
Citation: Palacín, J.; Rubies, E.; Bitriá,

R.; Clotet, E. Path Planning of a

Mobile Delivery Robot Operating in a

Multi-Story Building Based on a

Predefined Navigation Tree. Sensors

2023, 23, 8795. https://doi.org/

10.3390/s23218795

Academic Editors: Ankit

A. Ravankar, Jose Victorio Salazar

Luces and Abhijeet Ravankar

Received: 4 October 2023

Revised: 21 October 2023

Accepted: 25 October 2023

Published: 28 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Path Planning of a Mobile Delivery Robot Operating in a
Multi-Story Building Based on a Predefined Navigation Tree
Jordi Palacín * , Elena Rubies, Ricard Bitriá and Eduard Clotet

Robotics Laboratory, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain; ricard.bitria@udl.cat (R.B.)
* Correspondence: jordi.palacin@udl.cat

Abstract: Planning the path of a mobile robot that must transport and deliver small packages inside a
multi-story building is a problem that requires a combination of spatial and operational information,
such as the location of origin and destination points and how to interact with elevators. This paper
presents a solution to this problem, which has been formulated under the following assumptions:
(1) the map of the building’s floors is available; (2) the position of all origin and destination points is
known; (3) the mobile robot has sensors to self-localize on the floors; (4) the building is equipped
with remotely controlled elevators; and (5) all doors expected in a delivery route will be open. We
start by defining a static navigation tree describing the weighted paths in a multi-story building. We
then proceed to describe how this navigation tree can be used to plan the route of a mobile robot and
estimate the total length of any delivery route using Dijkstra’s algorithm. Finally, we show simulated
routing results that demonstrate the effectiveness of this proposal when applied to an autonomous
delivery robot operating in a multi-story building.

Keywords: mobile robot; path planning; Dijkstra’s algorithm; package delivery; multi-story building

1. Introduction

In the last few years, e-commerce has greatly proliferated worldwide. From 2021 to
2022, e-commerce grew 6.5%, representing 19% of all retail sales [1]. This trend is associated
with a growth in package deliveries [2,3], which adds complexity to city logistics and
the tasks developed by parcel service providers [4]. Last mile delivery is a research area
that deals with these topics in which all the logistical operations between depots and
consignees are studied [5]. The main challenges related to last mile delivery include costs,
time pressure, sustainability, increasing volumes and an aging workforce [6]. For example,
delivery vehicles operate inefficiently, travel unnecessary distances [7], cause almost 20% of
city congestion and emit up to 60% of total emissions [8]. As stated by Anderluh et al. [9],
modern city logistics must evolve to create a more efficient model with minimal negative
externalities. Conventional delivery has proven to be inadequate for the future [10], so
current lines of research are assessing alternative package delivery concepts to identify
efficient delivery systems for urban areas [11,12].

The transportation and delivery of packages are repetitive actions that can be auto-
mated with different types of automatic vehicles and robots [13]. An autonomous mobile
robot is advantageous in that its computational power can be used to autonomously plan
its trajectory, directly interact with other machines and dynamically react to changes in
unstructured environments [14].

Outdoor last mile delivery with mobile robots is a practical problem that has caught
the attention of many researchers [13,15–18], but the specific problem of indoor delivery in
large buildings has been less studied. Outdoor last mile delivery is related to the transporta-
tion of packages between depots and customers’ residences, which are usually single-family
houses, while indoor last mile delivery can be defined as the transportation of packages

Sensors 2023, 23, 8795. https://doi.org/10.3390/s23218795 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23218795
https://doi.org/10.3390/s23218795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8210-3262
https://doi.org/10.3390/s23218795
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23218795?type=check_update&version=1

Sensors 2023, 23, 8795 2 of 30

from the hall of a multi-story building to a specific apartment or office. Currently, the con-
clusions obtained in outdoor last mile delivery have been expanded and applied in indoor
delivery applications. For example, Hutter et al. [19] proposed a four-legged robot that
can pass through stairways and deliver packages in front of a door, and Castillo et al. [20]
proposed the application of reinforcement learning to define a robust feedback motion
policy for a two-legged humanoid robot that can be used for small-package delivery. Even
though outdoor and indoor last mile delivery share denomination, the requirements for
the systems involved in each method are different.

In an indoor and multi-story application, an autonomous delivery robot requires the
implementation of a sequence of high-level actions to complete the tasks of transporting
and delivering packages from a known pick-up point to a known drop-off target destina-
tion [21]. The planning of the trajectory of a mobile robot [22,23] requires an optimized
procedure combining the spatial and operational information of the environment. The
spatial information involves the position of all possible destinations as well as the nav-
igable areas available to reach these destinations [24,25] and allows the use of a graph
search algorithm to obtain an optimal path [26]. The operational information involves
the procedures to navigate in the building such as interacting with elevators [27–31] and
doors [32–36]. The spatial information is usually referenced in a 2D map [37,38] which
describes the metric, topology, navigable areas, and appearance of the application sce-
nario [39–42]. Additionally, the control of the motion of a mobile robot also requires a local
self-localization procedure to properly follow the planned path [43–47], because the global
positioning system (GPS) used in outdoor applications is inoperable indoors [48,49]. In
indoor mobile robots, the common methods used to provide a periodic estimation of the
absolute position of the robot in a map are commonly based on vision [50,51] and light
detection and ranging (LiDAR) [52,53]. The information provided by LiDAR devices can
be processed using different approaches, such as by using an iterative closest point (ICP)
algorithm [54,55] matching raw LiDAR data [56–63], preprocessing the point clouds to
detect geometric features before the matching [64–69], or using the raw LiDAR information
as the input data for feature matching based on deep learning methods [70–77]. Finally, the
routing strategy requires an estimation of the position of the mobile robot which follows
the planned path [78,79] until arriving at the destination.

In the scientific literature, indoor navigation in multi-story environments has been
addressed using different approaches. Kang et al. [80] proposed an algorithm to make
a robot to get in an elevator to move to a goal floor. Their proposal was based on a
mobile robot that was able to detect the floor number, but it was not able to push the
panel buttons, so additional help was needed for it to interact with the elevator. Van Toll
et al. [81] proposed an algorithm to automatically create a navigation mesh to generate
visually convincing paths for multi-layered environments. In their proposal, the navigation
mesh was represented by a collection of two-dimensional polygons defined in a single
plane and with a set of connections. Zhang et al. [82] proposed a hierarchical path planner
for autonomous robot navigation in multi-story buildings. In their proposal, the planner
uses a topological graph with two kinds of nodes integrating the topological and metrical
information of the environment to allow mobile robot navigation in the building. Liu
et al. [83] proposed an ant colony optimization algorithm for multi-story building animation.
Their proposal was claimed to be suboptimal in cases in which no previous navigation
information was available. Joo et al. [84] proposed a semantic navigation framework
to describe multi-floor environments connected by elevators. In this case, a semantic
information processing module identifies which floor the robot is on from labels and
other characteristic furniture objects. Li [85] discussed the stochastic path problem in an
uncertain and chaotic world for which no previous navigation information is available.
This approach involved a Markov decision process to find the best path in a multi-floor
grid world affected by chaotic disturbances. Yuang et al. [86] addressed the problem of
integrating both indoor and outdoor path-planning algorithms for mobile robot navigation

Sensors 2023, 23, 8795 3 of 30

in a multi-story building. Their proposal combined indoor and outdoor paths by the
definition of specific entrance and exit nodes.

In general, an autonomous mobile robot uses a routing strategy that combines path
planning and motion planning [87] because the presence of obstacles in the mobile robot’s
trajectory may require an update of the current planned path [14,26]. In this work, the
spatial and operational information required to plan the path of a mobile robot is repre-
sented as a weighted graph that defines the navigation tree of a target multi-story building.
The proposed navigation tree has two particularities. Firstly, the nodes of the graph define
the physical locations of the pick-up and drop-off points and some intermediate maneu-
vering points. Secondly, the segments of the graph define the straight collision-free paths
between nodes. This proposal of using only straight trajectories between nodes requires
the definition of intermediate navigation nodes in the navigation tree of the building.

In the scientific literature, there are different graph search algorithms that can explore
a graph or navigation tree to find the shortest path between two nodes. There are opti-
mization algorithms that are guaranteed to find the shortest path [88–90] and heuristic
algorithms are not guaranteed to find the shortest path [91,92]. Examples of optimization
algorithms are as follows: Dijkstra’s [88] algorithm, which solves the single-source shortest
path problem from a single-source node to all the nodes of a graph; the Floyd [89] algorithm,
which solves the shortest paths between all pairs of nodes in a graph; and the A-star [90]
algorithm, which is an extension of Dijkstra’s algorithm [88] and the best-first search [93].
The A-star [90] algorithm uses admissible heuristics [90] to solve the single-source shortest
path problem from a single node to a destination node. The main advantage of the A-star
search is that there is no other optimization algorithm guaranteed to expand fewer nodes, so
it is intensively applied to explore dense or massive graphs in complex problems [90]. Alter-
natively, Dijkstra’s algorithm is optimal to explore a sparse graph because it guarantees the
exploration of all visitable nodes [88]. Finally, examples of heuristic algorithms used in path
planning are genetic algorithms [91,94–96] and simulated annealing algorithms [92,97–99].

1.1. Problem Definition

In summary, the problem addressed in this paper is planning the path of a wheeled
mobile robot that must transport and deliver small packages inside a multi-story building,
navigating between floors using the elevators. To solve this problem, it is necessary
to combine spatial and operational information, such as the location of the origin and
destination points and how to interact with elevators.

1.2. Proposed Solution

This paper proposes a way to plan the path of a mobile delivery robot in a multi-story
building based on the use of a manually created weighted navigation system that uses
all feasible origin and delivery points as nodes. This weighted navigation tree and the
Euclidean distances between the nodes are combined to define a small weighted sparse
graph which is explored using Dijkstra’s [88] algorithm to find the shortest path between
the origin and destination nodes.

Once a path has been found, the routing algorithm of the mobile robot follows the path.
In case of the detection of an obstacle blocking the path, the graph must be updated [14,26]
to discard the segments and nodes that are blocked and then explore again to search for the
new shortest path to the destination node.

The main contributions of this work are as follows:

• The manual definition of a navigation tree describing the spatial information required
to autonomously move in a multi-story building, using the elevators as connectors
between floors.

• The description of how a graph created from this navigation tree can be explored
using Dijkstra’s [88] algorithm to obtain the shortest path from a starting point to a
destination point.

Sensors 2023, 23, 8795 4 of 30

• The formulation of a distance–task matrix that can be used to estimate the total length
of the trajectory of a mobile delivery robot moving in a multi-story building.

• The presentation of simulation examples that demonstrate the effectiveness of this
proposal in the case of a mobile robot designed to transport and deliver small packages
in a multi-story building.

This work is inspired by the contribution of Kim et al. [100] and is a continuation of the
work of Palacín et al. [31]. Kim et al. [100] proposed a method to estimate the travel time of
an indoor delivery robot working in a building with an elevator. Kim et al. [100] planned
the path of a robot by the application of a genetic algorithm based on a specific heuristic.
The analysis of the paths obtained suggested the definition of a navigation tree to reduce
the complexity of the stationary delivery problem and avoid the use of genetic algorithms.
Complementarily, in a previous work [31], we demonstrated that a mobile robot using 2D
LiDAR and ICP matching for self-localization could take a remotely controlled elevator
and navigate between floors, so this proposal is used for floor navigation.

1.3. Assumptions and Limitations

The assumptions made in this work to solve the path-planning delivery problem are
as follows:

• A detailed 2D point cloud map of the multi-story building is available [31].
• All locations where a package can be picked up or dropped off inside the multi-story

building have been identified as nodes and do not change during transportation.
• The multi-story building has remotely controlled elevators that can be directly accessed

by a mobile robot via a wireless communication protocol [30].
• A navigation tree for each floor of the building has been manually defined.
• A segment (connection, link or vertex) defined in the navigation tree depicts a straight

collision-free trajectory between two nodes. This straight trajectory can be blocked by
the presence of dynamic obstacles.

• Packages are only delivered to locations that have their doors open. The problem of
opening and closing the doors of the rooms is not covered in this work.

1.4. Structure of the Paper

The paper is structured as follows. Section 2 introduces the materials and meth-
ods used: the reference mobile robot, the reference map, the navigation tree and Dijk-
stra’s algorithm. Section 3 defines the implementation steps of the path-planning and
motion-planning procedures, detailing the problem-solving method. Section 4 provides
an overview of the simulation results obtained and the basic parameter settings used in
the simulations. Section 5 analyzes and discusses the results obtained from the simulation,
drawing conclusions and outlining future research directions.

2. Materials and Methods

The materials and methods used in this work are the model of the mobile robot that
will be used in future works as a delivery robot, the 2D point cloud map of a real multi-story
building, the navigation tree used to represent the spatial and operational information
required to navigate between floors and the graph search algorithm used to plan the path
of the mobile robot.

2.1. Model of the Reference Mobile Robot

The mobile robot used as a reference for the simulation of the routing strategy is the
APR-02 mobile robot prototype developed by the Robotics Laboratory at the University of
Lleida (Spain) [101]. The APR-02 prototype is a human-sized (1.76 m, 30 kg) omnidirectional
mobile robot with a motion system based on three omnidirectional wheels [102]. This
versatile mobile robot has been assessed when performing tasks such as being a walking
assistant [103] or using its forearms as a walking support [104]. In future works, the APR-02
mobile robot will be used as multi-story autonomous delivery robot.

Sensors 2023, 23, 8795 5 of 30

The use of an omnidirectional mobile robot to transport and deliver packages is
advantageous in that it can move in any direction and rotate without performing any
maneuver [105–108], a motion that cannot be replicated with differential drive mobile
robots [109–111]. The APR-02 mobile robot is able to execute any instantaneous motion
Mi = (vi, αi, ωi) defined in the robot frame (XR, YR), where v is the module of the target
lineal velocity of the robot, α is the angle of the lineal velocity relative to XR and ω is the
target angular velocity of the robot. Figure 1 represents the parametric definition of the
omnidirectional motion system of the APR-02 mobile robot. The instantaneous position of
the mobile robot in the world frame Pi = (xi, yi, θi) is computed using the following:xi

yi
θi

World

=

xi−1
yi−1
θi−1

World

+ ∆t·R(θi−1)
−1·

vi−1cos(αi−1)
vi−1sin(αi−1)

ωi−1

Robot

, (1)

where (vi−1, αi−1, ωi−1) is the motion of the mobile robot in the sample i − 1. The time
lapse ∆t between the samples i− 1 and i is the sampling time of its proportional-integral-
derivative (PID) motor controllers [112]. R(θ)−1 is the rotation matrix that transforms the
robot velocity expressed in the robot frame to the velocity in the world frame:

R(θi)
−1 =

cos(θi) −sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

. (2)

Sensors 2023, 23, x FOR PEER REVIEW 5 of 31

of Lleida (Spain) [101]. The APR-02 prototype is a human-sized (1.76 m, 30 kg) omnidirec-
tional mobile robot with a motion system based on three omnidirectional wheels [102].
This versatile mobile robot has been assessed when performing tasks such as being a walk-
ing assistant [103] or using its forearms as a walking support [104]. In future works, the
APR-02 mobile robot will be used as multi-story autonomous delivery robot.

The use of an omnidirectional mobile robot to transport and deliver packages is ad-
vantageous in that it can move in any direction and rotate without performing any ma-
neuver [105–108], a motion that cannot be replicated with differential drive mobile robots
[109–111]. The APR-02 mobile robot is able to execute any instantaneous motion 𝑀 =(𝑣 , 𝛼 , 𝜔) defined in the robot frame (𝑋 , 𝑌), where 𝑣 is the module of the target lineal
velocity of the robot, 𝛼 is the angle of the lineal velocity relative to 𝑋 and 𝜔 is the target
angular velocity of the robot. Figure 1 represents the parametric definition of the omnidi-
rectional motion system of the APR-02 mobile robot. The instantaneous position of the
mobile robot in the world frame 𝑃 = (𝑥 , 𝑦 , 𝜃) is computed using the following: 𝑥𝑦𝜃 = 𝑥 –𝑦 –𝜃 – + ∆𝑡 𝑅(𝜃 –)– 𝑣 – 𝑐𝑜𝑠(𝛼 –)𝑣 – 𝑠𝑖𝑛(𝛼 –)𝜔 – , (1)

where (𝑣 , 𝛼 , 𝜔) is the motion of the mobile robot in the sample 𝑖– 1 . The time
lapse ∆𝑡 between the samples 𝑖– 1 and 𝑖 is the sampling time of its proportional-inte-
gral-derivative (PID) motor controllers [112]. 𝑅(𝜃)– is the rotation matrix that transforms
the robot velocity expressed in the robot frame to the velocity in the world frame:

𝑅(𝜃)– = 𝑐𝑜𝑠 (𝜃) – 𝑠𝑖𝑛 (𝜃) 0𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃) 00 0 1 . (2)

In the case of the APR-02 mobile robot, the instantaneous motion 𝑀 = (𝑣 , 𝛼 , 𝜔) re-
quired to follow a planned path is computed using the procedure described in [113].

