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Abstract: The transition to intelligent transportation systems (ITSs) is necessary to improve traffic
flow in urban areas and reduce traffic congestion. Traffic modeling simplifies the understanding
of the traffic paradigm and helps researchers to estimate traffic behavior and identify appropriate
solutions for traffic control. One of the most used traffic models is the car-following model, which
aims to control the movement of a vehicle based on the behavior of the vehicle ahead while ensuring
collision avoidance. Differences between the simulated and observed model are present because the
modeling process is affected by uncertainties. Furthermore, the measurement of traffic parameters
also introduces uncertainties through measurement errors. To ensure that a simulation model fully
replicates the observed model, it is necessary to have a calibration process that applies the appropriate
compensation values to the simulation model parameters to reduce the differences compared to the
observed model parameters. Fuzzy inference techniques proved their ability to solve uncertainties in
continuous-time models. This article aims to provide a comparative analysis of the application of
Mamdani and Takagi–Sugeno fuzzy inference systems (FISs) in the calibration of a continuous-time
car-following model by proposing a methodology that allows for parallel data processing and the
determination of the simulated model output resulting from the application of both fuzzy techniques.
Evaluation of their impact on the follower vehicle considers the running distance and the dynamic
safety distance based on the observed behavior of the leader vehicle. In this way, the identification of
the appropriate compensation values to be applied to the input of the simulated model has a great
impact on the development of autonomous driving solutions, where the real-time processing of sensor
data has a crucial impact on establishing the car-following strategy while ensuring collision avoidance.
This research performs a simulation experiment in Simulink (MATLAB R2023a, Natick, MA, USA: The
MathWorks Inc.) and considers traffic data collected by inductive loops as parameters of the observed
model. To emphasize the role of Mamdani and Takagi–Sugeno FISs, a noise injection is applied
to the model parameters with the help of a band-limited white-noise Simulink block to simulate
sensor measurement errors and errors introduced by the simulation process. A discussion based on
performance evaluation follows the simulation experiment, and even though both techniques can be
successfully applied in the calibration of the car-following models, the Takagi–Sugeno FIS provides
more accurate compensation values, which leads to a closer behavior to the observed model.

Keywords: intelligent transportation systems; fuzzy inference; car-following model; control systems;
Mamdani; Takagi–Sugeno; online calibration

1. Introduction

The importance of traffic simulation models has increased in recent years with the
growing interest in driver assistance systems and autonomous driving systems. The devel-
opment and calibration of such complex systems can greatly benefit from the use of simula-
tions to reduce time and costs. Among other traffic simulation models, the continuous-time
car-following model is particularly useful in the design and fine-tuning of various advanced
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driver assistance systems (ADASs) such as adaptive cruise control [1] and cooperative
adaptive cruise control [2,3], or in developing autonomous driving technologies [4,5].

This paper aims to evaluate the performance of two well-known fuzzy inference tech-
niques, Mamdani [6] and Takagi–Sugeno [7], adapted for car-following model calibration.
To the best of our knowledge, this is the first study conducted to assess the performance of
the two techniques used for the calibration of the car-following model. However, similar
investigations have been carried out in many other domains where they serve to identify
the appropriate fuzzy inference system (FIS) to solve specific uncertainty problems [8], as
will be discussed in the next section.

The justification behind conducting this research also results from a literature search
and analysis on the main scientific databases, such as ISI Web of Science (WoS), Scopus, and
Google Scholar. The search was carried out between 2 June and 5 September. Table 1 shows
the total work related to the use of FISs in the calibration of the car-following models and
the specific query applied to each database. After removing the 13 duplicates, only 7 satisfy
the search objective of reporting an innovative scientific contribution [9–15], the other
articles being reviews or papers that do not fully satisfy the search objective. Unfortunately,
none of the analyzed research developed a comparison between the behavioral analysis of
the calibration of car-following models in relationships with the aforementioned inference
techniques.

Table 1. Quantitative scientific literature overview based on database search results.

Scientific Database Query Results

ISI Web of Science (WoS)
(“car-following” OR

“vehicle-following”) AND
“calibration” AND “fuzzy” (Topic)

11

Scopus
TITLE-ABS-KEY ( ( “car-following”

OR “vehicle-following” ) AND
“calibration” AND “fuzzy” )

10

Google Scholar
(“car-following” OR

“vehicle-following”) AND
“calibration” AND “fuzzy”

212

Total 233

This research addresses a scientific literature gap related to a comparative analysis of
the behavior of a car-following calibration system in the case of using Mamdani and Takagi–
Sugeno FISs. To achieve this goal, this article has the following scientific contributions:

• Performs a literature search on the main scientific databases such as ISI WoS, Scopus,
and Google Scholar and evaluates the results obtained based on their relevance to the
comparative analysis of the application of Mamdani and Takagi–Sugeno FISs in the
calibration of car-following models;

