct all errors, and it still has the risk
of falling into a new trapping set. To improve these problems, the double-backtracking
belief propagation (DBBP) algorithm is proposed. The main difference is that the DBBP
algorithm can be simply described as if the first backtracking encoding fails, then the
second backtracking is performed with Ω0 and N(Ω0). Therefore, the DBBP algorithm
has more of a chance to successfully encode and has a lower risk of falling into the new
trapping set.
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Algorithm 1 BBP algorithm

Input: y, Hi, Lin,i(y), Ω0, N(Ω0) and u0
Output: The encoded bit sequence for each level: Cout
1: /*Initializing: From Initial Encoding*/
2: L(y) = [L(y0), L(y1), · · · , L(ynv−1)]: LLR intermediate vector L(y)← Lin,i(y)
3: η: the largest possible positive LLR
4: /*First Backtracking*/
5: for v ∈ N(Ω0) do
6: L(y)← Lin,i(y)
7: L(yv)← −χ(um,v) · η
8: re-encode using L(y) as the input vector
9: if re-decoding is successful then

10: stop and exit
11: end if
12: end for

3.3. OTSBP Algorithm

The BBP algorithm is a kind of trial-and-error backtracking, which only has a coarse
location on the trapping set. Technically, this algorithm has high complexity since it
attempts to find the intersection between the associated VNs and the trapping set by tracing
the unsatisfied CNs in several times. The TSBP algorithm is an improvement of the BBP.
A criterion is designed to distinguish the two types of VNs with a high probability of
incorrectly and correctly coding, in which the erroneous node information is flipped and
the correct node information is multiplied. This is a high-efficiency way to increase the
selection accuracy and the iteration performance. In addition, the termination criterion
is introduced to avoid unnecessary iterations for achieving the lower complexity. Within
the total iterations, the first stage will be terminated when the number of unsatisfied CNs
are unchanged.

Similarly, the TSBP algorithm is divided into two stages, as shown in Algorithm 2. In
the first stage, the initial encoding is started, and it can be terminated by the stop criterion.
In the second stage, if the initial encoding fails, two types of target VNs will be selected
according to their output LLRs. Furthermore, their input LLR information will be corrected
by using different methods based on the type of target nodes. Then, the iteration moves
to the second stage. Here, the selection criteria of two types of target VNs are described
as follows.

• The first type of VNs:

sign(Lin,i
(
yj
)
) 6= sign(L(1)

out,i
(
yj
)
) (2a)

and |Lin,i
(
yj
)
| > |L(1)

out,i
(
yj
)
| (2b)

and |Lin,i
(
yj
)
|+ |L(1)

out,i
(
yj
)
| > α. (2c)

• The second type of VNs:

sign(Lin,i
(
yj
)
) = sign(L(1)

out,i
(
yj
)
) (3a)

and |Lin,i
(
yj
)
| > |L(1)

out,i
(
yj
)
|. (3b)

Here, Lin,i
(
yj
)

and L(1)
out,i

(
yj
)

are input and output LLRs of the j-th VN in the first stage
encoding at the i-th level, respectively. α is the span ceiling, and it is set to 3, generally. β is
the multiplier factor and β = 1.25.
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Algorithm 2 TSBP algorithm

Input: y, Hi, L(1)
out,i(y) and L

Output: The encoded bit sequence for each level: Cout
1: /*Initializing: From Initial Encoding*/
2: L(y) = [L(y0), L(y1), · · · , L(ynv−1)]: intermediate vector L(y)← L(1)

out,i(y)
3: /*Pre-processing for Type I Nodes*/
4: for aj ∈ V1 do

5: L(yaj) = β · L(1)
out,i(yaj)j = 0, 1, 2, ..., n1 − 1

6: end for
7: /*Flipping Type II Nodes and Re-encoding*/
8: for bj ∈ V2 do

9: d(bj) =
|L(1)

out,i(ybj
)−Lin,i(ybj

)|
Lin,i(ybj

)j = 0, 1, 2, ..., n2 − 1

10: end for
11: for l = 1 · · · L do
12: Find the node bj, which subjects to d

(
bj
)
= max

(
d(b0), · · · , d

(
bn2−1

))
13: Flip the LLR of node bj: L

(
ybj

)
= −β · L(1)

out,i

(
ybj

)
14: re-encode with the updated LLRs L(y) and output Lde(y)
15: Make hard decision by Lde(y) and calculate the number of unsatisfied check nodes