Figure 1. Parametric definition of the omnidirectional motion system of the APR-02 mobile robot.
(𝑋 , 𝑌) represents the mobile robot frame in which 𝑋 is the front of the mobile robot. The param-
eters (𝑣 , 𝛼 , 𝜔) are the instantaneous motion of the robot, represented with blue and red arrows,
while the green dotted line represents the trajectory.

Figure 1. Parametric definition of the omnidirectional motion system of the APR-02 mobile robot.
(XR, YR) represents the mobile robot frame in which XR is the front of the mobile robot. The parame-
ters (vi, αi, ωi) are the instantaneous motion of the robot, represented with blue and red arrows, while
the green dotted line represents the trajectory.

In the case of the APR-02 mobile robot, the instantaneous motion Mi = (vi, αi, ωi)
required to follow a planned path is computed using the procedure described in [113].

Sensors 2023, 23, 8795 6 of 30

2.2. Reference Map

Figure 2 shows the reference map used in this paper. The map shows the 2D layout of
one floor of the multi-story building at the Polytechnic School of the University of Lleida
(Spain). The map contains a 2D point cloud (blue points) obtained with 2D LiDAR and a
background grid map detailing the navigable areas (light green area). The building has
five floors and two elevators. The layouts of floors one, two (Figure 2) and three are very
similar, whereas the layouts of the ground floor and the basement have some differences.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 31

2.2. Reference Map
Figure 2 shows the reference map used in this paper. The map shows the 2D layout

of one floor of the multi-story building at the Polytechnic School of the University of
Lleida (Spain). The map contains a 2D point cloud (blue points) obtained with 2D LiDAR
and a background grid map detailing the navigable areas (light green area). The building
has five floors and two elevators. The layouts of floors one, two (Figure 2) and three are
very similar, whereas the layouts of the ground floor and the basement have some differ-
ences.

Figure 2. Reference map of one floor of the Polytechnic School at the University of Lleida (Spain).
The blue dots are the 2D point cloud map of the floor and the light green surface details the naviga-
ble area. Other surface colors depict likely navigable areas.

This paper only uses the reference map to illustrate the application of path-planning
and motion-planning algorithms, so the simplified assumption is that all the plants of the
building have the same layout (as shown in Figure 2). The point cloud may seem noisy,
but this is how a mobile robot using 2D LiDAR perceives an unstructured environment.
The use of a point cloud as a map by a mobile robot using 2D LiDAR provides the mobile
robot’s precise self-localization and navigation through narrow areas such as doors. For
more specific details on how to obtain the map of the floor, please refer to [114]. Finally,
this work is focused on addressing the problem of path planning in a multi-story building;
the practical assessment of the APR-02 mobile robot as a delivery robot will be addressed
in future works.

2.3. Navigation Tree
The navigation tree proposed in this work for multi-story path planning is a manu-

ally created graph combining nodes (pick-up and drop-off points) and segments
(weighted directional distances). The nodes are used to define the physical location of ref-
erence placements and other intermediate trajectory positions. Table 1 summarizes the
five types of nodes that can be defined in the navigation tree. By default, the nodes are
labelled with a letter (S, T, U, E or D) and a sequence number (X). Start (SX) label indicates
a node that defines the localization of a main package pick-up point and battery charging
station. Trajectory (TX) is a custom auxiliary node used to define intermediate positions
within a trajectory. Unique (UX) is a node used to define precise trajectories in narrow
areas. Elevator (EX) is a node that precisely defines the localization of a reference point
inside an elevator [31]. Destination (DX) is a node that defines the localization of a known
destination point for the mobile delivery robot (a drop-off point).

Figure 2. Reference map of one floor of the Polytechnic School at the University of Lleida (Spain).
The blue dots are the 2D point cloud map of the floor and the light green surface details the navigable
area. Other surface colors depict likely navigable areas.

This paper only uses the reference map to illustrate the application of path-planning
and motion-planning algorithms, so the simplified assumption is that all the plants of the
building have the same layout (as shown in Figure 2). The point cloud may seem noisy,
but this is how a mobile robot using 2D LiDAR perceives an unstructured environment.
The use of a point cloud as a map by a mobile robot using 2D LiDAR provides the mobile
robot’s precise self-localization and navigation through narrow areas such as doors. For
more specific details on how to obtain the map of the floor, please refer to [114]. Finally,
this work is focused on addressing the problem of path planning in a multi-story building;
the practical assessment of the APR-02 mobile robot as a delivery robot will be addressed
in future works.

2.3. Navigation Tree

The navigation tree proposed in this work for multi-story path planning is a manually
created graph combining nodes (pick-up and drop-off points) and segments (weighted
directional distances). The nodes are used to define the physical location of reference
placements and other intermediate trajectory positions. Table 1 summarizes the five types
of nodes that can be defined in the navigation tree. By default, the nodes are labelled
with a letter (S, T, U, E or D) and a sequence number (X). Start (SX) label indicates a node
that defines the localization of a main package pick-up point and battery charging station.
Trajectory (TX) is a custom auxiliary node used to define intermediate positions within
a trajectory. Unique (UX) is a node used to define precise trajectories in narrow areas.
Elevator (EX) is a node that precisely defines the localization of a reference point inside an
elevator [31]. Destination (DX) is a node that defines the localization of a known destination
point for the mobile delivery robot (a drop-off point).

Sensors 2023, 23, 8795 7 of 30

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1

Start Main package pick-up node and battery
charging station No

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1

Trajectory Intermediate trajectory node Yes

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1

Unique
Special node used to define precise

trajectories, for example, to pass through
open doors

No

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1

Elevator Placement of an elevator No

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1 Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node
(Table 1—node type), the node label (Table 1—graphic representation) and the position
(x/y coordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional in-
termediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of
the mobile robot. Table 2 summarizes the four types of segments that can be defined
in the navigation tree. Unconnected segments have no link between nodes. Undirected
segments are direct paths between two nodes and have the same weight in both trajectory
directions. Directed segments define different weights depending on the direction of the
trajectory. Blocked segments define an existing undirected or directed segment that has
been temporarily blocked because of the detection of an obstacle. The weights defined
are multiplied by the Euclidean distance between the nodes, so a greater weight means a
longer virtual distance between the nodes. The weights are used to encourage the mobile
robot to follow different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight

Graphic
Representation Type From S1 to D1 From D1 to S1

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1

unconnected Infinite Infinite

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1

undirected 1.0 1.0

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1

directed 1.0 5.0

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map

Start Main package pick-up node and battery charging

station
No

Trajectory Intermediate trajectory node Yes

Unique Special node used to define precise trajectories, for

example, to pass through open doors
No

Elevator Placement of an elevator No

Destination Destination node Yes

Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node (Table
1—node type), the node label (Table 1—graphic representation) and the position (x/y co-
ordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional inter-
mediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of the
mobile robot. Table 2 summarizes the four types of segments that can be defined in the
navigation tree. Unconnected segments have no link between nodes. Undirected segments
are direct paths between two nodes and have the same weight in both trajectory directions.
Directed segments define different weights depending on the direction of the trajectory.
Blocked segments define an existing undirected or directed segment that has been tempo-
rarily blocked because of the detection of an obstacle. The weights defined are multiplied
by the Euclidean distance between the nodes, so a greater weight means a longer virtual
distance between the nodes. The weights are used to encourage the mobile robot to follow
different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight
Graphic Representation Type From S1 to D1 From D1 to S1

unconnected Infinite Infinite

undirected 1.0 1.0

directed 1.0 5.0

blocked Infinite Infinite

As an application example, Figure 3 shows a small navigation tree defined in one
part of the building. In this example, S1 is a battery charging station and also the pick-up

T1

E1

D1

blocked Infinite Infinite

Sensors 2023, 23, 8795 8 of 30

As an application example, Figure 3 shows a small navigation tree defined in one part
of the building. In this example, S1 is a battery charging station and also the pick-up point.
D1. . . D4 are drop-off destination points usually located inside offices and laboratories.
The pairs U1–U2, U3–U4, U5–U6, U7–U8 and U9–U10 are trajectories required to allow
the robot to precisely pass through the doors of the destination points. T1. . . T8 are the
intermediate trajectory positions manually created to allow for successful path planning
in the building. For instance, in Figure 3, a straight trajectory between the delivery point
D3 and the door trajectory point U7 is not possible, so an auxiliary trajectory point T2 has
been defined to allow a straight trajectory between U7 and T2 and between T2 and D3 (and
vice versa).

Sensors 2023, 23, x FOR PEER REVIEW 8 of 31

point. D1…D4 are drop-off destination points usually located inside offices and laborato-
ries. The pairs U1–U2, U3–U4, U5–U6, U7–U8 and U9–U10 are trajectories required to
allow the robot to precisely pass through the doors of the destination points. T1…T8 are
the intermediate trajectory positions manually created to allow for successful path plan-
ning in the building. For instance, in Figure 3, a straight trajectory between the delivery
point D3 and the door trajectory point U7 is not possible, so an auxiliary trajectory point
T2 has been defined to allow a straight trajectory between U7 and T2 and between T2 and
D3 (and vice versa).

Figure 3. Representation of a small navigation tree defined in one part of the building: S1 is a battery
charging station and the main pick-up point; D1…D4 are drop-off points; the pairs U1–U2, U3–U4,
U5–U6, U7–U8 and U9–U10 are trajectories required to pass through doors; and T1…T8 are inter-
mediate trajectory positions. The point cloud map is depicted in gray.

The final graph is computed from the weights and trajectories defined in the naviga-
tion tree, the Euclidean distance between nodes and the blocked status of the segments
described in the matrices 𝑁, 𝐷 and 𝐵, respectively. In these matrices, the number of each
row coincides with the identification number (ID) of a node. Likewise, following the same
order, the number of each column coincides with the ID of a node. The value of one posi-
tion in the matrix defines a feature (weight, distance or blocked status) of the trajectory
going from the row node to the column node. For example, 𝑁 , = 1 shows that the seg-
ment of the navigation tree from node 2 to node 7 has a weight of 1. Similarly, 𝐷 , = 3.45
shows that the Euclidean distance from node 4 to node 8 is 4.45 m. Finally, 𝐵 , = 0 shows
an unblocked segment between nodes 𝑖 and 𝑗, whereas 𝐵 , = 1 shows that an obstacle
is currently blocking the segment linking the nodes.

The Hadamard [115] (point to point) product of the matrices 𝑁, 𝐷 and 𝐵 (Equation
(3) combines the aforementioned features of each trajectory into a single matrix, called
graph 𝑮, used by Dijkstra’s algorithm to find the shortest path. 𝑮 = 𝑁 , ∙ 𝐷 , ∙ (1 − 𝐵) , (3)

Since the definition of a navigation matrix 𝑁 is directed, the resulting graph 𝑮 is also
expected to be directed due to the use of different weights depending on the direction of
the trajectory between two nodes.

The blocked status is initialized to 0 by default. The blocked status of a segment 𝐵 ,
is updated while the robot tries to execute a straight trajectory from node 𝑖 to 𝑗 based on

Figure 3. Representation of a small navigation tree defined in one part of the building: S1 is a
battery charging station and the main pick-up point; D1. . . D4 are drop-off points; the pairs U1–U2,
U3–U4, U5–U6, U7–U8 and U9–U10 are trajectories required to pass through doors; and T1. . . T8 are
intermediate trajectory positions. The point cloud map is depicted in gray.

The final graph is computed from the weights and trajectories defined in the navigation
tree, the Euclidean distance between nodes and the blocked status of the segments described
in the matrices N, D and B, respectively. In these matrices, the number of each row coincides
with the identification number (ID) of a node. Likewise, following the same order, the
number of each column coincides with the ID of a node. The value of one position in the
matrix defines a feature (weight, distance or blocked status) of the trajectory going from
the row node to the column node. For example, N2,7 = 1 shows that the segment of the
navigation tree from node 2 to node 7 has a weight of 1. Similarly, D4,8 = 3.45 shows
that the Euclidean distance from node 4 to node 8 is 4.45 m. Finally, Bi,j = 0 shows an
unblocked segment between nodes i and j, whereas Bi,j = 1 shows that an obstacle is
currently blocking the segment linking the nodes.

The Hadamard [115] (point to point) product of the matrices N, D and B (Equation (3)
combines the aforementioned features of each trajectory into a single matrix, called graph
G, used by Dijkstra’s algorithm to find the shortest path.

G = Ni,j·Di,j·(1− B)i,j (3)

Since the definition of a navigation matrix N is directed, the resulting graph G is also
expected to be directed due to the use of different weights depending on the direction of
the trajectory between two nodes.

Sensors 2023, 23, 8795 9 of 30

The blocked status is initialized to 0 by default. The blocked status of a segment Bi,j
is updated while the robot tries to execute a straight trajectory from node i to j based on
the information provided by its LiDAR sensor system. The graph G computed from the
navigation tree described in Figure 3 is included in Supplementary Materials.

2.4. Dijkstra’s Algorithm

Dijkstra’s algorithm [88] provides the shortest path from one node to every other
node on directed graphs [116]. The advantage of Dijkstra’s algorithm is that it provides
minimally spanning trees as it explores all possible alternative paths and thus eliminates
the uncertainness of heuristic algorithms [117,118]. Dijkstra’s algorithm is commonly used
to estimate the shortest trajectory in many mobile robot applications [119–121].

Based on a predefined graph G made up of M nodes (also referred as vertices) and E
edges (also referred as segments), Dijkstra’s algorithm [88] provides a sub-graph Q ∈ G
starting at an initial node (inode) and ending at a final node (f node) such that the distance
between them (dinode, f node), obtained as the sum of edges defined in the graph G, is minimal:

dinode, f node = ∑ f node
i=inode G(i, i + 1), i ∈ Q. (4)

Q is assumed to be non-empty and includes n vertices, 1 ≤ n ≤ |M|, and vertices i
and i + 1 are adjacent or linked.

Figure 4 shows the flowchart of the well-known Dijkstra’s algorithm, which is di-
dactically described in many free video sharing websites such as [122]. In this work, the
application of Dijkstra’s algorithm for path planning requires a graph G, the definition of
an initial or starting node, inode, and a final or ending node, f node.

Dijkstra’s algorithm uses the following parameters of each node: score, visited status
and previous node. At the end of the algorithm, score is the cumulated distance travelled to
reach the node from the starting node, visited status indicates if the node has been explored
and previous node is the preceding linked node at the shortest distance from the current
node. The characteristic point of Dijkstra’s algorithm is the determination of the backwards
shortest path, starting from the final node to the initial node through the path defined by
the previous node values. However, this path is actually travelled starting from the initial
node to the final node.

Dijkstra’s algorithm starts by initializing all score values as infinite, the visited status
as false and the previous node as empty. Then, the score of the initial node is set to zero.
The main loop of the algorithm selects the unvisited node with the lowest score as the next
node to be explored (en); in the first iteration, this node is the starting node (that was set to
zero for this purpose). The node selected is then marked as visited. The graph is explored
to generate a list of unvisited adjacent or linked nodes.

If there are unvisited adjacent nodes, the secondary loop is focused on the exploration
of this list of nodes. First, a node is selected as the active node (uvn) and removed from the
list. Then, the temporal score of the node uvn is computed, cumulating the score value of
en node and the value of the segment from the en node to the node uvn. If this temporal
score is lower than the initial score of the node uvn, then its score value is updated with
the value of the temporal score and the previous node of en is set as uvn. This process is
repeated until the list of unvisited nodes is empty.

The continuation of the main loop step requires the exploration of the visited status of
the nodes. If there are unvisited nodes, the loop returns to the step of selecting the unvisited
node with the lowest score as the next node to be explored (en) and continues. If there are
no unvisited nodes in the graph, the main loop is terminated.

Sensors 2023, 23, 8795 10 of 30Sensors 2023, 23, x FOR PEER REVIEW 10 of 31

Figure 4. Flowchart of Dijkstra’s algorithm [88].

