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Abstract: Planning the path of a mobile robot that must transport and deliver small packages inside a
multi-story building is a problem that requires a combination of spatial and operational information,
such as the location of origin and destination points and how to interact with elevators. This paper
presents a solution to this problem, which has been formulated under the following assumptions:
(1) the map of the building’s floors is available; (2) the position of all origin and destination points is
known; (3) the mobile robot has sensors to self-localize on the floors; (4) the building is equipped
with remotely controlled elevators; and (5) all doors expected in a delivery route will be open. We
start by defining a static navigation tree describing the weighted paths in a multi-story building. We
then proceed to describe how this navigation tree can be used to plan the route of a mobile robot and
estimate the total length of any delivery route using Dijkstra’s algorithm. Finally, we show simulated
routing results that demonstrate the effectiveness of this proposal when applied to an autonomous
delivery robot operating in a multi-story building.

Keywords: mobile robot; path planning; Dijkstra’s algorithm; package delivery; multi-story building

1. Introduction

In the last few years, e-commerce has greatly proliferated worldwide. From 2021 to
2022, e-commerce grew 6.5%, representing 19% of all retail sales [1]. This trend is associated
with a growth in package deliveries [2,3], which adds complexity to city logistics and
the tasks developed by parcel service providers [4]. Last mile delivery is a research area
that deals with these topics in which all the logistical operations between depots and
consignees are studied [5]. The main challenges related to last mile delivery include costs,
time pressure, sustainability, increasing volumes and an aging workforce [6]. For example,
delivery vehicles operate inefficiently, travel unnecessary distances [7], cause almost 20% of
city congestion and emit up to 60% of total emissions [8]. As stated by Anderluh et al. [9],
modern city logistics must evolve to create a more efficient model with minimal negative
externalities. Conventional delivery has proven to be inadequate for the future [10], so
current lines of research are assessing alternative package delivery concepts to identify
efficient delivery systems for urban areas [11,12].

The transportation and delivery of packages are repetitive actions that can be auto-
mated with different types of automatic vehicles and robots [13]. An autonomous mobile
robot is advantageous in that its computational power can be used to autonomously plan
its trajectory, directly interact with other machines and dynamically react to changes in
unstructured environments [14].

Outdoor last mile delivery with mobile robots is a practical problem that has caught
the attention of many researchers [13,15–18], but the specific problem of indoor delivery in
large buildings has been less studied. Outdoor last mile delivery is related to the transporta-
tion of packages between depots and customers’ residences, which are usually single-family
houses, while indoor last mile delivery can be defined as the transportation of packages
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from the hall of a multi-story building to a specific apartment or office. Currently, the con-
clusions obtained in outdoor last mile delivery have been expanded and applied in indoor
delivery applications. For example, Hutter et al. [19] proposed a four-legged robot that
can pass through stairways and deliver packages in front of a door, and Castillo et al. [20]
proposed the application of reinforcement learning to define a robust feedback motion
policy for a two-legged humanoid robot that can be used for small-package delivery. Even
though outdoor and indoor last mile delivery share denomination, the requirements for
the systems involved in each method are different.

In an indoor and multi-story application, an autonomous delivery robot requires the
implementation of a sequence of high-level actions to complete the tasks of transporting
and delivering packages from a known pick-up point to a known drop-off target destina-
tion [21]. The planning of the trajectory of a mobile robot [22,23] requires an optimized
procedure combining the spatial and operational information of the environment. The
spatial information involves the position of all possible destinations as well as the nav-
igable areas available to reach these destinations [24,25] and allows the use of a graph
search algorithm to obtain an optimal path [26]. The operational information involves
the procedures to navigate in the building such as interacting with elevators [27–31] and
doors [32–36]. The spatial information is usually referenced in a 2D map [37,38] which
describes the metric, topology, navigable areas, and appearance of the application sce-
nario [39–42]. Additionally, the control of the motion of a mobile robot also requires a local
self-localization procedure to properly follow the planned path [43–47], because the global
positioning system (GPS) used in outdoor applications is inoperable indoors [48,49]. In
indoor mobile robots, the common methods used to provide a periodic estimation of the
absolute position of the robot in a map are commonly based on vision [50,51] and light
detection and ranging (LiDAR) [52,53]. The information provided by LiDAR devices can
be processed using different approaches, such as by using an iterative closest point (ICP)
algorithm [54,55] matching raw LiDAR data [56–63], preprocessing the point clouds to
detect geometric features before the matching [64–69], or using the raw LiDAR information
as the input data for feature matching based on deep learning methods [70–77]. Finally, the
routing strategy requires an estimation of the position of the mobile robot which follows
the planned path [78,79] until arriving at the destination.

In the scientific literature, indoor navigation in multi-story environments has been
addressed using different approaches. Kang et al. [80] proposed an algorithm to make
a robot to get in an elevator to move to a goal floor. Their proposal was based on a
mobile robot that was able to detect the floor number, but it was not able to push the
panel buttons, so additional help was needed for it to interact with the elevator. Van Toll
et al. [81] proposed an algorithm to automatically create a navigation mesh to generate
visually convincing paths for multi-layered environments. In their proposal, the navigation
mesh was represented by a collection of two-dimensional polygons defined in a single
plane and with a set of connections. Zhang et al. [82] proposed a hierarchical path planner
for autonomous robot navigation in multi-story buildings. In their proposal, the planner
uses a topological graph with two kinds of nodes integrating the topological and metrical
information of the environment to allow mobile robot navigation in the building. Liu
et al. [83] proposed an ant colony optimization algorithm for multi-story building animation.
Their proposal was claimed to be suboptimal in cases in which no previous navigation
information was available. Joo et al. [84] proposed a semantic navigation framework
to describe multi-floor environments connected by elevators. In this case, a semantic
information processing module identifies which floor the robot is on from labels and
other characteristic furniture objects. Li [85] discussed the stochastic path problem in an
uncertain and chaotic world for which no previous navigation information is available.
This approach involved a Markov decision process to find the best path in a multi-floor
grid world affected by chaotic disturbances. Yuang et al. [86] addressed the problem of
integrating both indoor and outdoor path-planning algorithms for mobile robot navigation
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in a multi-story building. Their proposal combined indoor and outdoor paths by the
definition of specific entrance and exit nodes.

In general, an autonomous mobile robot uses a routing strategy that combines path
planning and motion planning [87] because the presence of obstacles in the mobile robot’s
trajectory may require an update of the current planned path [14,26]. In this work, the
spatial and operational information required to plan the path of a mobile robot is repre-
sented as a weighted graph that defines the navigation tree of a target multi-story building.
The proposed navigation tree has two particularities. Firstly, the nodes of the graph define
the physical locations of the pick-up and drop-off points and some intermediate maneu-
vering points. Secondly, the segments of the graph define the straight collision-free paths
between nodes. This proposal of using only straight trajectories between nodes requires
the definition of intermediate navigation nodes in the navigation tree of the building.

In the scientific literature, there are different graph search algorithms that can explore
a graph or navigation tree to find the shortest path between two nodes. There are opti-
mization algorithms that are guaranteed to find the shortest path [88–90] and heuristic
algorithms are not guaranteed to find the shortest path [91,92]. Examples of optimization
algorithms are as follows: Dijkstra’s [88] algorithm, which solves the single-source shortest
path problem from a single-source node to all the nodes of a graph; the Floyd [89] algorithm,
which solves the shortest paths between all pairs of nodes in a graph; and the A-star [90]
algorithm, which is an extension of Dijkstra’s algorithm [88] and the best-first search [93].
The A-star [90] algorithm uses admissible heuristics [90] to solve the single-source shortest
path problem from a single node to a destination node. The main advantage of the A-star
search is that there is no other optimization algorithm guaranteed to expand fewer nodes, so
it is intensively applied to explore dense or massive graphs in complex problems [90]. Alter-
natively, Dijkstra’s algorithm is optimal to explore a sparse graph because it guarantees the
exploration of all visitable nodes [88]. Finally, examples of heuristic algorithms used in path
planning are genetic algorithms [91,94–96] and simulated annealing algorithms [92,97–99].