Nu
16: if Nu = 0 then
17: L(2)

out,i(y) = Lde(y)
18: Output the decoded word Cout, then go to the end
19: else
20: Delete d

(
bj
)

from d
21: L(y) = Lde(y)
22: end if
23: end for
24: L(2)

out,i(y) = Lde(y)

25: Make hard decision by L(2)
out,i(y) and output the decoded word Cout

From the above two formulas, it can be seen that the first-type target nodes have
the following characteristics: the symbols of the output and input LLRs are opposite and
they have a large difference, i.e., the absolute values of the input LLRs are significantly
greater than the output LLRs. Therefore, it can be considered that the output LLRs are
affected by the incorrect interference from the input LLRs. However, the output LLRs
will be corrected after the first stage. On the contrary, the second-type target nodes have
the following characteristics: there are fewer differences between the output and input
LLRs. The erroneous nodes are regarded as the ones disturbed by the input information,
which are not corrected in the first stage. In the TSBP algorithm, the first type of nodes are
considered as correct, whose LLRs are amplified; furthermore, the second type of nodes are
considered as wrong, whose LLRs are flipped.

In Algorithm 2, L(1)
out,i(y) represents the output LLR sequence in the initial encoding at

the i-th level, and L is the number of the second type of nodes to be flipped in re-encoding.
V1, n1, V2, and n2 are the sets and the numbers of the first and the second type of VNs,
respectively. From the eighth to the thirteenth line, the flipping order of the second type
of nodes is determined by the order of changing proportions of the LLRs. The node
with a larger changing proportion has a greater tendency to be corrected, so it should be
preferentially flipped, which ensures the TSBP algorithm keeps a high correctness.

However, we find two problems in the TSBP algorithm. First, the correct results
obtained by the previous flipping cannot be used in the subsequent one. Second, since the
characteristic of the backtracking algorithm, the correct results in the previous flipping may
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lead to falling into a new trapping set. To solve the two problems, the OTSBP algorithm is
designed. The optimization principle is: when the output state of the second stage encoding
is unchanged within some iterations, we pick up two types of target nodes.

In detail, the OTSBP algorithm has five steps as follows.
Step 1. The encoding is implemented by the BP algorithm in the first stage.
Step 2. If all CNs are satisfied, the encoding should be terminated; otherwise, if the

preset stop criterion or the maximum iteration are reached, it needs to skip to the next step.
Step 3. Referring to the selection criterion, the two types of target VNs are extracted.
Step 4. The LLR of the target nodes is changed reasonably, and then the BP algorithm

is used to encode in the second stage.
Step 5. If the encoding is completed in the second stage, the iteration is terminated;

otherwise, the two types of VNs are selected and return to the previous step.

4. Simulation Results and Analysis

In this section, the system performance is discussed based on the optimized BP
algorithms. The source is the Gaussian sequence following the standard normal distribution
N (0, 1), and the length is 600. Each simulation compresses 20 blocks of the Gaussian source.
The maximum iteration number is 10. In addition, the number of levels in the MLC structure
is signified as w = dRe+ 1, where R is the compression rate, and the code length is equal
to the source sequence length.

First, the numbers of unsatisfied nodes are compared with the original BP and the
optimized BP algorithms, as shown in Table 1. Here, the P-LDPC code in [17] at the rate of
0.75 is used to simulate the numbers of unsatisfied nodes by implementing these four BP
algorithms, respectively. The results are tested under 10 and 20 iterations. It is clear that
the improved three algorithms have fewer numbers of unsatisfied nodes after reducing the
trapping sets than the original BP algorithm.

Table 1. The numbers of unsatisfied nodes compared with four different BP algorithms.

Iteration Numbers BP Algorithm OMSBP Algorithm DBBP Algorithm OTSBP Algorithm

10 36 4 2 0

20 35 3 2 0

Figure 3 compares the distortion–rate performance among the BP, the BBP, and the
DBBP algorithms. Two binary mapping methods, including the SP mapping and the Gray
mapping, are introduced to verify the advantage of the DBBP algorithm, simultaneously.
From Figure 3, both the SP and the Gray mapping methods demonstrate that the DBBP
algorithm has the best rate–distortion performance than the BBP and the BP algorithms.
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Figure 3. The improvements of the distortion–rate performance obtained by the DBBP algorithms.
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It is found that the coding gains of the BBP are larger than the DBBP algorithms. This
confirms the analysis in Section 3.2. Compared to the original BP algorithm, the DBBP
algorithm roughly locates the trapping set based on the unsatisfied verification nodes,
which greatly reduces the cost of trial and error methods. The DBBP only attempts to
modify one node at each time and uses the maximum LLR for verification. In this way,
the incorrect probability of the selected nodes is effectively decreased, so that the correct
codeword can be obtained by the iteration convergence.