Table 3 shows the application of Dijkstra’s algorithm to the graph 𝑮 (Equation (3)),
whose navigation tree is shown in Figure 3. The task assigned to the mobile robot is the
transportation of a package from the node S1 (the main package pick-up point) to the node
D3 (a destination point). The node at which the mobile robot is located is highlighted with
a red frame. UX nodes are used to depict precise trajectories that must be followed to
navigate through narrow spaces such as doors, while TX nodes are used to depict auxil-
iary trajectory nodes. The first row of Table 3 simulates the start of a package delivery task
with the mobile robot being placed at the node S1. The application of Dijkstra’s algorithm
from S1 to D3 provides the path S1–T8–U1–U2–U4–U6–U8–U7–T2–D3, and the mobile
robot starts to follow this path checking if the trajectory to the next node is blocked. The
second row of Table 3 shows a case in which the mobile robot has reached the node U6

Create and initialize a score, visited status
and previous node for each node

Initialize the initial node with a score of 0

Select the unvisited node with the lowest score as the next node to be explored,

Set the node selected as visited

Explore the graph and generate a list of
unvisited linked nodes from the active node

Are there any
unvisited linked nodes

unprocessed ?

Select a node, , from the list of unvisited nodes
and remove from the list

Compute a cumulative score for the unvisited node

Are there any
nodes unvisited ?

Stop
No path found

yes

no

yes

no

Is the node
visited ?

Extract the path found

yesno

Start
Graph: G
Initial node:
Final node:

Stop
Path found

yes

no

Figure 4. Flowchart of Dijkstra’s algorithm [88].

Finally, if the score of the final node is infinite, then no path between the initial and
final node has been found. Alternatively, if the final node has been visited with a score that
is not infinite, the shortest path between the initial and final node is obtained, generating a
sequence that starts at the final node, goes to its previous node and continues exploring
the previous nodes until arriving at the initial node. The flowchart of Dijkstra’s algorithm
described in Figure 4 is also available as a plain source code in [123].

Table 3 shows the application of Dijkstra’s algorithm to the graph G (Equation (3)),
whose navigation tree is shown in Figure 3. The task assigned to the mobile robot is the
transportation of a package from the node S1 (the main package pick-up point) to the node
D3 (a destination point). The node at which the mobile robot is located is highlighted with
a red frame. UX nodes are used to depict precise trajectories that must be followed to

Sensors 2023, 23, 8795 11 of 30

navigate through narrow spaces such as doors, while TX nodes are used to depict auxiliary
trajectory nodes. The first row of Table 3 simulates the start of a package delivery task
with the mobile robot being placed at the node S1. The application of Dijkstra’s algorithm
from S1 to D3 provides the path S1–T8–U1–U2–U4–U6–U8–U7–T2–D3, and the mobile
robot starts to follow this path checking if the trajectory to the next node is blocked. The
second row of Table 3 shows a case in which the mobile robot has reached the node U6
and then detects that the trajectory from node U6 to node U8 is blocked by an obstacle.
In this case, the application of Dijkstra’s algorithm from U6 to D3 provides a new path,
U6–T5–T4–T3–U8–U7–T2–D3, and the mobile robot starts to follow this path, checking
if the trajectory to the next node is blocked. In the third row of Table 3, the mobile robot
has arrived at the destination node D3 to deliver the package. The fourth row of Table 3
assumes that the package has been delivered and that the mobile robot must return to
the main package pick-up point S1. In this case, the application of Dijkstra’s algorithm
from D3 to S1 provides the path D3–T2–U7–U8–T3–T4–T5–T6–T7–U2–U1–T8–S1, and the
mobile robot starts to follow this path, checking if the trajectory to the next node is blocked.
Finally, the fifth row of Table 3 represents the ideal case in which the mobile robot has
completed the return journey without encountering any obstacles blocking any segments.
In summary, the detection of an obstacle blocking a segment of the planned path requires
the classification of this segment as blocked, the recalculation of the graph (Equation (3))
and the recalculation of the shortest path to the destination using Dijkstra’s algorithm. In
future works, the artificial potential field (APF) [124] algorithm will be applied to decide if
an obstacle blocking the planned path can be safely avoided [125] using simple maneuvers
instead of calculating an alternative path.

Table 3. Example of Dijkstra’s algorithm in the path planning of a mobile delivery robot.

Current Node of
the Robot

Is Next Segment
Blocked?

Current Delivery
Planned Path

From To

S1 No

S1
(Package
pick-up
point)

D3
(Destination

point)

Sensors 2023, 23, x FOR PEER REVIEW 11 of 31

and then detects that the trajectory from node U6 to node U8 is blocked by an obstacle. In
this case, the application of Dijkstra’s algorithm from U6 to D3 provides a new path, U6–
T5–T4–T3–U8–U7–T2–D3, and the mobile robot starts to follow this path, checking if the
trajectory to the next node is blocked. In the third row of Table 3, the mobile robot has
arrived at the destination node D3 to deliver the package. The fourth row of Table 3 as-
sumes that the package has been delivered and that the mobile robot must return to the
main package pick-up point S1. In this case, the application of Dijkstra’s algorithm from
D3 to S1 provides the path D3–T2–U7–U8–T3–T4–T5–T6–T7–U2–U1–T8–S1, and the mo-
bile robot starts to follow this path, checking if the trajectory to the next node is blocked.
Finally, the fifth row of Table 3 represents the ideal case in which the mobile robot has
completed the return journey without encountering any obstacles blocking any segments.
In summary, the detection of an obstacle blocking a segment of the planned path requires
the classification of this segment as blocked, the recalculation of the graph (Equation (3))
and the recalculation of the shortest path to the destination using Dijkstra’s algorithm. In
future works, the artificial potential field (APF) [124] algorithm will be applied to decide
if an obstacle blocking the planned path can be safely avoided [125] using simple maneu-
vers instead of calculating an alternative path.

Table 3. Example of Dijkstra’s algorithm in the path planning of a mobile delivery robot.

Current Node of
the Robot

Is Next Seg-
ment Blocked?

Current Delivery
Planned Path

From To

S1 No

S1
(Package
pick-up
point)

D3
(Destination

point)

U6

Yes
(Compute a

new path from
U6)

U6 D3

D3
(Package delivery)

- U6 D3

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

U6
Yes

(Compute a new
path from U6)

U6 D3

Sensors 2023, 23, x FOR PEER REVIEW 11 of 31

and then detects that the trajectory from node U6 to node U8 is blocked by an obstacle. In
this case, the application of Dijkstra’s algorithm from U6 to D3 provides a new path, U6–
T5–T4–T3–U8–U7–T2–D3, and the mobile robot starts to follow this path, checking if the
trajectory to the next node is blocked. In the third row of Table 3, the mobile robot has
arrived at the destination node D3 to deliver the package. The fourth row of Table 3 as-
sumes that the package has been delivered and that the mobile robot must return to the
main package pick-up point S1. In this case, the application of Dijkstra’s algorithm from
D3 to S1 provides the path D3–T2–U7–U8–T3–T4–T5–T6–T7–U2–U1–T8–S1, and the mo-
bile robot starts to follow this path, checking if the trajectory to the next node is blocked.
Finally, the fifth row of Table 3 represents the ideal case in which the mobile robot has
completed the return journey without encountering any obstacles blocking any segments.
In summary, the detection of an obstacle blocking a segment of the planned path requires
the classification of this segment as blocked, the recalculation of the graph (Equation (3))
and the recalculation of the shortest path to the destination using Dijkstra’s algorithm. In
future works, the artificial potential field (APF) [124] algorithm will be applied to decide
if an obstacle blocking the planned path can be safely avoided [125] using simple maneu-
vers instead of calculating an alternative path.

Table 3. Example of Dijkstra’s algorithm in the path planning of a mobile delivery robot.

Current Node of
the Robot

Is Next Seg-
ment Blocked?

Current Delivery
Planned Path

From To

S1 No

S1
(Package
pick-up
point)

D3
(Destination

point)

U6

Yes
(Compute a

new path from
U6)

U6 D3

D3
(Package delivery)

- U6 D3

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

Sensors 2023, 23, 8795 12 of 30

Table 3. Cont.

Current Node of
the Robot

Is Next Segment
Blocked?

Current Delivery
Planned Path

From To

D3
(Package
delivery)

- U6 D3

Sensors 2023, 23, x FOR PEER REVIEW 11 of 31

and then detects that the trajectory from node U6 to node U8 is blocked by an obstacle. In
this case, the application of Dijkstra’s algorithm from U6 to D3 provides a new path, U6–
T5–T4–T3–U8–U7–T2–D3, and the mobile robot starts to follow this path, checking if the
trajectory to the next node is blocked. In the third row of Table 3, the mobile robot has
arrived at the destination node D3 to deliver the package. The fourth row of Table 3 as-
sumes that the package has been delivered and that the mobile robot must return to the
main package pick-up point S1. In this case, the application of Dijkstra’s algorithm from
D3 to S1 provides the path D3–T2–U7–U8–T3–T4–T5–T6–T7–U2–U1–T8–S1, and the mo-
bile robot starts to follow this path, checking if the trajectory to the next node is blocked.
Finally, the fifth row of Table 3 represents the ideal case in which the mobile robot has
completed the return journey without encountering any obstacles blocking any segments.
In summary, the detection of an obstacle blocking a segment of the planned path requires
the classification of this segment as blocked, the recalculation of the graph (Equation (3))
and the recalculation of the shortest path to the destination using Dijkstra’s algorithm. In
future works, the artificial potential field (APF) [124] algorithm will be applied to decide
if an obstacle blocking the planned path can be safely avoided [125] using simple maneu-
vers instead of calculating an alternative path.

Table 3. Example of Dijkstra’s algorithm in the path planning of a mobile delivery robot.

Current Node of
the Robot

Is Next Seg-
ment Blocked?

Current Delivery
Planned Path

From To

S1 No

S1
(Package
pick-up
point)

D3
(Destination

point)

U6

Yes
(Compute a

new path from
U6)

U6 D3

D3
(Package delivery)

- U6 D3

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

D3
(Return) No

D3
(Return to

starting
point)

S1

Sensors 2023, 23, x FOR PEER REVIEW 12 of 31

D3
(Return) No

D3
(Return to

starting
point)

S1

S1
(Arrival at the de-

parture point)
- D3 S1

3. Implementation
This section describes the implementation of the path-planning procedure proposed

in this paper, which is based on a predefined navigation tree of the multi-story building.

3.1. Predefined Navigation Tree
The map of one representative floor of the building (Figure 2) is used as a reference

to manually create a feasible navigation tree. Figure 5 shows the navigation tree created
to develop the path planning of a mobile delivery robot in the multi-story building. As
stated in Section 2.2, this work assumes that all the floors of the building have the same
layout to simplify our interpretation of the navigation results. The assumptions made to
create the navigation tree are as follows:
• The nodes of the navigation tree depict the position of the main pick-up points, des-

tination points, doors and elevators. The nodes are precisely referenced in the point
cloud map of the floor of the building (Figure 2).

• The segments of the navigation tree depict straight trajectories between the linked
nodes. During the creation of the navigation tree, trajectory nodes can be added to
define a sequence of straight segments and avoid fixed furniture obstacles.
The navigation tree displayed in Figure 5 has 171 segments and 101 nodes: 1 S node

(the main package pick-up point), 46 U nodes (used to define precise trajectories), 2 E
nodes (elevators) and 32 T nodes (used to define intermediate trajectories). In Figure 5, the
labels of the U and T nodes are not displayed to avoid covering segments of the graph.
The graph deduced from the navigation tree described in Figure 5 is included in the Sup-
plementary Material. An indicator of the complexity of the graph is its density (𝛿), which
is obtained from its number of segments |𝐸| and its number of nodes |𝑀|: 𝛿 = |𝐸||𝑀| ∙ (|𝑀| − 1) = 171101 ∙ (101 − 1) = 0.0169 (5)

When the density is within the range of 0 ≤ 𝛿 ≤ 1 2⁄ , the graph is considered sparse.
In this case, the density obtained is in the lowest part of this range, so the graph is sparse
and does not represent a computational time challenge for Dijkstra’s algorithm to find the
shortest path from one node to any other node.

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

S1
(Arrival at the

departure point)
- D3 S1

Sensors 2023, 23, x FOR PEER REVIEW 12 of 31

D3
(Return) No

D3
(Return to

starting
point)

S1

S1
(Arrival at the de-

parture point)
- D3 S1

3. Implementation
This section describes the implementation of the path-planning procedure proposed

in this paper, which is based on a predefined navigation tree of the multi-story building.

3.1. Predefined Navigation Tree
The map of one representative floor of the building (Figure 2) is used as a reference

to manually create a feasible navigation tree. Figure 5 shows the navigation tree created
to develop the path planning of a mobile delivery robot in the multi-story building. As
stated in Section 2.2, this work assumes that all the floors of the building have the same
layout to simplify our interpretation of the navigation results. The assumptions made to
create the navigation tree are as follows:
• The nodes of the navigation tree depict the position of the main pick-up points, des-

tination points, doors and elevators. The nodes are precisely referenced in the point
cloud map of the floor of the building (Figure 2).

• The segments of the navigation tree depict straight trajectories between the linked
nodes. During the creation of the navigation tree, trajectory nodes can be added to
define a sequence of straight segments and avoid fixed furniture obstacles.
The navigation tree displayed in Figure 5 has 171 segments and 101 nodes: 1 S node

(the main package pick-up point), 46 U nodes (used to define precise trajectories), 2 E
nodes (elevators) and 32 T nodes (used to define intermediate trajectories). In Figure 5, the
labels of the U and T nodes are not displayed to avoid covering segments of the graph.
The graph deduced from the navigation tree described in Figure 5 is included in the Sup-
plementary Material. An indicator of the complexity of the graph is its density (𝛿), which
is obtained from its number of segments |𝐸| and its number of nodes |𝑀|: 𝛿 = |𝐸||𝑀| ∙ (|𝑀| − 1) = 171101 ∙ (101 − 1) = 0.0169 (5)

When the density is within the range of 0 ≤ 𝛿 ≤ 1 2⁄ , the graph is considered sparse.
In this case, the density obtained is in the lowest part of this range, so the graph is sparse
and does not represent a computational time challenge for Dijkstra’s algorithm to find the
shortest path from one node to any other node.

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

1

1

1

1

1

1

1 1 1

1

1

5

5

1 1 1 1 5555

3. Implementation

This section describes the implementation of the path-planning procedure proposed
in this paper, which is based on a predefined navigation tree of the multi-story building.

3.1. Predefined Navigation Tree

The map of one representative floor of the building (Figure 2) is used as a reference to
manually create a feasible navigation tree. Figure 5 shows the navigation tree created to
develop the path planning of a mobile delivery robot in the multi-story building. As stated
in Section 2.2, this work assumes that all the floors of the building have the same layout to
simplify our interpretation of the navigation results. The assumptions made to create the
navigation tree are as follows:

• The nodes of the navigation tree depict the position of the main pick-up points,
destination points, doors and elevators. The nodes are precisely referenced in the
point cloud map of the floor of the building (Figure 2).

• The segments of the navigation tree depict straight trajectories between the linked
nodes. During the creation of the navigation tree, trajectory nodes can be added to
define a sequence of straight segments and avoid fixed furniture obstacles.

Sensors 2023, 23, 8795 13 of 30

Sensors 2023, 23, x FOR PEER REVIEW 13 of 31

The memory requirements to store the matrices 𝑁 , 𝐷 and 𝐵 and the graph 𝑮 of
each floor of the building (Equation (3)) are as follows: 𝑀𝑒𝑚𝑜𝑟𝑦_𝑜𝑛𝑒_𝑓𝑙𝑜𝑜𝑟 = 4 ∙ (|𝑀| ∙ |𝑀|) = 4 ∙ (|𝑀| ∙ |𝑀|) = 40,804 𝐹𝑃64, (6)

where 𝐹𝑃64 is the double-precision floating point format value defined by IEEE 754-2019
[126]. The building with five floors requires the replication of this memory structure in
each floor, using a total of 204,020 𝐹𝑃64.

The memory required to compute Dijkstra’s algorithm is determined by the number
of nodes in the graph and the parameters defined in each node. In this multi-story appli-
cation, Dijkstra’s algorithm is called once per floor, computing the shortest path in each
floor separately. The algorithm is not called to compute the path between floors, because
navigation between floors is only possible through the elevator. Therefore, Dijkstra’s al-
gorithm is only applied to find the shortest path in each floor of the building. For example,
a package delivery task starting at the package pick-up node S1 located on the ground
floor (F0) and with a destination at D16 on the third floor (F3) defines two paths: the first
one from the pick-up point S1–F0 to the elevator E1–F0 and then from the elevator E1–F3
to the destination D16–F3, and vice versa to return. Hence, Dijkstra’s algorithm is only
used twice: from S1–F0 to E1–F0 and from E1–F3 to D16–F3, and not between elevator
positions from E1–F0 to E1–F3. The algorithm is used twice more to return.