• Performs a literature review in two directions, one considering the approaches based
on the application of the two fuzzy inference techniques in the calibration of car-
following models, and another focusing on similar comparative investigations of these
techniques in other fields of research;

• Proposes an original methodology to perform the comparison of Mamdani and Takagi–
Sugeno FISs in the case of the calibration of car-following models by adapting their
characteristics according to the needs of the modeling of this concept;

• Implements a three-parallel-simulation model in Simulink (MATLAB R2023a, Natick,
MA, USA: The MathWorks Inc.) to reproduce the behavior of the observed car-
following model and to calculate the compensation values to be applied to the input
of the simulation model so that it replicates the behavior of the observed model; for
this last purpose, two calibration models are implemented corresponding to the two
fuzzy inference techniques;
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• Validates the proposed methods for the calibration of the car-following model using
real-world traffic data and provides a comparative evaluation in terms of the perfor-
mance of the Mamdani and Takagi–Sugeno FISs in the context of the calibration of the
car-following models;

• Identifies the limitations of this study and provides recommendations for future
research.

2. Literature Review

This discussion of related work follows two directions. The first analyzes the applica-
bility of fuzzy techniques in the implementation of the calibration process of car-following
models, as identified during the literature analysis of the papers found according to the
approach described in Section 1. The other direction consists of analyzing similar compar-
isons between Mamdani and Takagi–Sugeno FISs conducted in other domains, including
also other topics found related to traffic monitoring and control.

Bennajeh and Ben Said [9] proposed a genetic algorithm for the calibration of their
car-following model that uses an FIS in the lower level. This FIS was responsible for
the anticipation of the velocities and drivers’ behaviors. Chakroborty and Kikuchi [10]
transformed an FIS used for the calibration of a car-following model into an artificial neural
network (ANN) to better model the stimulus–response relationships. Chen et al. [11]
used camera calibration and video tracking technology in their comparison between a
fuzzy-based car-following model and the Gazis–Herman–Rothery (GHR) model. Nadimi
et al. [12] focused on collision avoidance and introduced a mixed index (MI) as a parameter
to be calibrated considering car-following scenarios. This parameter was built as the output
of an FIS having as input the time-to-collision (TTC) and post-encroachment time (PET).
Pop et al. [13] developed a hybrid model for the calibration of car-following models that
used a Kalman filter to eliminate the noises that affect the inputs of a Takagi–Sugeno
FIS. This approach showed good results compared to a Kalman-filter-only approach for a
standard car-following model, but also on a refined model that considered the lane change
behavior [14] according to the evaluation of daytime and night-time traffic profiles. Sun
et al. [15] built an FIS to calibrate car-following models based on two driving styles (i.e.,
aggressive and non-aggressive). The results showed good performance, especially in the
case of an intelligent driver model (IDM).

However, the use of fuzzy-based solutions showed promising results in addressing
the uncertainties in autonomous driving systems capable of ensuring collision avoidance.
Pérez et al. [16] developed a fuzzy logic controller to adapt the velocity of the vehicle
based on sensor data fusion retrieved with the help of radio frequency identification (RFID)
technology. Terán et al. [17] used a Mamdani FIS in the development of a driver assistant
responsible for alerting drivers in the case of traffic accidents based on the analysis of
the risk map of the road accidents and vehicle telemetry. Fernandez et al. [8] proposed a
classification system for driver behavior based on a Mamdani FIS that contains a knowledge
base learned through a genetic algorithm. Ronquillo-Cana et al. [18] used a Mamdani FIS to
classify driving styles in their approach that combined data obtained from sensors with the
behavioral analysis of the drivers resulting from the application of the analytical hierarchy
process (AHP) methodology on the questionnaires answered by these human subjects.

Similar comparative studies were conducted in various fields, such as optical [19]
and wireless [20] networks, magnetic bearing system control [21], chaotic time series
prediction [22], evaluation of user experience for specific applications [23], and streamflow
prediction in the hydrological field [24]. Although Takagi–Sugeno usually showed better
results, the research in the hydrological domain showed that the Mamdani FIS is more
suitable. This is mainly explainable through the easier process of expressing human
expertise with the Mamdani rules [24].

An increased number of articles that conducted comparisons between the fuzzy tech-
niques analyzed in this study was observed in the field of power engineering. Phunpeng
and Kerdphol [25] concluded that the Takagi–Sugeno FIS is more efficient in the adaptive
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inertia control of an islanded microgrid that considers the limitations and restrictions of
thermal and wind generation. This technique was also appropriate for optimizing power
extraction from photovoltaic solar systems in a simulation experiment considering various
radiations [26]. The problem was formulated as a problem of maximum power point
tracking (MPPT) with the goal of identifying the appropriate converter duty cycle to adapt
to changes in environmental conditions, considering as input variables the slope of the
voltage–power diagram and its changes [26,27]. Samavat et al. [26] also investigated the
influence of the number of input membership functions, while Boutaybi et al. [27] ana-
lyzed the performance of the two fuzzy techniques compared to the perturb and observed
method. The Mamdani FIS was also not considered suitable for optimizing the weight on
bit during drilling operations in the research conducted by Khosravanian et al. [28] for two
producing fields in Iran (i.e., Ahwaz oil field and Marun gas field formations).