1.1. Problem Definition

In summary, the problem addressed in this paper is planning the path of a wheeled
mobile robot that must transport and deliver small packages inside a multi-story building,
navigating between floors using the elevators. To solve this problem, it is necessary
to combine spatial and operational information, such as the location of the origin and
destination points and how to interact with elevators.

1.2. Proposed Solution

This paper proposes a way to plan the path of a mobile delivery robot in a multi-story
building based on the use of a manually created weighted navigation system that uses
all feasible origin and delivery points as nodes. This weighted navigation tree and the
Euclidean distances between the nodes are combined to define a small weighted sparse
graph which is explored using Dijkstra’s [88] algorithm to find the shortest path between
the origin and destination nodes.

Once a path has been found, the routing algorithm of the mobile robot follows the path.
In case of the detection of an obstacle blocking the path, the graph must be updated [14,26]
to discard the segments and nodes that are blocked and then explore again to search for the
new shortest path to the destination node.

The main contributions of this work are as follows:

• The manual definition of a navigation tree describing the spatial information required
to autonomously move in a multi-story building, using the elevators as connectors
between floors.

• The description of how a graph created from this navigation tree can be explored
using Dijkstra’s [88] algorithm to obtain the shortest path from a starting point to a
destination point.
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• The formulation of a distance–task matrix that can be used to estimate the total length
of the trajectory of a mobile delivery robot moving in a multi-story building.

• The presentation of simulation examples that demonstrate the effectiveness of this
proposal in the case of a mobile robot designed to transport and deliver small packages
in a multi-story building.

This work is inspired by the contribution of Kim et al. [100] and is a continuation of the
work of Palacín et al. [31]. Kim et al. [100] proposed a method to estimate the travel time of
an indoor delivery robot working in a building with an elevator. Kim et al. [100] planned
the path of a robot by the application of a genetic algorithm based on a specific heuristic.
The analysis of the paths obtained suggested the definition of a navigation tree to reduce
the complexity of the stationary delivery problem and avoid the use of genetic algorithms.
Complementarily, in a previous work [31], we demonstrated that a mobile robot using 2D
LiDAR and ICP matching for self-localization could take a remotely controlled elevator
and navigate between floors, so this proposal is used for floor navigation.

1.3. Assumptions and Limitations

The assumptions made in this work to solve the path-planning delivery problem are
as follows:

• A detailed 2D point cloud map of the multi-story building is available [31].
• All locations where a package can be picked up or dropped off inside the multi-story

building have been identified as nodes and do not change during transportation.
• The multi-story building has remotely controlled elevators that can be directly accessed

by a mobile robot via a wireless communication protocol [30].
• A navigation tree for each floor of the building has been manually defined.
• A segment (connection, link or vertex) defined in the navigation tree depicts a straight

collision-free trajectory between two nodes. This straight trajectory can be blocked by
the presence of dynamic obstacles.

• Packages are only delivered to locations that have their doors open. The problem of
opening and closing the doors of the rooms is not covered in this work.

1.4. Structure of the Paper

The paper is structured as follows. Section 2 introduces the materials and meth-
ods used: the reference mobile robot, the reference map, the navigation tree and Dijk-
stra’s algorithm. Section 3 defines the implementation steps of the path-planning and
motion-planning procedures, detailing the problem-solving method. Section 4 provides
an overview of the simulation results obtained and the basic parameter settings used in
the simulations. Section 5 analyzes and discusses the results obtained from the simulation,
drawing conclusions and outlining future research directions.

2. Materials and Methods

The materials and methods used in this work are the model of the mobile robot that
will be used in future works as a delivery robot, the 2D point cloud map of a real multi-story
building, the navigation tree used to represent the spatial and operational information
required to navigate between floors and the graph search algorithm used to plan the path
of the mobile robot.

2.1. Model of the Reference Mobile Robot

The mobile robot used as a reference for the simulation of the routing strategy is the
APR-02 mobile robot prototype developed by the Robotics Laboratory at the University of
Lleida (Spain) [101]. The APR-02 prototype is a human-sized (1.76 m, 30 kg) omnidirectional
mobile robot with a motion system based on three omnidirectional wheels [102]. This
versatile mobile robot has been assessed when performing tasks such as being a walking
assistant [103] or using its forearms as a walking support [104]. In future works, the APR-02
mobile robot will be used as multi-story autonomous delivery robot.
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The use of an omnidirectional mobile robot to transport and deliver packages is
advantageous in that it can move in any direction and rotate without performing any
maneuver [105–108], a motion that cannot be replicated with differential drive mobile
robots [109–111]. The APR-02 mobile robot is able to execute any instantaneous motion
Mi = (vi, αi, ωi) defined in the robot frame (XR, YR), where v is the module of the target
lineal velocity of the robot, α is the angle of the lineal velocity relative to XR and ω is the
target angular velocity of the robot. Figure 1 represents the parametric definition of the
omnidirectional motion system of the APR-02 mobile robot. The instantaneous position of
the mobile robot in the world frame Pi = (xi, yi, θi) is computed using the following:xi

yi
θi


World

=

xi−1
yi−1
θi−1


World

+ ∆t·R(θi−1)
−1·

vi−1cos(αi−1)
vi−1sin(αi−1)

ωi−1


Robot

, (1)

where (vi−1, αi−1, ωi−1) is the motion of the mobile robot in the sample i − 1. The time
lapse ∆t between the samples i− 1 and i is the sampling time of its proportional-integral-
derivative (PID) motor controllers [112]. R(θ)−1 is the rotation matrix that transforms the
robot velocity expressed in the robot frame to the velocity in the world frame:

R(θi)
−1 =

cos(θi) −sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

. (2)
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Figure 1. Parametric definition of the omnidirectional motion system of the APR-02 mobile robot.
(XR, YR) represents the mobile robot frame in which XR is the front of the mobile robot. The parame-
ters (vi, αi, ωi) are the instantaneous motion of the robot, represented with blue and red arrows, while
the green dotted line represents the trajectory.

In the case of the APR-02 mobile robot, the instantaneous motion Mi = (vi, αi, ωi)
required to follow a planned path is computed using the procedure described in [113].
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2.2. Reference Map

Figure 2 shows the reference map used in this paper. The map shows the 2D layout of
one floor of the multi-story building at the Polytechnic School of the University of Lleida
(Spain). The map contains a 2D point cloud (blue points) obtained with 2D LiDAR and a
background grid map detailing the navigable areas (light green area). The building has
five floors and two elevators. The layouts of floors one, two (Figure 2) and three are very
similar, whereas the layouts of the ground floor and the basement have some differences.
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This paper only uses the reference map to illustrate the application of path-planning
and motion-planning algorithms, so the simplified assumption is that all the plants of the
building have the same layout (as shown in Figure 2). The point cloud may seem noisy,
but this is how a mobile robot using 2D LiDAR perceives an unstructured environment.
The use of a point cloud as a map by a mobile robot using 2D LiDAR provides the mobile
robot’s precise self-localization and navigation through narrow areas such as doors. For
more specific details on how to obtain the map of the floor, please refer to [114]. Finally,
this work is focused on addressing the problem of path planning in a multi-story building;
the practical assessment of the APR-02 mobile robot as a delivery robot will be addressed
in future works.