In summary, the memory required by Dijkstra’s algorithm is computed from the
number of nodes (|𝑀|), the parameters 𝑃 associated with each node (the score, previous
node and visited status) and the list of nodes linked to the current node explored during
the iterative search: 𝑀𝑒𝑚𝑜𝑟𝑦_𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 < (|𝑃| + 1) ∙ |𝑀| = (3 + 1) ∙ |101| = 404 𝐹𝑃64 (7)

The advantages of manually defining the navigation tree on each floor are the reduc-
tion in the graph size and the low computational resources required to find the best path,
which can be updated when any obstacle blocks the current path. These advantages make
this proposal ideal for its implementation in indoor autonomous mobile delivery robots
using central processing units based on microcontrollers or low-performance computers.

Figure 5. Navigation tree defined in one representative floor of the building of the Polytechnic
School of the University of Lleida (Spain). The point cloud map is depicted in gray. S1 is the main
package pick-up point of the floor. D1…D20 are the possible destination points located inside offices
and laboratories.

Figure 6 details the navigation tree displayed in Figure 5. The directed graph is pro-
posed to incentivize the robot to move close to the walls following different trajectories

Figure 5. Navigation tree defined in one representative floor of the building of the Polytechnic
School of the University of Lleida (Spain). The point cloud map is depicted in gray. S1 is the main
package pick-up point of the floor. D1. . . D20 are the possible destination points located inside offices
and laboratories.

The navigation tree displayed in Figure 5 has 171 segments and 101 nodes: 1 S node
(the main package pick-up point), 46 U nodes (used to define precise trajectories), 2 E nodes
(elevators) and 32 T nodes (used to define intermediate trajectories). In Figure 5, the labels
of the U and T nodes are not displayed to avoid covering segments of the graph. The graph
deduced from the navigation tree described in Figure 5 is included in the Supplementary
Material. An indicator of the complexity of the graph is its density (δ), which is obtained
from its number of segments |E| and its number of nodes |M|:

δ =
|E|

|M|·(|M| − 1)
=

171
101·(101− 1)

= 0.0169 (5)

When the density is within the range of 0 ≤ δ ≤ 1/2, the graph is considered sparse.
In this case, the density obtained is in the lowest part of this range, so the graph is sparse
and does not represent a computational time challenge for Dijkstra’s algorithm to find the
shortest path from one node to any other node.

The memory requirements to store the matrices N, D and B and the graph G of each
floor of the building (Equation (3)) are as follows:

Memory_one_ f loor = 4·(|M|·|M|) = 4·(|M|·|M|) = 40, 804 FP64, (6)

where FP64 is the double-precision floating point format value defined by IEEE 754-
2019 [126]. The building with five floors requires the replication of this memory structure
in each floor, using a total of 204,020 FP64.

The memory required to compute Dijkstra’s algorithm is determined by the number of
nodes in the graph and the parameters defined in each node. In this multi-story application,
Dijkstra’s algorithm is called once per floor, computing the shortest path in each floor
separately. The algorithm is not called to compute the path between floors, because
navigation between floors is only possible through the elevator. Therefore, Dijkstra’s
algorithm is only applied to find the shortest path in each floor of the building. For
example, a package delivery task starting at the package pick-up node S1 located on the
ground floor (F0) and with a destination at D16 on the third floor (F3) defines two paths:
the first one from the pick-up point S1–F0 to the elevator E1–F0 and then from the elevator
E1–F3 to the destination D16–F3, and vice versa to return. Hence, Dijkstra’s algorithm is
only used twice: from S1–F0 to E1–F0 and from E1–F3 to D16–F3, and not between elevator
positions from E1–F0 to E1–F3. The algorithm is used twice more to return.

Sensors 2023, 23, 8795 14 of 30

In summary, the memory required by Dijkstra’s algorithm is computed from the
number of nodes (|M|), the parameters P associated with each node (the score, previous
node and visited status) and the list of nodes linked to the current node explored during
the iterative search:

Memory_Dijkstra < (|P|+ 1)·|M| = (3 + 1)·|101| = 404 FP64 (7)

The advantages of manually defining the navigation tree on each floor are the reduction
in the graph size and the low computational resources required to find the best path, which
can be updated when any obstacle blocks the current path. These advantages make this
proposal ideal for its implementation in indoor autonomous mobile delivery robots using
central processing units based on microcontrollers or low-performance computers.

Figure 6 details the navigation tree displayed in Figure 5. The directed graph is
proposed to incentivize the robot to move close to the walls following different trajectories
when going and returning from the destination. Figure 6a details the navigation tree
connecting the hall and corridor. Note that although the lines between the nodes are curved
(to better show the directed weights of the navigation tree), all trajectories between the
nodes are straight. The concentration of points in the left part of the hall map correspond
to a decorative flowerpot. The node T22 shown in Figure 6a is defined specifically to avoid
this flowerpot. The node with more segments is T5 (Figure 6a), which is linked to the nodes
T28, U6, T4, U9 and T27 (T27 is not visible in Figure 6a). Figure 6b details the navigation
tree around the elevators. The trajectories to enter and exit the elevators are defined by
U43-E1-U43 and U44-E2-U44 [31], and the mobile delivery robot must be able to wirelessly
interact with them [30]. Finally, Figure 6c details the navigation tree at the end of the
corridor, which incentivizes the robot to move following different trajectories when going
and returning from its destination to simplify and be compatible with the circulation of
people and other robots in the corridor.

3.2. Path Planning in a Multi-Story Building

In mobile robotics, path planning is a procedure that computes a basic collision-free
path from a starting point to a destination point using known static information [127,128].
This work assumes that a mobile delivery robot has access to a manually created navigation
tree where the nodes detail the position of all expected pick-up and drop-off points, while
the segments describe collision-free straight trajectories between the linked nodes. The
assignment of a task to a mobile delivery robot consists of defining a destination node to
transport and drop off a package from a known pick-up point. Once one task is assigned,
the mobile robot must analyze if this task requires navigating between floors and adding
the elevator as an intermediate node to be visited. Then, Dijkstra’s algorithm provides
a collision-free path for the mobile robot. The mobile robot uses the information of its
onboard LiDAR and the point cloud map for self-localization in order to follow the planned
path. Finally, in cases in which it detects an obstacle in one segment of the path during
transportation, the mobile robot must update the segment as blocked and use Dijkstra’s
algorithm again to obtain another collision-free path.

As an example, Table 4 shows the definition of go and return tasks for the mobile
delivery robot. Task 1 is a trajectory in which the mobile robot is at the node S1 of the
ground floor (labeled as Floor0 and F0) and has to transport a package up to the node D16
of the first floor (labeled as Floor1 and F1). Task 2 is a return trajectory in which the mobile
robot is at the node D16 of the first floor and returns to the node S1 of the ground floor. In
both tasks, the initial and destination nodes are at different floors, so the mobile robot must
take an elevator to complete the transportation task. In consequence, one elevator node
has been added in the sequence of nodes to visit by the mobile robot. In Table 4, elevator
1 (E1 node) is prioritized to go up and elevator 2 (E2 node) is prioritized to go down. The
elevator nodes are shared between floors.

Sensors 2023, 23, 8795 15 of 30

Sensors 2023, 23, x FOR PEER REVIEW 14 of 31

when going and returning from the destination. Figure 6a details the navigation tree con-
necting the hall and corridor. Note that although the lines between the nodes are curved
(to better show the directed weights of the navigation tree), all trajectories between the
nodes are straight. The concentration of points in the left part of the hall map correspond
to a decorative flowerpot. The node T22 shown in Figure 6a is defined specifically to avoid
this flowerpot. The node with more segments is T5 (Figure 6a), which is linked to the
nodes T28, U6, T4, U9 and T27 (T27 is not visible in Figure 6a). Figure 6b details the navi-
gation tree around the elevators. The trajectories to enter and exit the elevators are defined
by U43-E1-U43 and U44-E2-U44 [31], and the mobile delivery robot must be able to wire-
lessly interact with them [30]. Finally, Figure 6c details the navigation tree at the end of
the corridor, which incentivizes the robot to move following different trajectories when
going and returning from its destination to simplify and be compatible with the circula-
tion of people and other robots in the corridor.

(a)

(b)

Sensors 2023, 23, x FOR PEER REVIEW 15 of 31

(c)

Figure 6. Details of different parts of the navigation tree showing the auxiliary trajectory nodes: (a)
main package pick-up point S1, hall and initial part of the corridor; (b) elevator zone; and (c) end of
the corridor.

3.2. Path Planning in a Multi-Story Building
In mobile robotics, path planning is a procedure that computes a basic collision-free

path from a starting point to a destination point using known static information [127,128].
This work assumes that a mobile delivery robot has access to a manually created naviga-
tion tree where the nodes detail the position of all expected pick-up and drop-off points,
while the segments describe collision-free straight trajectories between the linked nodes.
The assignment of a task to a mobile delivery robot consists of defining a destination node
to transport and drop off a package from a known pick-up point. Once one task is as-
signed, the mobile robot must analyze if this task requires navigating between floors and
adding the elevator as an intermediate node to be visited. Then, Dijkstra’s algorithm pro-
vides a collision-free path for the mobile robot. The mobile robot uses the information of
its onboard LiDAR and the point cloud map for self-localization in order to follow the
planned path. Finally, in cases in which it detects an obstacle in one segment of the path
during transportation, the mobile robot must update the segment as blocked and use
Dijkstra’s algorithm again to obtain another collision-free path.

As an example, Table 4 shows the definition of go and return tasks for the mobile
delivery robot. Task 1 is a trajectory in which the mobile robot is at the node S1 of the
ground floor (labeled as Floor0 and F0) and has to transport a package up to the node D16
of the first floor (labeled as Floor1 and F1). Task 2 is a return trajectory in which the mobile
robot is at the node D16 of the first floor and returns to the node S1 of the ground floor. In
both tasks, the initial and destination nodes are at different floors, so the mobile robot
must take an elevator to complete the transportation task. In consequence, one elevator
node has been added in the sequence of nodes to visit by the mobile robot. In Table 4,
elevator 1 (E1 node) is prioritized to go up and elevator 2 (E2 node) is prioritized to go
down. The elevator nodes are shared between floors.

Table 4. Task definition example for the mobile delivery robot.

Task Initial Node Destination Node Sequence of Nodes to Visit

1
(go)

S1-F0 D16-F1
1: S1-F0
2: E1-F0→F1
3: D16-F1

2
(return)

D16-F1 S1-F0
1: D16-F1
2: E2-F1→F0
3: S1-F0

Figure 6. Details of different parts of the navigation tree showing the auxiliary trajectory nodes:
(a) main package pick-up point S1, hall and initial part of the corridor; (b) elevator zone; and (c) end
of the corridor.

Figure 7 shows the path proposed by Dijkstra’s algorithm to complete the tasks defined
in Table 4. Task 1 comprises two sub-paths: starting from S1–F0 (on the ground floor) to
E1–F0 and taking the elevator (Figure 7a), and exiting the elevator on the first floor and
going from E1–F1 to D16–F1 (Figure 7b). Task 2 also comprises two sub-paths: starting
from D16–F1 (on the first floor) to E2–F1 and taking the elevator (Figure 7c), and exiting
the elevator on the ground floor and going from E2–F0 to S1–F0 (Figure 7d). In both cases,
the assumption is that the mobile robot can wirelessly communicate with the elevator in
order to call it and select a destination floor [31].

Sensors 2023, 23, 8795 16 of 30

Table 4. Task definition example for the mobile delivery robot.

Task Initial Node Destination Node Sequence of Nodes to Visit

1
(go) S1-F0 D16-F1

1: S1-F0
2: E1-F0→F1
3: D16-F1

2
(return) D16-F1 S1-F0

1: D16-F1
2: E2-F1→F0
3: S1-F0

Sensors 2023, 23, x FOR PEER REVIEW 16 of 31

Figure 7 shows the path proposed by Dijkstra’s algorithm to complete the tasks de-
fined in Table 4. Task 1 comprises two sub-paths: starting from S1–F0 (on the ground floor)
to E1–F0 and taking the elevator (Figure 7a), and exiting the elevator on the first floor and
going from E1–F1 to D16–F1 (Figure 7b). Task 2 also comprises two sub-paths: starting
from D16–F1 (on the first floor) to E2–F1 and taking the elevator (Figure 7c), and exiting
the elevator on the ground floor and going from E2–F0 to S1–F0 (Figure 7d). In both cases,
the assumption is that the mobile robot can wirelessly communicate with the elevator in
order to call it and select a destination floor [31].

(a)

(b)

(c)

Floor 0

Floor 1

Floor 1

Figure 7. Cont.

Sensors 2023, 23, 8795 17 of 30
Sensors 2023, 23, x FOR PEER REVIEW 17 of 31

(d)

Figure 7. Path planning of the tasks defined in Table 4. Task 1: (a) go from the main pick-up point
S1–F0 (on the ground floor) to E1–F0 and take the elevator; (b) go from E1–F1 (on the first floor) to
D16–F1. Task 2: (c) return from D16–F1 to E2–F1 and take the elevator; and (d) go from F2–F0 (on
the ground floor) to S1–F0 (main pick-up point).

3.3. Motion Planning in a Multi-Story Building
In mobile robotics, motion planning is a procedure that assumes that the motion of a

mobile robot must face dynamic obstacles not considered during path planning. These
obstacles can be dynamic, such as people, companion animals and other mobile robots, or
stationary, such as furniture added after the creation of the map and navigation tree.

Figure 8 shows the flowchart of the motion-planning procedure proposed for the mo-
bile delivery robot. This procedure requires the graph 𝑮, the point cloud 𝑷𝑪, the node in
which the mobile robot is located (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒) and a list of the nodes to be visited
(𝑓𝑖𝑛𝑎𝑙_𝑛𝑜𝑑𝑒_𝐿𝐼𝑆𝑇).

The main loop of the algorithm starts initiating the intermediate destination node
(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑛𝑜𝑑𝑒) with the next node listed in 𝑓𝑖𝑛𝑎𝑙_𝑛𝑜𝑑𝑒_𝐿𝐼𝑆𝑇 and removing it from
the list. At the end of the main loop, the score is the cumulated distance from the starting
node to the destination node. The secondary loop of the algorithm starts by getting the
shortest path from the current node to the intermediate destination node to be visited
using Dijkstra’s algorithm and stores the result in a new list with the intermediate nodes
(𝑝𝑎𝑡ℎ_𝐿𝐼𝑆𝑇). The tertiary loop extracts the next node (𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒) to be visited by the mo-
bile robot from the 𝑝𝑎𝑡ℎ_𝐿𝐼𝑆𝑇. After this step, the sensors of the mobile robot must vali-
date if there is a collision-free path to 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒. If any obstacle is detected in this path,
the segment must be classified as blocked and the 𝑝𝑎𝑡ℎ_𝐿𝐼𝑆𝑇 must be updated. If no ob-
stacle is detected, then the mobile robot must follow the trajectory defined from its current
position (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒) to the position defined by 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 and update the value of the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 when finishing the displacement.

After completing this loop, the 𝑝𝑎𝑡ℎ_𝐿𝐼𝑆𝑇 must be checked to select the next partial
destination. If the 𝑝𝑎𝑡ℎ_𝐿𝐼𝑆𝑇 is empty, then the 𝑓𝑖𝑛𝑎𝑙_𝑛𝑜𝑑𝑒_𝐿𝐼𝑆𝑇 must be checked to get
a new 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑛𝑜𝑑𝑒. The planned path is completed when the 𝑓𝑖𝑛𝑎𝑙_𝑛𝑜𝑑𝑒_𝐿𝐼𝑆𝑇 is
empty.

Floor 0

Figure 7. Path planning of the tasks defined in Table 4. Task 1: (a) go from the main pick-up point
S1–F0 (on the ground floor) to E1–F0 and take the elevator; (b) go from E1–F1 (on the first floor) to
D16–F1. Task 2: (c) return from D16–F1 to E2–F1 and take the elevator; and (d) go from F2–F0 (on the
ground floor) to S1–F0 (main pick-up point).

3.3. Motion Planning in a Multi-Story Building

In mobile robotics, motion planning is a procedure that assumes that the motion of
a mobile robot must face dynamic obstacles not considered during path planning. These
obstacles can be dynamic, such as people, companion animals and other mobile robots, or
stationary, such as furniture added after the creation of the map and navigation tree.

Figure 8 shows the flowchart of the motion-planning procedure proposed for the
mobile delivery robot. This procedure requires the graph G, the point cloud PC, the node
in which the mobile robot is located (current_node) and a list of the nodes to be visited
(f inal_node_LIST).