The BBP algorithm can solve most trapping set problems, while the DBBP algorithm
only selects the most likely successful backtracking attempts based on the BBP algorithm
and carries out backtracking again. In the DBBP algorithm, the second backtracking
only aims to solve the new trapping set generated from the last backtracking. When the
generation probability of new trapping set is less, the improvement brought by the second
backtracking will be not obvious. In this case, the single backtracking algorithm can achieve
nearly the same performance with lower complexity.

Figure 4 compares the distortion–rate performance of the TSBP and the OTSBP al-
gorithms. The TSBP algorithm selects the abnormal nodes, which are iterated by the BP
algorithm, and then it classifies them. The different target nodes are implemented with
distinct correction methods; the correct and incorrect information can be amplified and
rectified in a reasonable manner. This not only breaks the trapping set, but it also enables
a high probability to obtain the correct codeword. Moreover, it accelerates the algorithm
convergence to obtain the optimal codeword for source coding. Based on the TSBP algo-
rithm, the correction results at the previous stage are fully utilized in the OTSBP algorithm.
Therefore, the new target nodes can be identified, which suppresses the iteration from
falling into the new trapping sets.
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Figure 4. The improvements of the distortion–rate performance obtained by the OTSBP algorithms.

Some simulation parameters, µ, α, β, and L are set as 3, 3, 1.25, and 10, respectively.
The maximum iteration number of the two-stage algorithm is 10. In Figure 4, the system
distortions based on the TSBP algorithm decrease to 0.0255 and 0.0535 by using the SP
and the Gray mapping when R = 1, respectively, while the system distortion decrements
based on the OTSBP algorithm are 0.0534 and 0.0814. This demonstrates that the OTSBP
algorithm has higher effectiveness than the TSBP.

In addition, the TSBP and the OTSBP algorithms can achieve better performance than
the BP algorithm by using the Gray mapping when R = 0.5. Furthermore, the OTSBP
algorithm with the Gray mapping achieves a similar performance in the BP algorithm
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under the SP mapping at a rate of R = 1. Overall, the OTSBP algorithm provides better
distortion–rate performance than the other two algorithms at all compression rates by using
any mapping methods.

Figure 5 compares the distortion–rate performance of the OMSBP, the DBBP, and the
OTSBP algorithms. The TSBP algorithm classifies the target nodes by selecting the abnormal
nodes, which are obtained by the BP algorithm. The correct and incorrect information can
be amplified and corrected in a reasonable manner by implementing different correction
methods for different target nodes. This not only breaks the trapping set, but it also ensures
a high probability of searching the correct codeword with accelerating convergence. The
OTSBP algorithm fully utilizes the successful correction results at the previous stage on the
basis of the TSBP algorithm. In this case, the iterations will not fall into new trapping sets.
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Figure 5. The comparisons of the distortion–rate performance among three optimized BP algorithms.

As shown in Figure 5, the OTSBP algorithm achieves the best performance compared
to the other two algorithms, followed by the DBBP algorithm, and the OMSBP only out-
performs the BP algorithm. Referring to the previous analyses, the DBBP algorithm has
higher accuracy and reliability than the MSBP algorithm. The OTSBP algorithm promotes
iterations to correctly converge by flipping incorrect nodes and strengthens correct nodes
without locating trapping sets. Hence, the OTSBP algorithm is more suitable for realizing
the Gaussian source compression than the three algorithms.

5. Conclusions

In this paper, three optimal BP algorithms are introduced, namely, the OMSBP, the
DBBP, and the OTSBP algorithms, to implement the source coding of the lossy compression
system for a Gaussian source. Here, the OMSBP algorithm fully utilizes the amplitude
information of suspicious nodes lost by the MSBP algorithm, which avoids selecting target
nodes incorrectly. In addition, the OTSBP algorithm employs the error correction attempts
at the previous stage of the TSBP algorithm, which can effectively reduce the probability of
falling into the new trapping sets at the second stage iteration. Furthermore, the distortion–
rate performance demonstrates the improvement derived by the system simulation. Overall,
there are two innovations compared to the existing algorithms. First, the negative impact
caused by the incorrect selection of target nodes is reduced. Second, the probability of
falling into a new trapping set is significantly decreased. The two technical promotions
will be useful in improving the related algorithm for achieving system gains.
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