2.3. Navigation Tree

The navigation tree proposed in this work for multi-story path planning is a manually
created graph combining nodes (pick-up and drop-off points) and segments (weighted
directional distances). The nodes are used to define the physical location of reference
placements and other intermediate trajectory positions. Table 1 summarizes the five types
of nodes that can be defined in the navigation tree. By default, the nodes are labelled
with a letter (S, T, U, E or D) and a sequence number (X). Start (SX) label indicates a node
that defines the localization of a main package pick-up point and battery charging station.
Trajectory (TX) is a custom auxiliary node used to define intermediate positions within
a trajectory. Unique (UX) is a node used to define precise trajectories in narrow areas.
Elevator (EX) is a node that precisely defines the localization of a reference point inside an
elevator [31]. Destination (DX) is a node that defines the localization of a known destination
point for the mobile delivery robot (a drop-off point).
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Table 1. Types of nodes used in the navigation tree.

Graphic Representation Node Type Description Position Editable in
the Map
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Each node is defined by the following parameters: a unique identification number
(ID) with a value between 1 and the total number of nodes, the category of the node
(Table 1—node type), the node label (Table 1—graphic representation) and the position
(x/y coordinates and floor number) of the node on the map.

The assumption of this work is that a mobile robot can follow a straight trajectory
between two nodes linked or connected with a segment. Therefore, when a direct straight
connection between two nodes is not possible, the designer must create additional in-
termediate trajectory nodes on the map to allow for a path based on a concatenation of
straight trajectories.

The segments define a straight and collision-free trajectory between two nodes, and
the weight is applied to the Euclidean distance between the two nodes. The navigation
tree uses directed segments to allow route prioritization depending on the direction of
the mobile robot. Table 2 summarizes the four types of segments that can be defined
in the navigation tree. Unconnected segments have no link between nodes. Undirected
segments are direct paths between two nodes and have the same weight in both trajectory
directions. Directed segments define different weights depending on the direction of the
trajectory. Blocked segments define an existing undirected or directed segment that has
been temporarily blocked because of the detection of an obstacle. The weights defined
are multiplied by the Euclidean distance between the nodes, so a greater weight means a
longer virtual distance between the nodes. The weights are used to encourage the mobile
robot to follow different routes depending on whether the trip is outgoing or returning.

Table 2. Types of segments used in the navigation tree.

Segments Weight

Graphic
Representation Type From S1 to D1 From D1 to S1
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As an application example, Figure 3 shows a small navigation tree defined in one part
of the building. In this example, S1 is a battery charging station and also the pick-up point.
D1. . . D4 are drop-off destination points usually located inside offices and laboratories.
The pairs U1–U2, U3–U4, U5–U6, U7–U8 and U9–U10 are trajectories required to allow
the robot to precisely pass through the doors of the destination points. T1. . . T8 are the
intermediate trajectory positions manually created to allow for successful path planning
in the building. For instance, in Figure 3, a straight trajectory between the delivery point
D3 and the door trajectory point U7 is not possible, so an auxiliary trajectory point T2 has
been defined to allow a straight trajectory between U7 and T2 and between T2 and D3 (and
vice versa).
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The final graph is computed from the weights and trajectories defined in the navigation
tree, the Euclidean distance between nodes and the blocked status of the segments described
in the matrices N, D and B, respectively. In these matrices, the number of each row coincides
with the identification number (ID) of a node. Likewise, following the same order, the
number of each column coincides with the ID of a node. The value of one position in the
matrix defines a feature (weight, distance or blocked status) of the trajectory going from
the row node to the column node. For example, N2,7 = 1 shows that the segment of the
navigation tree from node 2 to node 7 has a weight of 1. Similarly, D4,8 = 3.45 shows
that the Euclidean distance from node 4 to node 8 is 4.45 m. Finally, Bi,j = 0 shows an
unblocked segment between nodes i and j, whereas Bi,j = 1 shows that an obstacle is
currently blocking the segment linking the nodes.

The Hadamard [115] (point to point) product of the matrices N, D and B (Equation (3)
combines the aforementioned features of each trajectory into a single matrix, called graph
G, used by Dijkstra’s algorithm to find the shortest path.

G = Ni,j·Di,j·(1− B)i,j (3)

Since the definition of a navigation matrix N is directed, the resulting graph G is also
expected to be directed due to the use of different weights depending on the direction of
the trajectory between two nodes.
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The blocked status is initialized to 0 by default. The blocked status of a segment Bi,j
is updated while the robot tries to execute a straight trajectory from node i to j based on
the information provided by its LiDAR sensor system. The graph G computed from the
navigation tree described in Figure 3 is included in Supplementary Materials.

2.4. Dijkstra’s Algorithm

Dijkstra’s algorithm [88] provides the shortest path from one node to every other
node on directed graphs [116]. The advantage of Dijkstra’s algorithm is that it provides
minimally spanning trees as it explores all possible alternative paths and thus eliminates
the uncertainness of heuristic algorithms [117,118]. Dijkstra’s algorithm is commonly used
to estimate the shortest trajectory in many mobile robot applications [119–121].

Based on a predefined graph G made up of M nodes (also referred as vertices) and E
edges (also referred as segments), Dijkstra’s algorithm [88] provides a sub-graph Q ∈ G
starting at an initial node (inode) and ending at a final node ( f node) such that the distance
between them (dinode, f node), obtained as the sum of edges defined in the graph G, is minimal:

dinode, f node = ∑ f node
i=inode G(i, i + 1), i ∈ Q. (4)

Q is assumed to be non-empty and includes n vertices, 1 ≤ n ≤ |M|, and vertices i
and i + 1 are adjacent or linked.

Figure 4 shows the flowchart of the well-known Dijkstra’s algorithm, which is di-
dactically described in many free video sharing websites such as [122]. In this work, the
application of Dijkstra’s algorithm for path planning requires a graph G, the definition of
an initial or starting node, inode, and a final or ending node, f node.

Dijkstra’s algorithm uses the following parameters of each node: score, visited status
and previous node. At the end of the algorithm, score is the cumulated distance travelled to
reach the node from the starting node, visited status indicates if the node has been explored
and previous node is the preceding linked node at the shortest distance from the current
node. The characteristic point of Dijkstra’s algorithm is the determination of the backwards
shortest path, starting from the final node to the initial node through the path defined by
the previous node values. However, this path is actually travelled starting from the initial
node to the final node.

Dijkstra’s algorithm starts by initializing all score values as infinite, the visited status
as false and the previous node as empty. Then, the score of the initial node is set to zero.
The main loop of the algorithm selects the unvisited node with the lowest score as the next
node to be explored (en); in the first iteration, this node is the starting node (that was set to
zero for this purpose). The node selected is then marked as visited. The graph is explored
to generate a list of unvisited adjacent or linked nodes.

If there are unvisited adjacent nodes, the secondary loop is focused on the exploration
of this list of nodes. First, a node is selected as the active node (uvn) and removed from the
list. Then, the temporal score of the node uvn is computed, cumulating the score value of
en node and the value of the segment from the en node to the node uvn. If this temporal
score is lower than the initial score of the node uvn, then its score value is updated with
the value of the temporal score and the previous node of en is set as uvn. This process is
repeated until the list of unvisited nodes is empty.