The main loop of the algorithm starts initiating the intermediate destination node
(destination_node) with the next node listed in f inal_node_LIST and removing it from the
list. At the end of the main loop, the score is the cumulated distance from the starting
node to the destination node. The secondary loop of the algorithm starts by getting the
shortest path from the current node to the intermediate destination node to be visited
using Dijkstra’s algorithm and stores the result in a new list with the intermediate nodes
(path_LIST). The tertiary loop extracts the next node (next_node) to be visited by the
mobile robot from the path_LIST. After this step, the sensors of the mobile robot must
validate if there is a collision-free path to next_node. If any obstacle is detected in this
path, the segment must be classified as blocked and the path_LIST must be updated. If
no obstacle is detected, then the mobile robot must follow the trajectory defined from its
current position (current_node) to the position defined by next_node and update the value
of the current_node when finishing the displacement.

After completing this loop, the path_LIST must be checked to select the next partial
destination. If the path_LIST is empty, then the f inal_node_LIST must be checked to get a
new destination_node. The planned path is completed when the f inal_node_LIST is empty.

Sensors 2023, 23, 8795 18 of 30Sensors 2023, 23, x FOR PEER REVIEW 18 of 31

Figure 8. Flowchart of the motion-planning algorithm.

4. Results
The main simulation results presented in this section correspond to the tasks pre-

sented in Table 4. The path followed by the robot (shown in Figure 7) has been obtained
with Dijkstra’s algorithm [88] (Figure 4) and the graph created from the navigation tree
(Figure 5 and Equation (3)). The path-tracking performances of the simulated mobile robot
emulate the omnidirectional motion capabilities of the reference APR-02 mobile robot
(Equation (1) and Figure 1) [79]. The motion required to follow a planned path is com-
puted using the procedure described in [113].

Figure 9 shows a 3D routing simulation of the operation of the mobile delivery robot
in the studied multi-story building. The number of graphical features displayed in the
figures has been minimized to better show the planned path and the simulated motion.
Figure 9a shows the mobile delivery robot developing task 1 as defined in Table 4: starting
at the main package pick-up point S1–F0 (on the ground floor) and going to the destina-
tion point D16–F1 (on the first floor). Figure 9b shows the mobile delivery robot develop-
ing task 2 as defined in Table 4: starting at the destination point D16–F1 (on the first floor)
and returning to the main package pick-up point S1–F0 (on the ground floor). In both
figures, the movement of the mobile robot inside the elevator has also been simulated.

Figure 10 shows top view details of the motions simulated. Figure 10a shows the
motion of the mobile delivery robot initiating the task at the node S1–F0 on the ground
floor, exiting from the main package pick-up point, following the path close to the robot’s

Get the as the next
node in the and

remove it from the list

Get the path list

Get the next node from the
as and remove it from the list

Mobile robot motion
From to

Update the

Is the empty ?
no yes

yes

Start
Graph: (N,D,B)
Point Cloud Map:
Initial node:
Destination:

Stop
Path completed

no

Is there any
collision-free path

to ?

Update the segment as blocked

Update the graph

no

yes

Is the empty ?

Figure 8. Flowchart of the motion-planning algorithm.

4. Results

The main simulation results presented in this section correspond to the tasks presented
in Table 4. The path followed by the robot (shown in Figure 7) has been obtained with
Dijkstra’s algorithm [88] (Figure 4) and the graph created from the navigation tree (Figure 5
and Equation (3)). The path-tracking performances of the simulated mobile robot emulate
the omnidirectional motion capabilities of the reference APR-02 mobile robot (Equation (1)
and Figure 1) [79]. The motion required to follow a planned path is computed using the
procedure described in [113].

Figure 9 shows a 3D routing simulation of the operation of the mobile delivery robot
in the studied multi-story building. The number of graphical features displayed in the
figures has been minimized to better show the planned path and the simulated motion.
Figure 9a shows the mobile delivery robot developing task 1 as defined in Table 4: starting
at the main package pick-up point S1–F0 (on the ground floor) and going to the destination
point D16–F1 (on the first floor). Figure 9b shows the mobile delivery robot developing
task 2 as defined in Table 4: starting at the destination point D16–F1 (on the first floor) and
returning to the main package pick-up point S1–F0 (on the ground floor). In both figures,
the movement of the mobile robot inside the elevator has also been simulated.

Sensors 2023, 23, 8795 19 of 30

Sensors 2023, 23, x FOR PEER REVIEW 19 of 31

left wall, crossing the corridor, going through the hall until it reaches the elevator lobby
and going to the elevator E1–F0. Before arriving at this point, the mobile robot must call
the elevator E1 to avoid having to wait. The mobile robot enters the elevator facing in-
wards, sets a destination floor, and turns 180° during its journey to prepare to exit (see
Figure 10c). The exiting trajectory is different from the entrance trajectory as a way to re-
duce trajectory interferences with other mobile robots. Once out of the elevator, the mobile
robot goes to the hall and follows the path close to its left wall until arriving at the corridor
and follows a path close to its left wall up to the destination point D16–F1.

Figure 10b shows the motion of the mobile delivery robot returning from the node
D16–F1 on the first floor, following a path close to its left wall until arriving at the hall, fol-
lowing a path close to its left wall until reaching the elevator lobby and going to the elevator
E2–F1. Again, before arriving at this point, the mobile robot must call the elevator E2 to
avoid having to wait. In this simulated example, elevator E1 was prioritized to go up and
E2 was prioritized to go down, but this selection can be random or based on elevator prox-
imity. Again, the mobile robot enters the elevator facing inwards, so it must turn 180° during
its journey to prepare to exit (see Figure 10c). Once out of the elevator, the mobile robot goes
through the lobby, enters the hall and follows the path close to its left wall until arriving at
the main package pick-up point of the ground floor S1–F0. Specifically, Figure 10c details
the motion of the mobile robot inside the elevator: entering on the second floor and exiting
on the ground floor. Once inside the elevator, the mobile robot has to rotate 180° to face the
elevator door, detect its opening and exiting through the door. This rotation is strictly nec-
essary due to the fact that the APR-02 mobile robot uses a 2D LiDAR that does not measure
the rear area of the robot, so it has to rotate to be able to detect the opening of the elevator
door and avoid colliding with any person entering the elevator.

(a)

Sensors 2023, 23, x FOR PEER REVIEW 20 of 31

(b)

Figure 9. Simulated routing of the mobile delivery robot: (a) developing task 1 defined in Table 4:
starting at S1–F0 (ground floor) and going to D16–F1 (first floor); (b) developing task 2 defined in
Table 4: starting at D16–F1 (first floor) and going to S1–F0 (ground floor). Only three of the five
floors of the building are shown. The red dots and green circles represent the position of the robot.

Table 5 summarizes the routing results obtained in 40 complementary simulations.
Table 5 shows an estimation of the length of the trajectory that the robot has to travel to
complete the delivery of a package starting at the main pick-up point of the building (node
S1–F0), going to a delivery point (node DX, where X is the node number from 1 to 20) and
returning to the main pick-up point (S1–F0). Twenty tasks have been evaluated. Table 5
shows the cumulated length of each trajectory in case the destination node is on the same
floor as the initial node, the cumulated length in case the destination node is on another
floor of the building and the difference between both of these cases due to the navigation
between floors. As illustrated in Figure 7, each transportation and delivery task listed in
Table 5 requires two or four sub-paths depending on the floor of the destination. If the
initial node and the destination node are on the same floor, the sub-paths go from S1–F0
to DX–F0 (the outgoing path) and from DX–F0 to S1–F0 (the return path). If the initial
node and the destination node are on different floors, the sub-paths go from S1–F0 to E1–
F0 (the path to take the elevator configured for upwards travel), from E1–FY to DX–FY
(the path from the elevator to the destination at any floor Y), from DX–FY to E2–FY (the
return path to take the elevator configured for downwards travel) and from E2–F0 to S1–
F0 (the return path).

Figure 9. Simulated routing of the mobile delivery robot: (a) developing task 1 defined in Table 4:
starting at S1–F0 (ground floor) and going to D16–F1 (first floor); (b) developing task 2 defined in
Table 4: starting at D16–F1 (first floor) and going to S1–F0 (ground floor). Only three of the five floors
of the building are shown. The red dots and green circles represent the position of the robot.

Figure 10 shows top view details of the motions simulated. Figure 10a shows the
motion of the mobile delivery robot initiating the task at the node S1–F0 on the ground
floor, exiting from the main package pick-up point, following the path close to the robot’s
left wall, crossing the corridor, going through the hall until it reaches the elevator lobby
and going to the elevator E1–F0. Before arriving at this point, the mobile robot must call the
elevator E1 to avoid having to wait. The mobile robot enters the elevator facing inwards,
sets a destination floor, and turns 180◦ during its journey to prepare to exit (see Figure 10c).
The exiting trajectory is different from the entrance trajectory as a way to reduce trajectory
interferences with other mobile robots. Once out of the elevator, the mobile robot goes to
the hall and follows the path close to its left wall until arriving at the corridor and follows a
path close to its left wall up to the destination point D16–F1.

Sensors 2023, 23, 8795 20 of 30Sensors 2023, 23, x FOR PEER REVIEW 21 of 31

(a) (b) (c)

Figure 10. Details of the motions simulated: (a) top view of the motion of the mobile robot starting
at node S1 on the ground floor, entering the elevator E1, exiting on the first floor and going to node
D16; (b) top view of the motion of the mobile robot coming from D16 on the first floor, entering the
elevator E2, exiting it on the ground floor and going to node S1; (c) 3D view of the motion of the
mobile robot inside one elevator, entering on the second floor and exiting on the ground floor. The
red dots, red lines and green circles represent the position and orientation of the robot.

The cumulated length shown in Table 5 has been obtained using Dijkstra’s algorithm
to obtain the shortest path to complete each sub-path. The navigation between floors re-
quires the mobile robot to travel a few meters further. For example, when the destination
is close to the elevator’s zone (task T20 of Table 5), the robot travels 41.87 m further. When
the destination is very close to the starting point (task T1 of Table 5), the robot travels 89.86
m further. Nevertheless, the additional distance to be travelled is 78.77 m for the majority
of the tasks (Table 5). This difference does not depend on the destination floor because the
mobile robot is static and only rotates while it is in the elevator.

Complementarily to Table 5, Table 6 shows the distance–task matrix (𝐷𝑇 matrix) of
the multi-story building which can be used to generally estimate the energy consumption
of the mobile delivery robot [100]. The distance–task matrix describes the path length of
all possible sub-paths, starting at any node up to any node in the same floor. In this work,
the assumption is that all floors have the same layout, so one distance–task matrix is rep-
resentative of all the plants of the building. Nevertheless, in a general case, each floor of
the building requires its specific 𝐷𝑇 matrix.

Table 6 was created using Dijkstra’s algorithm row by row. For example, in the first
row, the starting node is S1 and Dijkstra’s algorithm provides the shortest path from S1 to
all nodes connected in the graph to guarantee finding the shortest path. This means that
Dijkstra’s algorithm is used only 23 times to compute all of Table 6. Additionally, it is
expected that the distance–task matrix does not change as the building does not change.
Hence, the 𝐷𝑇 matrix can be used as a look-up table to quickly plan complex sequences
of tasks without ever having to use Dijkstra’s algorithm.

Figure 10. Details of the motions simulated: (a) top view of the motion of the mobile robot starting
at node S1 on the ground floor, entering the elevator E1, exiting on the first floor and going to node
D16; (b) top view of the motion of the mobile robot coming from D16 on the first floor, entering the
elevator E2, exiting it on the ground floor and going to node S1; (c) 3D view of the motion of the
mobile robot inside one elevator, entering on the second floor and exiting on the ground floor. The
red dots, red lines and green circles represent the position and orientation of the robot.

Figure 10b shows the motion of the mobile delivery robot returning from the node
D16–F1 on the first floor, following a path close to its left wall until arriving at the hall,
following a path close to its left wall until reaching the elevator lobby and going to the
elevator E2–F1. Again, before arriving at this point, the mobile robot must call the elevator
E2 to avoid having to wait. In this simulated example, elevator E1 was prioritized to go up
and E2 was prioritized to go down, but this selection can be random or based on elevator
proximity. Again, the mobile robot enters the elevator facing inwards, so it must turn 180◦

during its journey to prepare to exit (see Figure 10c). Once out of the elevator, the mobile
robot goes through the lobby, enters the hall and follows the path close to its left wall
until arriving at the main package pick-up point of the ground floor S1–F0. Specifically,
Figure 10c details the motion of the mobile robot inside the elevator: entering on the second
floor and exiting on the ground floor. Once inside the elevator, the mobile robot has to
rotate 180◦ to face the elevator door, detect its opening and exiting through the door. This
rotation is strictly necessary due to the fact that the APR-02 mobile robot uses a 2D LiDAR
that does not measure the rear area of the robot, so it has to rotate to be able to detect the
opening of the elevator door and avoid colliding with any person entering the elevator.

Table 5 summarizes the routing results obtained in 40 complementary simulations.
Table 5 shows an estimation of the length of the trajectory that the robot has to travel to
complete the delivery of a package starting at the main pick-up point of the building (node
S1–F0), going to a delivery point (node DX, where X is the node number from 1 to 20) and
returning to the main pick-up point (S1–F0). Twenty tasks have been evaluated. Table 5
shows the cumulated length of each trajectory in case the destination node is on the same
floor as the initial node, the cumulated length in case the destination node is on another
floor of the building and the difference between both of these cases due to the navigation

Sensors 2023, 23, 8795 21 of 30

between floors. As illustrated in Figure 7, each transportation and delivery task listed in
Table 5 requires two or four sub-paths depending on the floor of the destination. If the
initial node and the destination node are on the same floor, the sub-paths go from S1–F0 to
DX–F0 (the outgoing path) and from DX–F0 to S1–F0 (the return path). If the initial node
and the destination node are on different floors, the sub-paths go from S1–F0 to E1–F0
(the path to take the elevator configured for upwards travel), from E1–FY to DX–FY (the
path from the elevator to the destination at any floor Y), from DX–FY to E2–FY (the return
path to take the elevator configured for downwards travel) and from E2–F0 to S1–F0 (the
return path).

Table 5. Path length of the available tasks for the mobile delivery robot in the multi-story building.

Task Initial Node Destination Node Final Node

Cumulated Path Length When Origin and
Destination Are

On the Same
Floor

On Different
Floors Difference

T1 S1 D1 S1 12.27 m 102.13 m 89.86 m

T2 S1 D2 S1 25.72 m 104.49 m 78.77 m

T3 S1 D3 S1 29.36 m 108.13 m 68.77 m

T4 S1 D4 S1 29.24 m 108.01 m 78.77 m

T5 S1 D5 S1 40.41 m 119.18 m 78.77 m

T6 S1 D6 S1 44.50 m 123.27 m 78.77 m

T6 S1 D7 S1 55.60 m 134.37 m 78.77 m

T8 S1 D8 S1 60.76 m 139.53 m 78.77 m

T9 S1 D9 S1 62.50 m 141.27 m 78.77 m

T10 S1 D10 S1 71.26 m 150.03 m 78.77 m

T11 S1 D11 S1 73.70 m 152.47 m 78.77 m

T12 S1 D12 S1 79.20 m 157.97 m 78.77 m

T13 S1 D13 S1 87.68 m 166.45 m 78.77 m

T14 S1 D14 S1 90.16 m 168.93 m 78.77 m

T15 S1 D15 S1 91.09 m 169.86 m 78.77 m

T16 S1 D16 S1 95.38 m 174.15 m 78.77 m

T17 S1 D17 S1 72.43 m 151.20 m 78.77 m

T18 S1 D18 S1 61.24 m 140.01 m 78.77 m

T19 S1 D19 S1 52.19 m 130.96 m 78.77 m

T20 S1 D20 S1 50.69 m 92.56 m 41.87 m

The cumulated length shown in Table 5 has been obtained using Dijkstra’s algorithm
to obtain the shortest path to complete each sub-path. The navigation between floors
requires the mobile robot to travel a few meters further. For example, when the destination
is close to the elevator’s zone (task T20 of Table 5), the robot travels 41.87 m further. When
the destination is very close to the starting point (task T1 of Table 5), the robot travels
89.86 m further. Nevertheless, the additional distance to be travelled is 78.77 m for the
majority of the tasks (Table 5). This difference does not depend on the destination floor
because the mobile robot is static and only rotates while it is in the elevator.

Complementarily to Table 5, Table 6 shows the distance–task matrix (DT matrix) of
the multi-story building which can be used to generally estimate the energy consumption
of the mobile delivery robot [100]. The distance–task matrix describes the path length
of all possible sub-paths, starting at any node up to any node in the same floor. In this

Sensors 2023, 23, 8795 22 of 30

work, the assumption is that all floors have the same layout, so one distance–task matrix is
representative of all the plants of the building. Nevertheless, in a general case, each floor of
the building requires its specific DT matrix.