The continuation of the main loop step requires the exploration of the visited status of
the nodes. If there are unvisited nodes, the loop returns to the step of selecting the unvisited
node with the lowest score as the next node to be explored (en) and continues. If there are
no unvisited nodes in the graph, the main loop is terminated.
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Figure 4. Flowchart of Dijkstra’s algorithm [88].

Finally, if the score of the final node is infinite, then no path between the initial and
final node has been found. Alternatively, if the final node has been visited with a score that
is not infinite, the shortest path between the initial and final node is obtained, generating a
sequence that starts at the final node, goes to its previous node and continues exploring
the previous nodes until arriving at the initial node. The flowchart of Dijkstra’s algorithm
described in Figure 4 is also available as a plain source code in [123].

Table 3 shows the application of Dijkstra’s algorithm to the graph G (Equation (3)),
whose navigation tree is shown in Figure 3. The task assigned to the mobile robot is the
transportation of a package from the node S1 (the main package pick-up point) to the node
D3 (a destination point). The node at which the mobile robot is located is highlighted with
a red frame. UX nodes are used to depict precise trajectories that must be followed to
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navigate through narrow spaces such as doors, while TX nodes are used to depict auxiliary
trajectory nodes. The first row of Table 3 simulates the start of a package delivery task
with the mobile robot being placed at the node S1. The application of Dijkstra’s algorithm
from S1 to D3 provides the path S1–T8–U1–U2–U4–U6–U8–U7–T2–D3, and the mobile
robot starts to follow this path checking if the trajectory to the next node is blocked. The
second row of Table 3 shows a case in which the mobile robot has reached the node U6
and then detects that the trajectory from node U6 to node U8 is blocked by an obstacle.
In this case, the application of Dijkstra’s algorithm from U6 to D3 provides a new path,
U6–T5–T4–T3–U8–U7–T2–D3, and the mobile robot starts to follow this path, checking
if the trajectory to the next node is blocked. In the third row of Table 3, the mobile robot
has arrived at the destination node D3 to deliver the package. The fourth row of Table 3
assumes that the package has been delivered and that the mobile robot must return to
the main package pick-up point S1. In this case, the application of Dijkstra’s algorithm
from D3 to S1 provides the path D3–T2–U7–U8–T3–T4–T5–T6–T7–U2–U1–T8–S1, and the
mobile robot starts to follow this path, checking if the trajectory to the next node is blocked.
Finally, the fifth row of Table 3 represents the ideal case in which the mobile robot has
completed the return journey without encountering any obstacles blocking any segments.
In summary, the detection of an obstacle blocking a segment of the planned path requires
the classification of this segment as blocked, the recalculation of the graph (Equation (3))
and the recalculation of the shortest path to the destination using Dijkstra’s algorithm. In
future works, the artificial potential field (APF) [124] algorithm will be applied to decide if
an obstacle blocking the planned path can be safely avoided [125] using simple maneuvers
instead of calculating an alternative path.

Table 3. Example of Dijkstra’s algorithm in the path planning of a mobile delivery robot.

Current Node of
the Robot

Is Next Segment
Blocked?

Current Delivery
Planned Path

From To

S1 No

S1
(Package
pick-up
point)

D3
(Destination

point)
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Table 3. Cont.

Current Node of
the Robot

Is Next Segment
Blocked?

Current Delivery
Planned Path

From To

D3
(Package
delivery)

- U6 D3
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3. Implementation

This section describes the implementation of the path-planning procedure proposed
in this paper, which is based on a predefined navigation tree of the multi-story building.

3.1. Predefined Navigation Tree

The map of one representative floor of the building (Figure 2) is used as a reference to
manually create a feasible navigation tree. Figure 5 shows the navigation tree created to
develop the path planning of a mobile delivery robot in the multi-story building. As stated
in Section 2.2, this work assumes that all the floors of the building have the same layout to
simplify our interpretation of the navigation results. The assumptions made to create the
navigation tree are as follows:

• The nodes of the navigation tree depict the position of the main pick-up points,
destination points, doors and elevators. The nodes are precisely referenced in the
point cloud map of the floor of the building (Figure 2).

• The segments of the navigation tree depict straight trajectories between the linked
nodes. During the creation of the navigation tree, trajectory nodes can be added to
define a sequence of straight segments and avoid fixed furniture obstacles.
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Figure 5. Navigation tree defined in one representative floor of the building of the Polytechnic
School of the University of Lleida (Spain). The point cloud map is depicted in gray. S1 is the main
package pick-up point of the floor. D1. . . D20 are the possible destination points located inside offices
and laboratories.

The navigation tree displayed in Figure 5 has 171 segments and 101 nodes: 1 S node
(the main package pick-up point), 46 U nodes (used to define precise trajectories), 2 E nodes
(elevators) and 32 T nodes (used to define intermediate trajectories). In Figure 5, the labels
of the U and T nodes are not displayed to avoid covering segments of the graph. The graph
deduced from the navigation tree described in Figure 5 is included in the Supplementary
Material. An indicator of the complexity of the graph is its density (δ), which is obtained
from its number of segments |E| and its number of nodes |M|:

δ =
|E|

|M|·(|M| − 1)
=

171
101·(101− 1)

= 0.0169 (5)

When the density is within the range of 0 ≤ δ ≤ 1/2, the graph is considered sparse.
In this case, the density obtained is in the lowest part of this range, so the graph is sparse
and does not represent a computational time challenge for Dijkstra’s algorithm to find the
shortest path from one node to any other node.

The memory requirements to store the matrices N, D and B and the graph G of each
floor of the building (Equation (3)) are as follows:

Memory_one_ f loor = 4·(|M|·|M|) = 4·(|M|·|M|) = 40, 804 FP64, (6)

where FP64 is the double-precision floating point format value defined by IEEE 754-
2019 [126]. The building with five floors requires the replication of this memory structure
in each floor, using a total of 204,020 FP64.

The memory required to compute Dijkstra’s algorithm is determined by the number of
nodes in the graph and the parameters defined in each node. In this multi-story application,
Dijkstra’s algorithm is called once per floor, computing the shortest path in each floor
separately. The algorithm is not called to compute the path between floors, because
navigation between floors is only possible through the elevator. Therefore, Dijkstra’s
algorithm is only applied to find the shortest path in each floor of the building. For
example, a package delivery task starting at the package pick-up node S1 located on the
ground floor (F0) and with a destination at D16 on the third floor (F3) defines two paths:
the first one from the pick-up point S1–F0 to the elevator E1–F0 and then from the elevator
E1–F3 to the destination D16–F3, and vice versa to return. Hence, Dijkstra’s algorithm is
only used twice: from S1–F0 to E1–F0 and from E1–F3 to D16–F3, and not between elevator
positions from E1–F0 to E1–F3. The algorithm is used twice more to return.
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In summary, the memory required by Dijkstra’s algorithm is computed from the
number of nodes (|M|), the parameters P associated with each node (the score, previous
node and visited status) and the list of nodes linked to the current node explored during
the iterative search:

Memory_Dijkstra < (|P|+ 1)·|M| = (3 + 1)·|101| = 404 FP64 (7)

The advantages of manually defining the navigation tree on each floor are the reduction
in the graph size and the low computational resources required to find the best path, which
can be updated when any obstacle blocks the current path. These advantages make this
proposal ideal for its implementation in indoor autonomous mobile delivery robots using
central processing units based on microcontrollers or low-performance computers.

Figure 6 details the navigation tree displayed in Figure 5. The directed graph is
proposed to incentivize the robot to move close to the walls following different trajectories
when going and returning from the destination. Figure 6a details the navigation tree
connecting the hall and corridor. Note that although the lines between the nodes are curved
(to better show the directed weights of the navigation tree), all trajectories between the
nodes are straight. The concentration of points in the left part of the hall map correspond
to a decorative flowerpot. The node T22 shown in Figure 6a is defined specifically to avoid
this flowerpot. The node with more segments is T5 (Figure 6a), which is linked to the nodes
T28, U6, T4, U9 and T27 (T27 is not visible in Figure 6a). Figure 6b details the navigation
tree around the elevators. The trajectories to enter and exit the elevators are defined by
U43-E1-U43 and U44-E2-U44 [31], and the mobile delivery robot must be able to wirelessly
interact with them [30]. Finally, Figure 6c details the navigation tree at the end of the
corridor, which incentivizes the robot to move following different trajectories when going
and returning from its destination to simplify and be compatible with the circulation of
people and other robots in the corridor.

3.2. Path Planning in a Multi-Story Building

In mobile robotics, path planning is a procedure that computes a basic collision-free
path from a starting point to a destination point using known static information [127,128].
This work assumes that a mobile delivery robot has access to a manually created navigation
tree where the nodes detail the position of all expected pick-up and drop-off points, while
the segments describe collision-free straight trajectories between the linked nodes. The
assignment of a task to a mobile delivery robot consists of defining a destination node to
transport and drop off a package from a known pick-up point. Once one task is assigned,
the mobile robot must analyze if this task requires navigating between floors and adding
the elevator as an intermediate node to be visited. Then, Dijkstra’s algorithm provides
a collision-free path for the mobile robot. The mobile robot uses the information of its
onboard LiDAR and the point cloud map for self-localization in order to follow the planned
path. Finally, in cases in which it detects an obstacle in one segment of the path during
transportation, the mobile robot must update the segment as blocked and use Dijkstra’s
algorithm again to obtain another collision-free path.

As an example, Table 4 shows the definition of go and return tasks for the mobile
delivery robot. Task 1 is a trajectory in which the mobile robot is at the node S1 of the
ground floor (labeled as Floor0 and F0) and has to transport a package up to the node D16
of the first floor (labeled as Floor1 and F1). Task 2 is a return trajectory in which the mobile
robot is at the node D16 of the first floor and returns to the node S1 of the ground floor. In
both tasks, the initial and destination nodes are at different floors, so the mobile robot must
take an elevator to complete the transportation task. In consequence, one elevator node
has been added in the sequence of nodes to visit by the mobile robot. In Table 4, elevator
1 (E1 node) is prioritized to go up and elevator 2 (E2 node) is prioritized to go down. The
elevator nodes are shared between floors.
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both tasks, the initial and destination nodes are at different floors, so the mobile robot 
must take an elevator to complete the transportation task. In consequence, one elevator 
node has been added in the sequence of nodes to visit by the mobile robot. In Table 4, 
elevator 1 (E1 node) is prioritized to go up and elevator 2 (E2 node) is prioritized to go 
down. The elevator nodes are shared between floors. 

Table 4. Task definition example for the mobile delivery robot. 

Task Initial Node Destination Node Sequence of Nodes to Visit 

1 
(go) 

S1-F0 D16-F1 
1: S1-F0 
2: E1-F0→F1 
3: D16-F1 

2 
(return) 

D16-F1 S1-F0 
1: D16-F1 
2: E2-F1→F0 
3: S1-F0 

Figure 6. Details of different parts of the navigation tree showing the auxiliary trajectory nodes:
(a) main package pick-up point S1, hall and initial part of the corridor; (b) elevator zone; and (c) end
of the corridor.

Figure 7 shows the path proposed by Dijkstra’s algorithm to complete the tasks defined
in Table 4. Task 1 comprises two sub-paths: starting from S1–F0 (on the ground floor) to
E1–F0 and taking the elevator (Figure 7a), and exiting the elevator on the first floor and
going from E1–F1 to D16–F1 (Figure 7b). Task 2 also comprises two sub-paths: starting
from D16–F1 (on the first floor) to E2–F1 and taking the elevator (Figure 7c), and exiting
the elevator on the ground floor and going from E2–F0 to S1–F0 (Figure 7d). In both cases,
the assumption is that the mobile robot can wirelessly communicate with the elevator in
order to call it and select a destination floor [31].
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Table 4. Task definition example for the mobile delivery robot.

Task Initial Node Destination Node Sequence of Nodes to Visit

1
(go) S1-F0 D16-F1

1: S1-F0
2: E1-F0→F1
3: D16-F1

2
(return) D16-F1 S1-F0

1: D16-F1
2: E2-F1→F0
3: S1-F0
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empty. 

Floor 0 

Figure 7. Path planning of the tasks defined in Table 4. Task 1: (a) go from the main pick-up point
S1–F0 (on the ground floor) to E1–F0 and take the elevator; (b) go from E1–F1 (on the first floor) to
D16–F1. Task 2: (c) return from D16–F1 to E2–F1 and take the elevator; and (d) go from F2–F0 (on the
ground floor) to S1–F0 (main pick-up point).

3.3. Motion Planning in a Multi-Story Building

In mobile robotics, motion planning is a procedure that assumes that the motion of
a mobile robot must face dynamic obstacles not considered during path planning. These
obstacles can be dynamic, such as people, companion animals and other mobile robots, or
stationary, such as furniture added after the creation of the map and navigation tree.

Figure 8 shows the flowchart of the motion-planning procedure proposed for the
mobile delivery robot. This procedure requires the graph G, the point cloud PC, the node
in which the mobile robot is located (current_node) and a list of the nodes to be visited
( f inal_node_LIST).

The main loop of the algorithm starts initiating the intermediate destination node
(destination_node) with the next node listed in f inal_node_LIST and removing it from the
list. At the end of the main loop, the score is the cumulated distance from the starting
node to the destination node. The secondary loop of the algorithm starts by getting the
shortest path from the current node to the intermediate destination node to be visited
using Dijkstra’s algorithm and stores the result in a new list with the intermediate nodes
(path_LIST). The tertiary loop extracts the next node (next_node) to be visited by the
mobile robot from the path_LIST. After this step, the sensors of the mobile robot must
validate if there is a collision-free path to next_node. If any obstacle is detected in this
path, the segment must be classified as blocked and the path_LIST must be updated. If
no obstacle is detected, then the mobile robot must follow the trajectory defined from its
current position (current_node) to the position defined by next_node and update the value
of the current_node when finishing the displacement.

After completing this loop, the path_LIST must be checked to select the next partial
destination. If the path_LIST is empty, then the f inal_node_LIST must be checked to get a
new destination_node. The planned path is completed when the f inal_node_LIST is empty.
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Figure 8. Flowchart of the motion-planning algorithm.

4. Results

The main simulation results presented in this section correspond to the tasks presented
in Table 4. The path followed by the robot (shown in Figure 7) has been obtained with
Dijkstra’s algorithm [88] (Figure 4) and the graph created from the navigation tree (Figure 5
and Equation (3)). The path-tracking performances of the simulated mobile robot emulate
the omnidirectional motion capabilities of the reference APR-02 mobile robot (Equation (1)
and Figure 1) [79]. The motion required to follow a planned path is computed using the
procedure described in [113].

Figure 9 shows a 3D routing simulation of the operation of the mobile delivery robot
in the studied multi-story building. The number of graphical features displayed in the
figures has been minimized to better show the planned path and the simulated motion.
Figure 9a shows the mobile delivery robot developing task 1 as defined in Table 4: starting
at the main package pick-up point S1–F0 (on the ground floor) and going to the destination
point D16–F1 (on the first floor). Figure 9b shows the mobile delivery robot developing
task 2 as defined in Table 4: starting at the destination point D16–F1 (on the first floor) and
returning to the main package pick-up point S1–F0 (on the ground floor). In both figures,
the movement of the mobile robot inside the elevator has also been simulated.
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floors of the building are shown. The red dots and green circles represent the position of the robot. 