Table 6. Distance–task matrix of the target multi-story building showing the distances (in meters)
obtained with Dijkstra’s algorithm from one initial or starting node (row) to a destination node
(column). The matrix is not symmetric due to the use of a weighted and directed navigation tree.
The tasks starting and ending at the same node (non-motion tasks) have been highlighted in yellow
for reference.

S1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 E1 E2
S1 0.0 6.1 11.9 13.7 14.3 18.7 21.2 26.3 29.4 30.2 34.1 35.8 38.3 41.7 43.6 45.3 48.2 36.0 30.4 25.8 23.7 26.0 27.4
D1 6.1 0.0 9.9 11.7 12.4 16.7 19.3 24.3 27.4 28.3 32.1 33.9 36.3 39.7 41.6 43.4 46.3 34.0 28.4 23.9 21.8 24.1 25.5
D2 13.9 11.9 0.0 7.4 8.1 12.4 15.0 20.0 23.1 24.0 27.8 29.6 32.0 35.4 37.3 39.1 42.0 29.7 24.1 19.6 18.4 20.7 22.1
D3 15.7 13.7 9.4 0.0 8.9 9.4 12.0 17.0 20.2 21.0 24.9 26.6 29.0 32.5 34.4 36.1 39.0 26.7 21.1 16.6 20.2 22.5 23.9
D4 14.9 12.9 8.7 10.5 0.0 15.5 18.0 23.1 26.2 27.0 30.9 32.6 35.1 38.5 40.4 42.1 45.0 32.8 27.2 22.6 19.5 21.8 23.2
D5 21.7 19.8 15.5 12.5 14.9 0.0 7.0 12.0 15.1 16.0 19.9 21.6 24.0 27.4 29.3 31.1 34.0 21.7 16.1 11.6 26.3 28.6 30.0
D6 23.2 21.3 17.0 14.0 16.4 8.5 0.0 9.8 12.9 13.8 17.6 19.4 21.8 25.2 27.1 28.9 31.8 19.5 13.9 13.1 27.8 30.1 31.5
D7 29.3 27.4 23.1 20.1 22.5 14.6 12.9 0.0 7.9 8.8 12.7 14.4 16.8 20.2 22.1 23.9 26.8 14.5 8.9 19.2 33.9 36.2 37.6
D8 31.4 29.4 25.1 22.2 24.6 16.6 14.9 9.4 0.0 7.1 11.0 12.7 15.1 18.6 20.5 22.2 25.1 12.8 11.0 21.2 35.9 38.2 39.6
D9 32.2 30.3 26.0 23.0 25.4 17.5 15.8 10.3 9.1 0.0 7.0 8.8 11.2 14.6 16.5 18.3 21.2 8.9 11.8 22.1 36.8 39.1 40.5
D10 37.2 35.2 30.9 28.0 30.4 22.4 20.7 15.2 14.1 10.1 0.0 7.4 9.9 13.3 15.2 16.9 19.8 7.5 16.7 27.0 41.7 44.0 45.4
D11 37.8 35.9 31.6 28.6 31.0 23.1 21.4 15.9 14.7 10.8 8.9 0.0 6.4 9.8 11.7 13.5 16.4 8.2 17.4 27.7 42.4 44.7 46.1
D12 40.9 39.0 34.7 31.7 34.1 26.2 24.5 19.0 17.8 13.9 12.0 9.1 0.0 7.4 9.3 11.1 14.0 11.3 20.5 30.8 45.5 47.8 49.2
D13 46.0 44.1 39.8 36.8 39.2 31.3 29.6 24.1 22.9 19.0 17.1 14.2 7.4 0.0 7.7 9.5 12.4 16.4 25.6 35.9 50.6 52.9 54.3
D14 46.6 44.6 40.3 37.4 39.8 31.8 30.1 24.6 23.5 19.5 17.7 14.7 12.9 9.1 0.0 10.1 13.0 17.0 26.2 36.4 51.1 53.4 54.8
D15 45.8 43.8 39.5 36.6 39.0 31.0 29.3 23.8 22.7 18.7 16.8 13.9 12.1 9.5 10.1 0.0 10.0 16.2 25.4 35.6 50.3 52.6 54.0
D16 47.2 45.2 40.9 37.9 40.4 32.4 30.7 25.2 24.0 20.1 18.2 15.3 13.4 12.2 12.8 12.0 0.0 17.5 26.7 37.0 51.7 54.0 55.4
D17 36.5 34.5 30.2 27.3 29.7 21.7 20.0 14.5 13.4 9.4 7.5 9.3 11.7 15.1 17.0 18.8 21.7 0.0 16.1 26.3 41.0 43.3 44.7
D18 30.9 28.9 24.6 21.7 24.1 16.1 14.4 8.9 12.0 12.9 16.7 18.5 20.9 24.3 26.2 28.0 30.9 18.6 0.0 20.7 35.4 37.7 39.1
D19 26.4 24.4 20.1 17.1 19.6 11.6 14.2 19.2 22.3 23.2 27.0 28.8 31.2 34.6 36.5 38.3 41.2 28.9 23.3 0.0 30.9 33.2 34.6
D20 27.0 25.0 30.7 32.5 33.2 37.5 40.1 45.1 48.2 49.1 52.9 54.7 57.1 60.5 62.4 64.2 67.1 54.8 49.2 44.7 0.0 17.5 18.9
E1 27.0 25.0 30.7 32.6 33.2 37.5 40.1 45.1 48.3 49.1 53.0 54.7 57.1 60.5 62.5 64.2 67.1 54.8 49.2 44.7 22.0 0.0 5.0
E2 25.6 23.6 29.3 31.2 31.8 36.1 38.7 43.7 46.9 47.7 51.6 53.3 55.7 59.1 61.1 62.8 65.7 53.4 47.8 43.3 20.6 5.0 0.0

Table 6 was created using Dijkstra’s algorithm row by row. For example, in the first
row, the starting node is S1 and Dijkstra’s algorithm provides the shortest path from S1
to all nodes connected in the graph to guarantee finding the shortest path. This means
that Dijkstra’s algorithm is used only 23 times to compute all of Table 6. Additionally, it is
expected that the distance–task matrix does not change as the building does not change.
Hence, the DT matrix can be used as a look-up table to quickly plan complex sequences of
tasks without ever having to use Dijkstra’s algorithm.

In Table 6, the task of starting and ending at the same node without changing the floor
has been highlighted in yellow for reference. Once available, the DT matrix can be used to
obtain the first estimation of the distance required to complete any single task or multiple
tasks defined using a node list (nodeList):

TotalEnergy =
p−1

∑
i=1

DT(nodeList(i), nodeList(i + 1))·EPM + Elevator_time·EPT, (8)

where p is the number of nodes in the list, EPM is the average energy expended by the
robot in each linear meter of travel, Elevator_time is the average travel time spent in the
elevator and EPT is the energy expended by the robot in each unit of time when it is
not moving.

Sensors 2023, 23, 8795 23 of 30

As an example, the length of the trajectory required to implement task T3 of Table 5 is
defined by the nodeList = [S1, D3, S1] and is obtained using the following:

dT3 = DT(S1, D3) + DT(D3, S1) = 13.7 m + 15.7 m = 29.4 m. (9)

Alternatively, the cumulated trajectory length for the same task T3 of Table 5 re-
quiring navigation between floors, for example to node D3 on floor 1, is defined by the
nodeList = [S1− F0, E1− F0→ F1, D3− F1, E2− F1→ F0, S1− F0]. In this case, it is
considered that elevator E1 is defined to go upwards and elevator E2 to go downwards.
The cumulated path length is then obtained using the following:

dT3−F1 = DT(S1, E1) + DT(E1, D3) + DT(D3, E2) + DT(E2, S1) = 26.0 + 32.6 + 23.9 + 25.6 = 108.1 m (10)

5. Discussion and Conclusions

This paper addresses the path planning of an autonomous mobile robot that has
to transport and deliver small packages in a multi-story building. The mobile robot’s
path must drive the robot from a known starting point to a destination point. The main
assumptions made are that the building is equipped with remotely controlled elevators
and that the door of the target destination is open, so the mobile robot does not need to
open any door to deliver a package. This proposal is based on the manual definition of a
navigation tree combining the spatial and operational information required to move within
a multi-story building. The manual definition of this static navigation tree has similarities
to painting reference lines on the floor. However, instead of following a line painted on
the floor, the mobile delivery robot uses 2D LiDAR and a reference point cloud map for
self-localization, precise path tracking and obstacle avoidance. The navigation tree is used
to build a graph of each floor of the building and plan the path of the robot using Dijkstra’s
algorithm with the elevator nodes as the connectors between floors. Each graph is created
by combining the weighted segments defined in the navigation tree (used to prioritize
routes), the real distance between the nodes and an additional matrix used to highlight the
segments blocked by dynamic objects. The graph is visually represented as a combination
of directed and undirected segments to prioritize trajectories depending on the direction of
the motion.

The graph is based on the definition of the five types of nodes (see Table 1) labelled
with a letter (S, T, U, E or D) and an identification number (X). Start (SX) defines a main
charging and package distribution point. Trajectory (TX) defines intermediate points
required to specify straight trajectories between two nodes of the graph. Unique (UX)
defines nodes required to specify special and precise structural trajectories that cannot be
modified. Elevator (EX) defines the placement of an elevator. Destination (DX) defines the
expected locations of all possible destinations on each floor of the building. There are four
segment types that can be used in the graph (see Table 2). Unconnected segments have no
direct path between nodes. Undirected segments have no direction differentiation. Directed
segments define a weight depending on the direction of the trajectory. Blocked segments
are used to represent an existing directed or undirected segment that is temporarily blocked
by an unexpected dynamic obstacle.

The navigation tree used in this paper has directed segments with a weight of 1 to
depict a priority direction and a weight of 5 to depict a non-priority direction. A graph
is created by multiplying the weights of the navigation tree by the Euclidean distance
between nodes. Then, Dijkstra’s algorithm guarantees that the shortest path between
nodes is obtained considering the directions prioritized by the weighted segments. The
information of the obstacles detected during motion is used to update the blocked matrix
(see Table 3) and the graph, which is then used to search for a new shortest path to the
destination. The weighted graph defines trajectories with differentiated outgoing and
returning trajectories that are expected to be compatible with the typical movement of
people and other mobile robots in the building.

Sensors 2023, 23, 8795 24 of 30

As a reference application example, this paper details the navigation tree manually
defined to describe the layout of one representative floor of the Polytechnic School at the
University of Lleida. This example navigation tree has 101 nodes representing expected
pick-up and drop-off points. These nodes are connected with 171 segments that define a
sparse graph, which is explored quickly by Dijkstra’s algorithm to return the shortest path
between any two nodes. At this point, it should be noted that this sparse graph reduces the
size and connections of the graph by two or three orders of magnitude compared with the
dense graphs automatically created in a grid map application [85,87,96], which makes it
unnecessary to use heuristic searching methods such as the A-star, that does not guarantee
finding the best path [91,92] (as it performs a best-first search [93]).

Therefore, the size of the resulting sparse graph allows an autonomous mobile robot
to recalculate in real time the shortest path to the destination in case the planned trajectory
is temporarily blocked by an obstacle. For the sake of completeness, this paper describes
the flowchart of the implementation of Dijkstra’s algorithm (Figure 4) and also provides
the implementation of a reference source code [123].

In general, planning the path of a task assigned to a mobile delivery robot operating in
a multi-story building requires four sub-paths (Figure 7): a sub-path from the initial pick-up
node to the elevator and another sub-path from the elevator to the destination point; and
a return sub-path from the destination point to the elevator and from the elevator to the
main pick-up point. Motion planning is the dynamic task that is in charge of following the
planned path based on the motion and self-localization performances of the mobile robot.
Motion planning assumes that the robot is able to detect obstacles blocking its displacement.
This paper describes the flowchart of the motion-planning algorithm (Figure 8) that was
developed to simulate the trajectories of a mobile delivery robot. This motion planning will
be assessed in a future application of the APR-02 mobile robot operating as a delivery robot.

The simulated routing results have demonstrated the effectiveness of the path-planning
procedure applied to an autonomous delivery robot performing in a multi-story building
(Figure 9). Additionally, in the multi-story building studied in this paper, our analysis of
the cumulative path length of all possible trajectories from a common starting point to
all delivery nodes shows that navigation between floors generates an increase in the path
length with a median of 78.77 m.

This paper also proposes the computation of a distance–task matrix that can be used
to quickly estimate the path length between any two nodes on each floor and using the
elevators to navigate between the floors. The advantage provided by the use of the distance–
task matrix is that the heavy computations required to create this matrix only need to be
performed once. Hence, the distance–task matrix, used as a look-up table, saves time
during planning as it avoids the need to repetitively use Dijkstra’s algorithm to estimate
the length of each sub-path required to complete a specific task or a sequence of tasks. In
this work, all floors of the building have the same layout and use the same distance–task
matrix; in a general case with different layouts, each floor will need a specific navigation
tree and will have a different distance–task matrix. Additionally, the estimated path length
can be used to directly estimate the energy consumption of a mobile delivery robot [100]
performing a task or a sequence of tasks.

The final conclusion of this paper is that a predefined navigation tree can be used
for mobile robot path planning in a multi-story building. Specifically, the application of
Dijkstra’s algorithm to the sparse graph created from the navigation tree and the real
Euclidean distances between nodes provides the shortest path between any two nodes of
the graph without any outstanding memory or computational requirements. Finally, the
possibility of differentiating outgoing and returning trajectories and prioritizing motion
directions is expected to be compatible with the typical movement of people and other
mobile robots in the building.

As a future work, the path-planning method proposed in this paper will be imple-
mented using the prototype APR-02 mobile robot, which will be reconfigured as a delivery

Sensors 2023, 23, 8795 25 of 30

robot to be assessed in a multi-story building. The problem of opening and closing the
doors of rooms with a delivery robot will be also addressed in future works.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23218795/s1. This link is a zip file contains the graphs of the
application example, the graphs of one floor of the target building and one video showing the
simulation results.

Author Contributions: Formal analysis, J.P.; Investigation, J.P. and E.R.; Software, J.P., R.B. and E.C.;
Visualization, R.B. and E.C.; Writing—original draft, J.P. and E.R. All authors have read and agreed to
the published version of the manuscript.

Funding: The research was supported by the predoctoral grants from the Departament de Recerca i
Universitats de la Generalitat de Catalunya and the European Social Fund Plus: AGAUR FI SDUR
2022 and AGAUR FI Joan Oró 2023.

Data Availability Statement: The data reported in this paper are provided as Supplementary Mate-
rials that can be downloaded at: www.mdpi.com/xxx/s1.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Statista. Retail E-Commerce Sales Growth Worldwide 2017–2027. Available online: https://www.statista.com/statistics/288487

/forecast-of-global-b2c-e-commerce-growth/ (accessed on 19 September 2023).
2. Leyerer, M.; Sonneberg, M.; Heumann, M.; Breitner, M. Decision support for sustainable and resilience-oriented urban parcel

delivery. EURO J. Decis. Process. 2019, 7, 267–300. [CrossRef]
3. Chen, M.; Wu, P.; Hsu, Y. An effective pricing model for the congestion alleviation of e-commerce logistics. Comput. Ind. Eng.

2019, 129, 368–376. [CrossRef]
4. Cardenas, I.; Beckers, J.; Vandelslander, T.; Verhetsel, A.; Dewulf, W. Spatial characteristics of failed and successful Ecommerce

deliveries in Belgian cities. In Proceedings of the ILS 2016—6th International Conference on Information Systems, Logistics and
Supply Chain, Bordeaux, France, 1–4 June 2016.

5. Langevin, A.; Mbaraga, P.; Campbell, J. Continuous approximation models in freight distribution: An overview. Transp. Res. Part
B Methodol. 1996, 30, 163–188. [CrossRef]

6. Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-mile delivery concepts: A survey from an operational research perspective. OR
Spectr. 2021, 43, 1–58. [CrossRef]

7. Jiang, L.; Mahmassani, H. City logistics. Transp. Res. Rec. J. Transp. Res. Board 2014, 2410, 85–95. [CrossRef]
8. Dablanc, L.; Diziain, D.; Levifve, H. Urban freight consultations in the Paris region. Eur. Transp. Res. Rev. 2011, 3, 47–57.

[CrossRef]
9. Anderluh, A.; Hemmelmayr, V.C.; Rüdiger, D. Analytic hierarchy process for city hub location selection—The Viennese case.