Table 5 summarizes the routing results obtained in 40 complementary simulations. 
Table 5 shows an estimation of the length of the trajectory that the robot has to travel to 
complete the delivery of a package starting at the main pick-up point of the building (node 
S1–F0), going to a delivery point (node DX, where X is the node number from 1 to 20) and 
returning to the main pick-up point (S1–F0). Twenty tasks have been evaluated. Table 5 
shows the cumulated length of each trajectory in case the destination node is on the same 
floor as the initial node, the cumulated length in case the destination node is on another 
floor of the building and the difference between both of these cases due to the navigation 
between floors. As illustrated in Figure 7, each transportation and delivery task listed in 
Table 5 requires two or four sub-paths depending on the floor of the destination. If the 
initial node and the destination node are on the same floor, the sub-paths go from S1–F0 
to DX–F0 (the outgoing path) and from DX–F0 to S1–F0 (the return path). If the initial 
node and the destination node are on different floors, the sub-paths go from S1–F0 to E1–
F0 (the path to take the elevator configured for upwards travel), from E1–FY to DX–FY 
(the path from the elevator to the destination at any floor Y), from DX–FY to E2–FY (the 
return path to take the elevator configured for downwards travel) and from E2–F0 to S1–
F0 (the return path).  

Figure 9. Simulated routing of the mobile delivery robot: (a) developing task 1 defined in Table 4:
starting at S1–F0 (ground floor) and going to D16–F1 (first floor); (b) developing task 2 defined in
Table 4: starting at D16–F1 (first floor) and going to S1–F0 (ground floor). Only three of the five floors
of the building are shown. The red dots and green circles represent the position of the robot.

Figure 10 shows top view details of the motions simulated. Figure 10a shows the
motion of the mobile delivery robot initiating the task at the node S1–F0 on the ground
floor, exiting from the main package pick-up point, following the path close to the robot’s
left wall, crossing the corridor, going through the hall until it reaches the elevator lobby
and going to the elevator E1–F0. Before arriving at this point, the mobile robot must call the
elevator E1 to avoid having to wait. The mobile robot enters the elevator facing inwards,
sets a destination floor, and turns 180◦ during its journey to prepare to exit (see Figure 10c).
The exiting trajectory is different from the entrance trajectory as a way to reduce trajectory
interferences with other mobile robots. Once out of the elevator, the mobile robot goes to
the hall and follows the path close to its left wall until arriving at the corridor and follows a
path close to its left wall up to the destination point D16–F1.
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mobile robot inside one elevator, entering on the second floor and exiting on the ground floor. The 
red dots, red lines and green circles represent the position and orientation of the robot. 
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Figure 10. Details of the motions simulated: (a) top view of the motion of the mobile robot starting
at node S1 on the ground floor, entering the elevator E1, exiting on the first floor and going to node
D16; (b) top view of the motion of the mobile robot coming from D16 on the first floor, entering the
elevator E2, exiting it on the ground floor and going to node S1; (c) 3D view of the motion of the
mobile robot inside one elevator, entering on the second floor and exiting on the ground floor. The
red dots, red lines and green circles represent the position and orientation of the robot.

Figure 10b shows the motion of the mobile delivery robot returning from the node
D16–F1 on the first floor, following a path close to its left wall until arriving at the hall,
following a path close to its left wall until reaching the elevator lobby and going to the
elevator E2–F1. Again, before arriving at this point, the mobile robot must call the elevator
E2 to avoid having to wait. In this simulated example, elevator E1 was prioritized to go up
and E2 was prioritized to go down, but this selection can be random or based on elevator
proximity. Again, the mobile robot enters the elevator facing inwards, so it must turn 180◦

during its journey to prepare to exit (see Figure 10c). Once out of the elevator, the mobile
robot goes through the lobby, enters the hall and follows the path close to its left wall
until arriving at the main package pick-up point of the ground floor S1–F0. Specifically,
Figure 10c details the motion of the mobile robot inside the elevator: entering on the second
floor and exiting on the ground floor. Once inside the elevator, the mobile robot has to
rotate 180◦ to face the elevator door, detect its opening and exiting through the door. This
rotation is strictly necessary due to the fact that the APR-02 mobile robot uses a 2D LiDAR
that does not measure the rear area of the robot, so it has to rotate to be able to detect the
opening of the elevator door and avoid colliding with any person entering the elevator.

Table 5 summarizes the routing results obtained in 40 complementary simulations.
Table 5 shows an estimation of the length of the trajectory that the robot has to travel to
complete the delivery of a package starting at the main pick-up point of the building (node
S1–F0), going to a delivery point (node DX, where X is the node number from 1 to 20) and
returning to the main pick-up point (S1–F0). Twenty tasks have been evaluated. Table 5
shows the cumulated length of each trajectory in case the destination node is on the same
floor as the initial node, the cumulated length in case the destination node is on another
floor of the building and the difference between both of these cases due to the navigation
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between floors. As illustrated in Figure 7, each transportation and delivery task listed in
Table 5 requires two or four sub-paths depending on the floor of the destination. If the
initial node and the destination node are on the same floor, the sub-paths go from S1–F0 to
DX–F0 (the outgoing path) and from DX–F0 to S1–F0 (the return path). If the initial node
and the destination node are on different floors, the sub-paths go from S1–F0 to E1–F0
(the path to take the elevator configured for upwards travel), from E1–FY to DX–FY (the
path from the elevator to the destination at any floor Y), from DX–FY to E2–FY (the return
path to take the elevator configured for downwards travel) and from E2–F0 to S1–F0 (the
return path).

Table 5. Path length of the available tasks for the mobile delivery robot in the multi-story building.

Task Initial Node Destination Node Final Node

Cumulated Path Length When Origin and
Destination Are

On the Same
Floor

On Different
Floors Difference

T1 S1 D1 S1 12.27 m 102.13 m 89.86 m

T2 S1 D2 S1 25.72 m 104.49 m 78.77 m

T3 S1 D3 S1 29.36 m 108.13 m 68.77 m

T4 S1 D4 S1 29.24 m 108.01 m 78.77 m

T5 S1 D5 S1 40.41 m 119.18 m 78.77 m

T6 S1 D6 S1 44.50 m 123.27 m 78.77 m

T6 S1 D7 S1 55.60 m 134.37 m 78.77 m

T8 S1 D8 S1 60.76 m 139.53 m 78.77 m

T9 S1 D9 S1 62.50 m 141.27 m 78.77 m

T10 S1 D10 S1 71.26 m 150.03 m 78.77 m

T11 S1 D11 S1 73.70 m 152.47 m 78.77 m

T12 S1 D12 S1 79.20 m 157.97 m 78.77 m

T13 S1 D13 S1 87.68 m 166.45 m 78.77 m

T14 S1 D14 S1 90.16 m 168.93 m 78.77 m

T15 S1 D15 S1 91.09 m 169.86 m 78.77 m

T16 S1 D16 S1 95.38 m 174.15 m 78.77 m

T17 S1 D17 S1 72.43 m 151.20 m 78.77 m

T18 S1 D18 S1 61.24 m 140.01 m 78.77 m

T19 S1 D19 S1 52.19 m 130.96 m 78.77 m

T20 S1 D20 S1 50.69 m 92.56 m 41.87 m

The cumulated length shown in Table 5 has been obtained using Dijkstra’s algorithm
to obtain the shortest path to complete each sub-path. The navigation between floors
requires the mobile robot to travel a few meters further. For example, when the destination
is close to the elevator’s zone (task T20 of Table 5), the robot travels 41.87 m further. When
the destination is very close to the starting point (task T1 of Table 5), the robot travels
89.86 m further. Nevertheless, the additional distance to be travelled is 78.77 m for the
majority of the tasks (Table 5). This difference does not depend on the destination floor
because the mobile robot is static and only rotates while it is in the elevator.

Complementarily to Table 5, Table 6 shows the distance–task matrix (DT matrix) of
the multi-story building which can be used to generally estimate the energy consumption
of the mobile delivery robot [100]. The distance–task matrix describes the path length
of all possible sub-paths, starting at any node up to any node in the same floor. In this
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work, the assumption is that all floors have the same layout, so one distance–task matrix is
representative of all the plants of the building. Nevertheless, in a general case, each floor of
the building requires its specific DT matrix.

Table 6. Distance–task matrix of the target multi-story building showing the distances (in meters)
obtained with Dijkstra’s algorithm from one initial or starting node (row) to a destination node
(column). The matrix is not symmetric due to the use of a weighted and directed navigation tree.
The tasks starting and ending at the same node (non-motion tasks) have been highlighted in yellow
for reference.

S1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 E1 E2
S1 0.0 6.1 11.9 13.7 14.3 18.7 21.2 26.3 29.4 30.2 34.1 35.8 38.3 41.7 43.6 45.3 48.2 36.0 30.4 25.8 23.7 26.0 27.4
D1 6.1 0.0 9.9 11.7 12.4 16.7 19.3 24.3 27.4 28.3 32.1 33.9 36.3 39.7 41.6 43.4 46.3 34.0 28.4 23.9 21.8 24.1 25.5
D2 13.9 11.9 0.0 7.4 8.1 12.4 15.0 20.0 23.1 24.0 27.8 29.6 32.0 35.4 37.3 39.1 42.0 29.7 24.1 19.6 18.4 20.7 22.1
D3 15.7 13.7 9.4 0.0 8.9 9.4 12.0 17.0 20.2 21.0 24.9 26.6 29.0 32.5 34.4 36.1 39.0 26.7 21.1 16.6 20.2 22.5 23.9
D4 14.9 12.9 8.7 10.5 0.0 15.5 18.0 23.1 26.2 27.0 30.9 32.6 35.1 38.5 40.4 42.1 45.0 32.8 27.2 22.6 19.5 21.8 23.2
D5 21.7 19.8 15.5 12.5 14.9 0.0 7.0 12.0 15.1 16.0 19.9 21.6 24.0 27.4 29.3 31.1 34.0 21.7 16.1 11.6 26.3 28.6 30.0
D6 23.2 21.3 17.0 14.0 16.4 8.5 0.0 9.8 12.9 13.8 17.6 19.4 21.8 25.2 27.1 28.9 31.8 19.5 13.9 13.1 27.8 30.1 31.5
D7 29.3 27.4 23.1 20.1 22.5 14.6 12.9 0.0 7.9 8.8 12.7 14.4 16.8 20.2 22.1 23.9 26.8 14.5 8.9 19.2 33.9 36.2 37.6
D8 31.4 29.4 25.1 22.2 24.6 16.6 14.9 9.4 0.0 7.1 11.0 12.7 15.1 18.6 20.5 22.2 25.1 12.8 11.0 21.2 35.9 38.2 39.6
D9 32.2 30.3 26.0 23.0 25.4 17.5 15.8 10.3 9.1 0.0 7.0 8.8 11.2 14.6 16.5 18.3 21.2 8.9 11.8 22.1 36.8 39.1 40.5
D10 37.2 35.2 30.9 28.0 30.4 22.4 20.7 15.2 14.1 10.1 0.0 7.4 9.9 13.3 15.2 16.9 19.8 7.5 16.7 27.0 41.7 44.0 45.4
D11 37.8 35.9 31.6 28.6 31.0 23.1 21.4 15.9 14.7 10.8 8.9 0.0 6.4 9.8 11.7 13.5 16.4 8.2 17.4 27.7 42.4 44.7 46.1
D12 40.9 39.0 34.7 31.7 34.1 26.2 24.5 19.0 17.8 13.9 12.0 9.1 0.0 7.4 9.3 11.1 14.0 11.3 20.5 30.8 45.5 47.8 49.2
D13 46.0 44.1 39.8 36.8 39.2 31.3 29.6 24.1 22.9 19.0 17.1 14.2 7.4 0.0 7.7 9.5 12.4 16.4 25.6 35.9 50.6 52.9 54.3
D14 46.6 44.6 40.3 37.4 39.8 31.8 30.1 24.6 23.5 19.5 17.7 14.7 12.9 9.1 0.0 10.1 13.0 17.0 26.2 36.4 51.1 53.4 54.8
D15 45.8 43.8 39.5 36.6 39.0 31.0 29.3 23.8 22.7 18.7 16.8 13.9 12.1 9.5 10.1 0.0 10.0 16.2 25.4 35.6 50.3 52.6 54.0
D16 47.2 45.2 40.9 37.9 40.4 32.4 30.7 25.2 24.0 20.1 18.2 15.3 13.4 12.2 12.8 12.0 0.0 17.5 26.7 37.0 51.7 54.0 55.4
D17 36.5 34.5 30.2 27.3 29.7 21.7 20.0 14.5 13.4 9.4 7.5 9.3 11.7 15.1 17.0 18.8 21.7 0.0 16.1 26.3 41.0 43.3 44.7
D18 30.9 28.9 24.6 21.7 24.1 16.1 14.4 8.9 12.0 12.9 16.7 18.5 20.9 24.3 26.2 28.0 30.9 18.6 0.0 20.7 35.4 37.7 39.1
D19 26.4 24.4 20.1 17.1 19.6 11.6 14.2 19.2 22.3 23.2 27.0 28.8 31.2 34.6 36.5 38.3 41.2 28.9 23.3 0.0 30.9 33.2 34.6
D20 27.0 25.0 30.7 32.5 33.2 37.5 40.1 45.1 48.2 49.1 52.9 54.7 57.1 60.5 62.4 64.2 67.1 54.8 49.2 44.7 0.0 17.5 18.9
E1 27.0 25.0 30.7 32.6 33.2 37.5 40.1 45.1 48.3 49.1 53.0 54.7 57.1 60.5 62.5 64.2 67.1 54.8 49.2 44.7 22.0 0.0 5.0
E2 25.6 23.6 29.3 31.2 31.8 36.1 38.7 43.7 46.9 47.7 51.6 53.3 55.7 59.1 61.1 62.8 65.7 53.4 47.8 43.3 20.6 5.0 0.0

Table 6 was created using Dijkstra’s algorithm row by row. For example, in the first
row, the starting node is S1 and Dijkstra’s algorithm provides the shortest path from S1
to all nodes connected in the graph to guarantee finding the shortest path. This means
that Dijkstra’s algorithm is used only 23 times to compute all of Table 6. Additionally, it is
expected that the distance–task matrix does not change as the building does not change.
Hence, the DT matrix can be used as a look-up table to quickly plan complex sequences of
tasks without ever having to use Dijkstra’s algorithm.