Transp. Res. Procedia 2020, 46, 77–84. [CrossRef]
10. Li, L.; He, X.; Keoleian, G.A.; Kim, H.C.; De Kleine, R.; Wallington, T.J.; Kemp, N.J. Life cycle greenhouse gas emissions for

last-mile parcel delivery by automated vehicles and robots. Environ. Sci. Technol. 2021, 55, 11360–11367. [CrossRef]
11. Himstedt, B.; Meisel, F. Parcel delivery systems for city logistics: A cost-based comparison between different transportation

technologies. Logist. Res. 2023, 16. [CrossRef]
12. Mohammad, W.A.M.; Diab, Y.N.; Elomri, A.; Triki, C. Innovative solutions in last mile delivery: Concepts, practices, challenges,

and future directions. Supply Chain. Forum Int. J. 2023, 24, 151–169. [CrossRef]
13. Kim, J.; Moon, H.; Jung, H. Drone-Based Parcel Delivery Using the Rooftops of City Buildings: Model and Solution. Appl. Sci.

2020, 10, 4362. [CrossRef]
14. Fragapane, G.; de Koster, R.; Sgarbossa, F.; Strandhagen, J.-O. Planning and control of autonomous mobile robots for intralogistics:

Literature review and research agenda. Eur. J. Oper. Res. 2021, 294, 405–426. [CrossRef]
15. Poeting, M.; Schaudt, S.; Clausen, U.A. Comprehensive Case Study in Last-Mile Delivery Concepts for Parcel Robots. In

Proceedings of the Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019. [CrossRef]
16. Abrar, M.M.; Islam, R.; Shanto, M.A.H. An Autonomous Delivery Robot to Prevent the Spread of Coronavirus in Product

Delivery System. In Proceedings of the IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON), New York, NY, USA, 28–31 October 2020. [CrossRef]

17. Samouh, F.; Gluza, V.; Djavadian, S.; Meshkani, S.; Farooq, B. Multimodal Autonomous Last-Mile Delivery System Design and
Application. In Proceedings of the IEEE International Smart Cities Conference (ISC2), Piscataway, NJ, USA, 28 September–1
October 2020. [CrossRef]

https://www.mdpi.com/article/10.3390/s23218795/s1
https://www.mdpi.com/article/10.3390/s23218795/s1
www.mdpi.com/xxx/s1
https://www.statista.com/statistics/288487/forecast-of-global-b2c-e-commerce-growth/
https://www.statista.com/statistics/288487/forecast-of-global-b2c-e-commerce-growth/
https://doi.org/10.1007/s40070-019-00105-5
https://doi.org/10.1016/j.cie.2019.01.060
https://doi.org/10.1016/0191-2615(95)00035-6
https://doi.org/10.1007/s00291-020-00607-8
https://doi.org/10.3141/2410-10
https://doi.org/10.1007/s12544-011-0049-2
https://doi.org/10.1016/j.trpro.2020.03.166
https://doi.org/10.1021/acs.est.0c08213
https://doi.org/10.23773/2023_3
https://doi.org/10.1080/16258312.2023.2173488
https://doi.org/10.3390/app10124362
https://doi.org/10.1016/j.ejor.2021.01.019
https://doi.org/10.1109/WSC40007.2019.9004811
https://doi.org/10.1109/UEMCON51285.2020.9298108
https://doi.org/10.1109/ISC251055.2020.9239082

Sensors 2023, 23, 8795 26 of 30

18. Gao, F.; Cheng, Y.; Gao, M.; Ma, C.; Liu, H.; Ren, Q.; Zhao, Z. Design and Implementation of an Autonomous Driving Delivery
Robot. In Proceedings of the Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022. [CrossRef]

19. Hutter, M.; Gehring, C.; Lauber, A.; Gunther, F.; Bellicoso, C.D.; Tsounis, V.; Meyer, K. Anymal-toward legged robots for harsh
environments. Adv. Rob. 2017, 31, 918–931. [CrossRef]

20. Castillo, G.A.; Weng, B.; Zhang, W.; Hereid, A. Robust Feedback Motion Policy Design Using Reinforcement Learning on a 3D
Digit Bipedal Robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,
Czech Republic, 27 September–1 October 2021. [CrossRef]

21. Galindo, C.; Fernández-Madrigal, J.-A.; González, J.; Saffiotti, A. Robot task planning using semantic maps. Robot. Auton. Syst.
2008, 56, 955–966. [CrossRef]

22. Abed, M.; Farouq, O.; Doori, Q.A. A Review on Path Planning Algorithms for Mobile Robots. Eng. Technol. J. 2021, 39, 804–820.
[CrossRef]

23. Rafai, A.N.A.; Adzhar, N.; Jaini, N.I.; Ding, B. A Review on Path Planning and Obstacle Avoidance Algorithms for Autonomous
Mobile Robots. J. Robot. 2022, 2022, 2538220. [CrossRef]

24. Fouque, C.; Bonnifait, P. On the use of 2D navigable maps for enhancing ground vehicle localization. In Proceedings of the 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009. [CrossRef]

25. Liu, L.; Wang, X.; Yang, X.; Liu, H.; Li, J.; Wang, P. Path planning techniques for mobile robots: Review and prospect. Expert Syst.
Appl. 2023, 227, 120254. [CrossRef]

26. De Ryck, M.; Versteyhe, M.; Debrouwere, F. Automated guided vehicle systems, state-of-the-art control algorithms and techniques.
J. Manuf. Syst. 2020, 54, 152–173. [CrossRef]

27. Kim, J.-T.; Choi, Y.-H.; Lee, J.; Hong, S.-H. Floor-to-floor navigation for a mobile robot. In Proceedings of the 2013 10th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Republic of Korea, 30 October–2 November 2013.
[CrossRef]

28. Zhang, H.; Tao, W.; Huang, J.; Zheng, R. Development of An In-building Transport Robot for Autonomous Usage of Elevators.
In Proceedings of the 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR), Shenyang, China,
24–27 August 2018. [CrossRef]

29. Law, W.-t.; Li, K.-s.; Fan, K.-w.; Mo, T.; Poon, C.-k. Friendly Elevator Co-rider: An HRI Approach for Robot-Elevator Inter-
action. In Proceedings of the 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Japan,
7–10 March 2022. [CrossRef]

30. Rubies, E.; Bitriá, R.; Clotet, E.; Palacín, J. Non-Contact and Non-Intrusive Add-on IoT Device for Wireless Remote Elevator
Control. Appl. Sci. 2023, 13, 3971. [CrossRef]

31. Palacín, J.; Bitriá, R.; Rubies, E.; Clotet, E. A Procedure for Taking a Remotely Controlled Elevator with an Autonomous Mobile
Robot Based on 2D LIDAR. Sensors 2023, 23, 6089. [CrossRef]

32. Arisumi, H.; Chardonnet, J.-R.; Yokoi, K. Whole-body motion of a humanoid robot for passing through a door—Opening a door
by impulsive force. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis,
MO, USA, 10–15 October 2009. [CrossRef]

33. Digioia, G.; Arisumi, H.; Yokoi, K. Trajectory planner for a humanoid robot passing through a door. In Proceedings of the 9th
IEEE-RAS International Conference on Humanoid Robots, Paris, France, 7–10 December 2009. [CrossRef]

34. Kwak, N.; Arisumi, H.; Yokoi, K. Visual recognition of a door and its knob for a humanoid robot. In Proceedings of the IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [CrossRef]

35. Arisumi, H.; Kwak, N.; Yokoi, K. Systematic touch scheme for a humanoid robot to grasp a door knob. In Proceedings of the IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [CrossRef]

36. Banerjee, N.; Long, X.; Du, R.; Polido, F.; Feng, S.; Atkeson, C.G.; Gennert, M.; Padir, T. Human-supervised control of the ATLAS
humanoid robot for traversing doors. In Proceedings of the IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), Seoul, Republic of Korea, 3–5 November 2015. [CrossRef]

37. Thrun, S. Robotic mapping: A survey. In Exploring Artificial Intelligence in the New Millenium; Lakemeyer, G., Nebel, B., Eds.;
Kaufmann Publishers: San Francisco, CA, USA, 2003.

38. Chen, C.; Cheng, Y. Research on Map Building by Mobile Robots. In Proceedings of the 2008 International Symposium on
Intelligent Information Technology Application, Shanghai, China, 20–22 December 2008. [CrossRef]

39. Asada, M. Map building for a mobile robot from sensory data. IEEE Trans. Syst. Man Cybern. 1990, 37, 1326–1336. [CrossRef]
40. Kuipers, B.; Byun, Y.-T. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robot.

Auton. Syst. 1991, 8, 47–63. [CrossRef]
41. Kröse, B.J.A.; Vlassis, N.; Bunschoten, R.; Motomura, Y. A probabilistic model for appearance-based robot localization. Image Vis.

Comput. 2001, 19, 381–391. [CrossRef]
42. Jacky, C.H.; George, L.C.S.; Charlie, H.Y.; Lu, Y.-H. Multi-robot SLAM with topological/metric maps. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007.
[CrossRef]

43. Choset, H.; Nagatani, K. Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit
localization. IEEE Trans. Robot. Autom. 2001, 17, 125–137. [CrossRef]

https://doi.org/10.23919/CCC55666.2022.9901631
https://doi.org/10.1080/01691864.2017.1378591
https://doi.org/10.1109/IROS51168.2021.9636467
https://doi.org/10.1016/j.robot.2008.08.007
https://doi.org/10.30684/etj.v39i5A.1941
https://doi.org/10.1155/2022/2538220
https://doi.org/10.1109/IROS.2009.5354456
https://doi.org/10.1016/j.eswa.2023.120254
https://doi.org/10.1016/j.jmsy.2019.12.002
https://doi.org/10.1109/URAI.2013.6677387
https://doi.org/10.1109/IISR.2018.8535646
https://doi.org/10.1109/HRI53351.2022.9889614
https://doi.org/10.3390/app13063971
https://doi.org/10.3390/s23136089
https://doi.org/10.1109/IROS.2009.5354087
https://doi.org/10.1109/ICHR.2009.5379588
https://doi.org/10.1109/ICRA.2011.5979608
https://doi.org/10.1109/ICRA.2011.5980547
https://doi.org/10.1109/HUMANOIDS.2015.7363442
https://doi.org/10.1109/IITA.2008.205
https://doi.org/10.1109/21.61204
https://doi.org/10.1016/0921-8890(91)90014-C
https://doi.org/10.1016/S0262-8856(00)00086-X
https://doi.org/10.1109/IROS.2007.4399142
https://doi.org/10.1109/70.928558

Sensors 2023, 23, 8795 27 of 30

44. Lee, D.; Chung, W.; Kim, M. A reliable position estimation method of the service robot by map matching. In Proceedings of the
IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14–19 September 2003. [CrossRef]

45. Zhou, J.-H.; Lin, H.-Y. A self-localization and path planning technique for mobile robot navigation. In Proceedings of the 9th
World Congress on Intelligent Control and Automation, Taipei, Taiwan, 21–25 June 2011. [CrossRef]

46. Kubota, N. Topological approaches for simultaneous localization and mapping. In Proceedings of the 6th International Conference
on Informatics, Electronics and Vision & 2017 International Symposium in Computational Medical and Health Technology,
Himeji, Japan, 1–3 September 2017. [CrossRef]

47. Warrier, A.R.; Nedunghat, P.; Bera, M.K.; Nath, K. Implementation of Classical Path Planning Algorithms for Mobile Robot Navi-
gation: A Comprehensive Comparison. In Proceedings of the International Conference on Electrical, Computer, Communications
and Mechatronics Engineering, Maldives, 16–18 November 2022. [CrossRef]

48. Sundar, K.; Misra, S.; Rathinam, S.; Sharma, R. Routing unmanned vehicles in GPS-denied environments. In Proceedings of the
International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017. [CrossRef]

49. Žunić, E.; Hindija, H.; Beširević, A.; Hodžić, K.; Delalić, S. Improving Performance of Vehicle Routing Algorithms using GPS Data.
In Proceedings of the 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, 20–21 November
2018. [CrossRef]

50. Aqel, M.O.A.; Marhaban, M.H.; Saripan, M.I.; Ismail, N.B. Review of visual odometry: Types, approaches, challenges, and
applications. SpringerPlus 2016, 5, 1897. [CrossRef] [PubMed]

51. Bârsan, I.A.; Liu, P.; Pollefeys, M.; Geiger, A. Robust dense mapping for large-scale dynamic environments. In Proceedings of the
IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia, 21–25 May 2018. [CrossRef]

52. Ji, K.; Chen, H.; Di, H.; Gong, J.; Xiong, G.; Qi, J.; Yi, T. CPFG-SLAM: A robust simultaneous localization and mapping based on
LIDAR in off-road environment. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June
2018. [CrossRef]

53. Du, S.; Li, Y.; Li, X.; Wu, M. LiDAR Odometry and Mapping Based on Semantic Information for Outdoor Environment. Remote
Sens. 2021, 13, 2864. [CrossRef]

54. Chen, Y.; Medioni, G. Object modeling by registration of multiple range images. In Proceedings of the IEEE International
Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991. [CrossRef]

55. Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256.
[CrossRef]

56. Yokozuka, M.; Koide, K.; Oishi, S.; Banno, A. LiTAMIN: LiDAR-Based Tracking and Mapping by Stabilized ICP for Geometry
Approximation with Normal Distributions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021. [CrossRef]

57. Koide, K.; Miura, J.; Menegatti, E. A portable three-dimensional LIDAR-based system for long-term and wide-area people
behavior measurement. Int. J. Adv. Robot. Syst. 2019, 16. [CrossRef]

58. Behley, J.; Stachniss, C. Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments. In Proceedings of the
International Conference on Robotics: Science and Systems (RSS), Pittsburgh, PA, USA, 26–30 June 2018. [CrossRef]

59. Park, C.; Moghadam, P.; Kim, S.; Elfes, A.; Fookes, C.; Sridharan, S. Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time
SLAM. In Proceedings of the International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2017.
[CrossRef]

60. Whelan, T.; Leutenegger, S.; Moreno, R.F.S.; Glocker, B.; Davison, A.J. ElasticFusion: Dense SLAM without a Pose Graph. In
Proceedings of the International Conference of Robotics: Science and Systems (RSS), Rome, Italy, 13–15 July 2015. [CrossRef]

61. Moosmann, F.; Stiller, C. Velodyne SLAM. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden,
Germany, 5–9 June 2011. [CrossRef]

62. Droeschel, D.; Behnke, S. Efficient Continuous-time SLAM for 3D Lidar-based Online Mapping. In Proceedings of the International
Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018. [CrossRef]

63. Palacín, J.; Martínez, D.; Rubies, E.; Clotet, E. Mobile Robot Self-Localization with 2D Push-Broom LIDAR in a 2D Map. Sensors
2020, 20, 2500. [CrossRef]

64. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the International Conference of
Robotics: Science and Systems (RSS), Berkeley, CA, USA, 12–16 July 2014. [CrossRef]

65. Zhang, J.; Singh, S. Low-drift and Real-time Lidar Odometry and Mapping. Auton. Robot. 2017, 41, 401–416. [CrossRef]
66. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground- Optimized Lidar Odometry and Mapping on Variable Terrain. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018. [CrossRef]

67. Ye, H.; Chen, Y.; Liu, M. Tightly Coupled 3D Lidar Inertial Odometry and Mapping. In Proceedings of the International
Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019. [CrossRef]

68. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing
and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV,
USA, 24 October 2020–24 January 2021. [CrossRef]

https://doi.org/10.1109/ROBOT.2003.1242021
https://doi.org/10.1109/WCICA.2011.5970604
https://doi.org/10.1109/ICIEV.2017.8338513
https://doi.org/10.1109/ICECCME55909.2022.9988092
https://doi.org/10.1109/ICUAS.2017.7991488
https://doi.org/10.1109/NEUREL.2018.8586982
https://doi.org/10.1186/s40064-016-3573-7
https://www.ncbi.nlm.nih.gov/pubmed/27843754
https://doi.org/10.1109/ICRA.2018.8462974
https://doi.org/10.1109/IVS.2018.8500599
https://doi.org/10.3390/rs13152864
https://doi.org/10.1109/ROBOT.1991.132043
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/IROS45743.2020.9341341
https://doi.org/10.1177/1729881419841532
https://doi.org/10.15607/RSS.2018.XIV.016
https://doi.org/10.48550/arXiv.1711.01691
https://doi.org/10.15607/RSS.2015.XI.001
https://doi.org/10.1109/IVS.2011.5940396
https://doi.org/10.1109/ICRA.2018.8461000
https://doi.org/10.3390/s20092500
https://doi.org/10.15607/RSS.2014.X.007
https://doi.org/10.1007/s10514-016-9548-2
https://doi.org/10.1109/IROS.2018.8594299
https://doi.org/10.1109/ICRA.2019.8793511
https://doi.org/10.1109/IROS45743.2020.9341176

Sensors 2023, 23, 8795 28 of 30

69. Qin, C.; Ye, H.; Pranata, C.E.; Han, J.; Zhang, S.; Liu, M. LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Virtual (Online), 31 May–31 August
2020. [CrossRef]

70. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
71. Zheng, C.; Lyu, Y.; Li, M.; Zhang, Z. Lodonet: A deep neural network with 2D keypoint matching for 3d lidar odometry estimation.