In Table 6, the task of starting and ending at the same node without changing the floor
has been highlighted in yellow for reference. Once available, the DT matrix can be used to
obtain the first estimation of the distance required to complete any single task or multiple
tasks defined using a node list (nodeList):

TotalEnergy =
p−1

∑
i=1

DT(nodeList(i), nodeList(i + 1))·EPM + Elevator_time·EPT, (8)

where p is the number of nodes in the list, EPM is the average energy expended by the
robot in each linear meter of travel, Elevator_time is the average travel time spent in the
elevator and EPT is the energy expended by the robot in each unit of time when it is
not moving.
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As an example, the length of the trajectory required to implement task T3 of Table 5 is
defined by the nodeList = [S1, D3, S1] and is obtained using the following:

dT3 = DT(S1, D3) + DT(D3, S1) = 13.7 m + 15.7 m = 29.4 m. (9)

Alternatively, the cumulated trajectory length for the same task T3 of Table 5 re-
quiring navigation between floors, for example to node D3 on floor 1, is defined by the
nodeList = [S1− F0, E1− F0→ F1, D3− F1, E2− F1→ F0, S1− F0]. In this case, it is
considered that elevator E1 is defined to go upwards and elevator E2 to go downwards.
The cumulated path length is then obtained using the following:

dT3−F1 = DT(S1, E1) + DT(E1, D3) + DT(D3, E2) + DT(E2, S1) = 26.0 + 32.6 + 23.9 + 25.6 = 108.1 m (10)

5. Discussion and Conclusions

This paper addresses the path planning of an autonomous mobile robot that has
to transport and deliver small packages in a multi-story building. The mobile robot’s
path must drive the robot from a known starting point to a destination point. The main
assumptions made are that the building is equipped with remotely controlled elevators
and that the door of the target destination is open, so the mobile robot does not need to
open any door to deliver a package. This proposal is based on the manual definition of a
navigation tree combining the spatial and operational information required to move within
a multi-story building. The manual definition of this static navigation tree has similarities
to painting reference lines on the floor. However, instead of following a line painted on
the floor, the mobile delivery robot uses 2D LiDAR and a reference point cloud map for
self-localization, precise path tracking and obstacle avoidance. The navigation tree is used
to build a graph of each floor of the building and plan the path of the robot using Dijkstra’s
algorithm with the elevator nodes as the connectors between floors. Each graph is created
by combining the weighted segments defined in the navigation tree (used to prioritize
routes), the real distance between the nodes and an additional matrix used to highlight the
segments blocked by dynamic objects. The graph is visually represented as a combination
of directed and undirected segments to prioritize trajectories depending on the direction of
the motion.

The graph is based on the definition of the five types of nodes (see Table 1) labelled
with a letter (S, T, U, E or D) and an identification number (X). Start (SX) defines a main
charging and package distribution point. Trajectory (TX) defines intermediate points
required to specify straight trajectories between two nodes of the graph. Unique (UX)
defines nodes required to specify special and precise structural trajectories that cannot be
modified. Elevator (EX) defines the placement of an elevator. Destination (DX) defines the
expected locations of all possible destinations on each floor of the building. There are four
segment types that can be used in the graph (see Table 2). Unconnected segments have no
direct path between nodes. Undirected segments have no direction differentiation. Directed
segments define a weight depending on the direction of the trajectory. Blocked segments
are used to represent an existing directed or undirected segment that is temporarily blocked
by an unexpected dynamic obstacle.

The navigation tree used in this paper has directed segments with a weight of 1 to
depict a priority direction and a weight of 5 to depict a non-priority direction. A graph
is created by multiplying the weights of the navigation tree by the Euclidean distance
between nodes. Then, Dijkstra’s algorithm guarantees that the shortest path between
nodes is obtained considering the directions prioritized by the weighted segments. The
information of the obstacles detected during motion is used to update the blocked matrix
(see Table 3) and the graph, which is then used to search for a new shortest path to the
destination. The weighted graph defines trajectories with differentiated outgoing and
returning trajectories that are expected to be compatible with the typical movement of
people and other mobile robots in the building.
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As a reference application example, this paper details the navigation tree manually
defined to describe the layout of one representative floor of the Polytechnic School at the
University of Lleida. This example navigation tree has 101 nodes representing expected
pick-up and drop-off points. These nodes are connected with 171 segments that define a
sparse graph, which is explored quickly by Dijkstra’s algorithm to return the shortest path
between any two nodes. At this point, it should be noted that this sparse graph reduces the
size and connections of the graph by two or three orders of magnitude compared with the
dense graphs automatically created in a grid map application [85,87,96], which makes it
unnecessary to use heuristic searching methods such as the A-star, that does not guarantee
finding the best path [91,92] (as it performs a best-first search [93]).

Therefore, the size of the resulting sparse graph allows an autonomous mobile robot
to recalculate in real time the shortest path to the destination in case the planned trajectory
is temporarily blocked by an obstacle. For the sake of completeness, this paper describes
the flowchart of the implementation of Dijkstra’s algorithm (Figure 4) and also provides
the implementation of a reference source code [123].

In general, planning the path of a task assigned to a mobile delivery robot operating in
a multi-story building requires four sub-paths (Figure 7): a sub-path from the initial pick-up
node to the elevator and another sub-path from the elevator to the destination point; and
a return sub-path from the destination point to the elevator and from the elevator to the
main pick-up point. Motion planning is the dynamic task that is in charge of following the
planned path based on the motion and self-localization performances of the mobile robot.
Motion planning assumes that the robot is able to detect obstacles blocking its displacement.
This paper describes the flowchart of the motion-planning algorithm (Figure 8) that was
developed to simulate the trajectories of a mobile delivery robot. This motion planning will
be assessed in a future application of the APR-02 mobile robot operating as a delivery robot.

The simulated routing results have demonstrated the effectiveness of the path-planning
procedure applied to an autonomous delivery robot performing in a multi-story building
(Figure 9). Additionally, in the multi-story building studied in this paper, our analysis of
the cumulative path length of all possible trajectories from a common starting point to
all delivery nodes shows that navigation between floors generates an increase in the path
length with a median of 78.77 m.

This paper also proposes the computation of a distance–task matrix that can be used
to quickly estimate the path length between any two nodes on each floor and using the
elevators to navigate between the floors. The advantage provided by the use of the distance–
task matrix is that the heavy computations required to create this matrix only need to be
performed once. Hence, the distance–task matrix, used as a look-up table, saves time
during planning as it avoids the need to repetitively use Dijkstra’s algorithm to estimate
the length of each sub-path required to complete a specific task or a sequence of tasks. In
this work, all floors of the building have the same layout and use the same distance–task
matrix; in a general case with different layouts, each floor will need a specific navigation
tree and will have a different distance–task matrix. Additionally, the estimated path length
can be used to directly estimate the energy consumption of a mobile delivery robot [100]
performing a task or a sequence of tasks.

The final conclusion of this paper is that a predefined navigation tree can be used
for mobile robot path planning in a multi-story building. Specifically, the application of
Dijkstra’s algorithm to the sparse graph created from the navigation tree and the real
Euclidean distances between nodes provides the shortest path between any two nodes of
the graph without any outstanding memory or computational requirements. Finally, the
possibility of differentiating outgoing and returning trajectories and prioritizing motion
directions is expected to be compatible with the typical movement of people and other
mobile robots in the building.

As a future work, the path-planning method proposed in this paper will be imple-
mented using the prototype APR-02 mobile robot, which will be reconfigured as a delivery
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robot to be assessed in a multi-story building. The problem of opening and closing the
doors of rooms with a delivery robot will be also addressed in future works.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23218795/s1. This link is a zip file contains the graphs of the
application example, the graphs of one floor of the target building and one video showing the
simulation results.
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