In Proceedings of the ACM International Conference on Multimedia, Virtual (Online), 12–16 October 2020. [CrossRef]
72. Li, Z.; Wang, N. Dmlo: Deep matching lidar odometry. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Virtual (Online), 24 October 2020–24 January 2021. [CrossRef]
73. Li, Q.; Chen, S.; Wang, C.; Li, X.; Wen, C.; Cheng, M.; Li, J. LO-net: Deep real-time lidar odometry. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [CrossRef]
74. Nubert, J.; Khattak, S.; Hutter, M. Self-supervised learning of lidar odometry for robotic applications. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021. [CrossRef]
75. Wang, M.; Saputra, M.R.U.; Zhao, P.; Gusmao, P.; Yang, B.; Chen, C.; Markham, A.; Trigoni, N. Deeppco: End-to-end point cloud

odometry through deep parallel neural network. In Proceedings of the EEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Macau, China, 3–8 November 2019. [CrossRef]

76. Cho, Y.; Kim, G.; Kim, A. Unsupervised geometry-aware deep lidar odometry. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [CrossRef]

77. Wang, G.; Wu, X.; Liu, Z.; Wang, H. Pwclo-net: Deep lidar odometry in 3d point clouds using hierarchical embedding mask
optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN,
USA, 20–25 June 2021. [CrossRef]

78. Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a
Model Predictive Control Strategy. Appl. Sci. 2018, 8, 231. [CrossRef]

79. Palacín, J.; Rubies, E.; Clotet, E.; Martínez, D. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional
Mobile Robot Designed as a Personal Assistant. Sensors 2021, 21, 7216. [CrossRef] [PubMed]

80. Kang, J.G.; An, S.Y.; Oh, S.Y. Navigation strategy for the service robot in the elevator environment. In Proceedings of the
International Conference on Control, Automation and Systems, Seoul, Republic of Korea, 17–20 October 2007; pp. 1092–1097.
[CrossRef]

81. van Toll, W.; Cook, A.F.; Geraerts, R. Navigation meshes for realistic multi-layered environments. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 3526–3532.
[CrossRef]

82. Zhang, Q.; Wu, X.; Liu, B.; Adiwahono, A.H.; Dung, T.A.; Chang, T.W. A hierarchical topological planner for multi-storey building
navigation. In Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic
of Korea, 7–11 July 2015; pp. 731–736. [CrossRef]

83. Liu, K.; Motta, G.; Ma, T.; Guo, T. Multi-floor Indoor Navigation with Geomagnetic Field Positioning and Ant Colony Optimization
Algorithm. In Proceedings of the IEEE Symposium on Service-Oriented System Engineering (SOSE), Oxford, UK, 29 March–2
April 2016; pp. 314–323. [CrossRef]

84. Joo, S.H.; Manzoor, S.; Kuc, T.Y. A Semantic Navigation Framework for Multi-Floor Building Environment. In Proceedings
of the International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12–15 October 2021;
pp. 1543–1545. [CrossRef]

85. Li, Z. Using MDP to Find the Best Path in Multi-floor World. In Proceedings of the IEEE International Conference on Frontiers
Technology of Information and Computer (ICFTIC), Greenville, SC, USA, 12–14 November 2021; pp. 447–452. [CrossRef]

86. Yuan, J.; Jiao, B.; Wang, L. Indoor and outdoor integrated path planning algorithm for multi-storey buildings. In Proceedings of
the 2022 World Automation Congress (WAC), San Antonio, TX, USA, 11–15 October 2022; pp. 336–340. [CrossRef]

87. Fransen, K.; van Eekelen, J. Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating
turning costs in search heuristic. Int. J. Prod. Res. 2023, 61, 707–725. [CrossRef]

88. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
89. Floyd, R.W. Algorithm 97: Shortest Path. Commun. ACM 1962, 5, 345. [CrossRef]
90. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
91. Holland, J.H. Genetic Algorithms and Adaptation. In Adaptive Control of Ill-Defined Systems; Selfridge, O.G., Rissland, E.L., Arbib,

M.A., Eds.; NATO Conference Series; Springer: Boston, MA, USA, 1984; Volume 16. [CrossRef]
92. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
93. Lawler, E.L.; Wood, D.E. Branch-And-Bound Methods: A Survey. Oper. Res. 1966, 14, 699–719. Available online: http:

//www.jstor.org/stable/168733 (accessed on 12 September 2023). [CrossRef]
94. Griffiths, I.J.; Mehdi, Q.H.; Wang, T.; Gough, N.E. A Genetic Algorithm for Path Planning. IFAC Proc. Vol. 1997, 30, 485–490.

[CrossRef]
95. Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia

Comput. Sci. 2018, 127, 180–189. [CrossRef]

https://doi.org/10.1109/ICRA40945.2020.9197567
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1145/3394171.3413771
https://doi.org/10.1109/IROS45743.2020.9341206
https://doi.org/10.1109/CVPR.2019.00867
https://doi.org/10.1109/ICRA48506.2021.9561063
https://doi.org/10.1109/IROS40897.2019.8967756
https://doi.org/10.1109/ICRA40945.2020.9197366
https://doi.org/10.1109/CVPR46437.2021.01565
https://doi.org/10.3390/app8020231
https://doi.org/10.3390/s21217216
https://www.ncbi.nlm.nih.gov/pubmed/34770522
https://doi.org/10.1109/ICCAS.2007.4407062
https://doi.org/10.1109/IROS.2011.6094790
https://doi.org/10.1109/AIM.2015.7222624
https://doi.org/10.1109/SOSE.2016.18
https://doi.org/10.23919/ICCAS52745.2021.9649832
https://doi.org/10.1109/ICFTIC54370.2021.9647264
https://doi.org/10.23919/WAC55640.2022.9934525
https://doi.org/10.1080/00207543.2021.2015806
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/367766.368168
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1007/978-1-4684-8941-5_21
https://doi.org/10.1126/science.220.4598.671
http://www.jstor.org/stable/168733
http://www.jstor.org/stable/168733
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1016/S1474-6670(17)43312-X
https://doi.org/10.1016/j.procs.2018.01.113

Sensors 2023, 23, 8795 29 of 30

96. Kusuma, M.; Riyanto; Machbub, C. Humanoid Robot Path Planning and Rerouting Using A-Star Search Algorithm. In Proceedings
of the IEEE International Conference on Signals and Systems, Bandung, Indonesia, 16–18 July 2019. [CrossRef]

97. Ganeshmurthy, M.S.; Suresh, G.R. Path planning algorithm for autonomous mobile robot in dynamic environment. In Proceedings
of the 3rd International Conference on Signal Processing, Communication and Networking, Chennai, India, 26–28 March 2015.
[CrossRef]

98. Tsuzuki, M.S.G.; Martins, T.C.; Takase, F.K. Robot path planning using simulated annealing. IFAC Proc. Vol. 2006, 39, 175–180.
[CrossRef]

99. Miao, H.; Tian, Y.-C. Robot path planning in dynamic environments using a simulated annealing based approach. In Proceedings
of the 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008.
[CrossRef]

100. Kim, J.; Jung, H. Robot Routing Problem of Last-Mile Delivery in Indoor Environments. Appl. Sci. 2022, 12, 9111. [CrossRef]
101. Palacín, J.; Rubies, E.; Clotet, E. The Assistant Personal Robot Project: From the APR-01 to the APR-02 Mobile Robot Prototypes.

Designs 2022, 6, 66. [CrossRef]
102. Palacín, J.; Martínez, D.; Rubies, E.; Clotet, E. Suboptimal Omnidirectional Wheel Design and Implementation. Sensors 2021, 21,

865. [CrossRef] [PubMed]
103. Palacín, J.; Clotet, E.; Martínez, D.; Martínez, D.; Moreno, J. Extending the Application of an Assistant Personal Robot as a

Walk-Helper Tool. Robotics 2019, 8, 27. [CrossRef]
104. Mori, Y.; Yokoyama, S.; Yamashita, T.; Kawamura, H.; Mori, M. Obstacle Avoidance Using Depth Imaging for Forearm-Supported

Four-Wheeled Walker with Walking Assist. In Proceedings of the International Conference on Ubiquitous Robots (UR), Honolulu,
HI, USA, 25–28 June 2023; pp. 544–551. [CrossRef]

105. Tian, P.; Zhang, Y.N.; Zhang, J.; Yan, N.M.; Zeng, W. Research on Simulation of Motion Compensation for 8×8 Omnidirectional
Platform Based on Back Propagation Network. Appl. Mech. Mater. 2013, 299, 44–47. [CrossRef]

106. Peng, T.; Qian, J.; Zi, B.; Liu, J.; Wang, X. Mechanical Design and Control System of an Omni-directional Mobile Robot for Material
Conveying. Procedia CIRP 2016, 56, 412–415. [CrossRef]

107. Wang, Z.; Yang, G.; Su, X.; Schwager, M. OuijaBots: Omnidirectional Robots for Cooperative Object Transport with Rotation
Control Using No Communication. In Distributed Autonomous Robotic Systems; Groß, R., Kolling, A., Berman, S., Frazzoli, E.,
Martinoli, A., Matsuno, F., Gauci, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 6. [CrossRef]

108. Li, Y.; Ge, S.; Dai, S.; Zhao, L.; Yan, X.; Zheng, Y.; Shi, Y. Kinematic Modeling of a Combined System of Multiple Mecanum-Wheeled
Robots with Velocity Compensation. Sensors 2020, 20, 75. [CrossRef]

109. Purwin, O.; D’Andrea, R. Trajectory generation and control for four wheeled omnidirectional vehicles. Robot. Auton. Syst. 2006,
54, 13–22. [CrossRef]

110. Kim, K.B.; Kim, B.K. Minimum-Time Trajectory for Three-Wheeled Omnidirectional Mobile Robots Following a Bounded-
Curvature Path with a Referenced Heading Profile. IEEE Trans. Robot. 2011, 27, 800–808. [CrossRef]

111. Jia, W.; Zhao, W.; Song, Z.; Li, Z. Object Servoing of Differential-Drive Robots. In Proceedings of the Chinese Control and Decision
Conference (CCDC), Kunming, China, 22–24 May 2021. [CrossRef]

112. Bitriá, R.; Palacín, J. Optimal PID Control of a Brushed DC Motor with an Embedded Low-Cost Magnetic Quadrature Encoder for
Improved Step Overshoot and Undershoot Responses in a Mobile Robot Application. Sensors 2022, 22, 7817. [CrossRef] [PubMed]

113. Palacín, J.; Rubies, E.; Clotet, E. Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled
Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories. Appl. Sci. 2022, 12, 2606. [CrossRef]

114. Clotet, E.; Palacín, J. SLAMICP Library: Accelerating Obstacle Detection in Mobile Robot Navigation via Outlier Monitoring
following ICP Localization. Sensors 2023, 23, 6841. [CrossRef] [PubMed]

115. Styan, G.P.H. Hadamard products and multivariate statistical analysis. Linear Algebra Its Appl. 1973, 6, 217–240. [CrossRef]
116. Makariye, N. Towards shortest path computation using Dijkstra algorithm. In Proceedings of the 2017 International Conference

on IoT and Application (ICIOT), Nagapattinam, India, 19–20 May 2017. [CrossRef]
117. Asadi, S.; Azimirad, V.; Eslami, A.; Ghanbari, A. A novel global optimal path planning and trajectory method based on adaptive

dijkstra-immune approach for mobile robot. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), Budapest, Hungary, 3–7 July 2011. [CrossRef]

118. Fusic, J.S.; Ramkumar, P.; Hariharan, K. Path planning of robot using modified Dijkstra Algorithm. In Proceedings of the 2018
National Power Engineering Conference (NPEC), Madurai, India, 9–10 March 2018. [CrossRef]

119. Wang, H.; Yu, Y.; Yuan, Q. Application of Dijkstra algorithm in robot path-planning. In Proceedings of the International
Conference on Mechanic Automation and Control Engineering, Hohhot, China, 15–17 July 2011; pp. 1067–1069. [CrossRef]

120. Li, X. Path planning of intelligent mobile robot based on Dijkstra algorithm. J. Phys. Conf. Ser. 2021, 2083, 042034. [CrossRef]
121. Alshammrei, S.; Boubaker, S.; Kolsi, L. Improved Dijkstra algorithm for mobile robot path planning and obstacle avoidance.

Comput. Mater. Contin. 2022, 72, 5939–5954. [CrossRef]
122. Dijkstra’s Shortest Path Algorithm Explained. Available online: https://youtu.be/bZkzH5x0SKU (accessed on 1 September

2023).
123. Dijkstra’s Algorithm. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/

fileexchange/134851-dijkstra (accessed on 1 September 2023).

https://doi.org/10.1109/ICSIGSYS.2019.8811093
https://doi.org/10.1109/ICSCN.2015.7219901
https://doi.org/10.3182/20060517-3-FR-2903.00105
https://doi.org/10.1109/ICARCV.2008.4795701
https://doi.org/10.3390/app12189111
https://doi.org/10.3390/designs6040066
https://doi.org/10.3390/s21030865
https://www.ncbi.nlm.nih.gov/pubmed/33525432
https://doi.org/10.3390/robotics8020027
https://doi.org/10.1109/UR57808.2023.10202320
https://doi.org/10.4028/www.scientific.net/AMM.299.44
https://doi.org/10.1016/j.procir.2016.10.068
https://doi.org/10.1007/978-3-319-73008-0_9
https://doi.org/10.3390/s20010075
https://doi.org/10.1016/j.robot.2005.10.002
https://doi.org/10.1109/TRO.2011.2138490
https://doi.org/10.1109/CCDC52312.2021.9601874
https://doi.org/10.3390/s22207817
https://www.ncbi.nlm.nih.gov/pubmed/36298172
https://doi.org/10.3390/app12052606
https://doi.org/10.3390/s23156841
https://www.ncbi.nlm.nih.gov/pubmed/37571623
https://doi.org/10.1016/0024-3795(73)90023-2
https://doi.org/10.1109/ICIOTA.2017.8073641
https://doi.org/10.1109/AIM.2011.6027073
https://doi.org/10.1109/NPEC.2018.8476787
https://doi.org/10.1109/MACE.2011.5987118
https://doi.org/10.1088/1742-6596/2083/4/042034
https://doi.org/10.32604/cmc.2022.028165
https://youtu.be/bZkzH5x0SKU
https://www.mathworks.com/matlabcentral/fileexchange/134851-dijkstra
https://www.mathworks.com/matlabcentral/fileexchange/134851-dijkstra

Sensors 2023, 23, 8795 30 of 30

124. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the IEEE International Conference
on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; pp. 500–505. [CrossRef]

125. Zhang, Y.; Liu, K.; Gao, F.; Zhao, F. Research on Path Planning and Path Tracking Control of Autonomous Vehicles Based on
Improved APF and SMC. Sensors 2023, 23, 7918. [CrossRef]

126. Hough, D.G. The IEEE Standard 754: One for the History Books. Computer 2019, 52, 109–112. [CrossRef]
127. Kunchev, V.; Jain, L.; Ivancevic, V.; Finn, A. Path Planning and Obstacle Avoidance for Autonomous Mobile Robots: A Review.

In Knowledge-Based Intelligent Information and Engineering Systems; Gabrys, B., Howlett, R.J., Jain, L.C., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4252, pp. 537–544. [CrossRef]

128. Anavatti, S.G.; Francis, S.L.X.; Garratt, M. Path-planning modules for Autonomous Vehicles: Current status and challenges. In
Proceedings of the International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation
(ICAMIMIA), Surabaya, Indonesia, 15–17 October 2015; pp. 205–214. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.3390/s23187918
https://doi.org/10.1109/MC.2019.2926614
https://doi.org/10.1007/11893004_70
https://doi.org/10.1109/ICAMIMIA.2015.7508033

	Introduction
	Problem Definition
	Proposed Solution
	Assumptions and Limitations
	Structure of the Paper

	Materials and Methods
	Model of the Reference Mobile Robot
	Reference Map
	Navigation Tree
	Dijkstra’s Algorithm

	Implementation
	Predefined Navigation Tree
	Path Planning in a Multi-Story Building
	Motion Planning in a Multi-Story Building

	Results
	Discussion and Conclusions
	References