However, the studies performed are not limited to the comparison of these two fuzzy
techniques: they also investigated possible directions of optimization that can benefit in
both cases. Bagis and Konar [29] applied the artificial bee colony algorithm to optimize the
process of determining the parameters of the fuzzy models. Their experiment performed
for a nonlinear system consisting of a microstrip antenna demonstrated a good contribution
in terms of accuracy, reliability, and processing time.

The existing literature also offers some comparisons between Mamdani and Takagi–
Sugeno FISs related to intelligent transportation systems (ITSs), except for the topic of
car-following calibration. Saleh et al. [30] performed a comparison of these techniques in
the design of a speed controller for a remote car, the analysis of the results showing better
results in the case of the Takagi–Sugeno FIS. Another topic investigated is the prediction
of traffic flow based on historical data [31], where the Takagi–Sugeno technique achieved
faster processing times compared to Mamdani. However, the Mamdani technique proved
to have a better performance, in terms of percentage error, in the prediction of traffic noise
levels, as argued by Saleh et al. [32] based on the results of their simulation experiment.

3. Materials and Methods

This research applies the methodology illustrated in Figure 1 to assess the impact
of Mamdani and Takagi–Sugeno FISs in the calibration process of a continuous-time car-
following model [33,34]. Since the measurement of sensor data and the simulation process
are governed by uncertainty because of the errors than can be introduced in the simulated
model, this problem is made suitable for implementation with an FIS [8,13,14]. In this way,
the identification of the right compensation value that should be applied to the inputs of
the simulated car-following model to counteract the aforementioned errors operates with
a metric of fuzzy logic called the degree of membership [35]. This evaluation implies the
existence of an observed model, a simulated model, and a validation system responsible
for the identification of how faithfully the simulation model replicates the behavior of a
real-world system (i.e., observed model).

A simulated car-following model has as main components a subsystem designed for
parameters handling and a subsystem responsible for the control strategy of the vehicle
behind (i.e., FV—follower vehicle) based on the observed behavior of the vehicle moving
ahead (i.e., LV—leader vehicle), while ensuring collision avoidance [36]. In this research, the
analysis of the calibration process requires the design and implementation of two calibration
models, one using the Mamdani and the other the Takagi–Sugeno inference engines, in
establishing the corresponding compensation values s_OFFSET_M and s_OFFSET_TS to
be applied to the simulated running distance of FV (x4).

The calibration system uses RELATIVE_VELOCITY and INTERVEHICLE_SPACING
at time t − τ as input variables in the alignment of the simulated value of the running
distance of the FV with the value corresponding to the observed model at time t for both
cases of inference engines. The validation system compares the dynamic characteristics of
the observed system at time t with the simulated values obtained at time t after applying
the compensation values according to the output of the calibration system for both cases of
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inference engines. As shown in Figure 1, the simulated system maintains the same control
strategy [33,34] while separately handling the parameters for both cases evaluated in
this article.

Figure 1. Methodological overview.

In the following subsections, this article presents in detail the characteristics of each of
the systems involved in this research. Furthermore, an experimental case study based on
real traffic data is chosen to validate this research. All the following information allows
other researchers to replicate this study and facilitates future developments.

3.1. Continuous-Time Car-Following Modeling and Calibration

The representation of traffic phenomena at microscopic level ensures a better granu-
larity in identifying the root cause of traffic congestion and simplifies the identification of
appropriate measures to improve the traffic control systems. According to Yin et al. [37],
this road traffic model consists of four levels of representation, such as crossroads configu-
ration, links, lane choice, and car following. The last level mentioned considers a single
lane of traffic where the vehicles are moving in a chain and describes the control strategy of
the vehicle behind (FV—follower vehicle) based on the observed behavior of the vehicle
moving ahead (LV—leader vehicle) [36].

Figure 2 illustrates the concept of car following. This concept defines the movement in
a traffic lane based on pairs of vehicles consisting of an LV and FV. The dynamic interaction
between them should consider the behavior of the LV, the FV permanently adapting its
control strategy to avoid collisions and maintain a safety distance during movement.
Figure 2 depicts the dynamic characteristics associated with the concept of car following,
such as the running distances of LV (x2) and FV (x4) and the evolution of the dynamic
distance between the vehicles from s(t) to s(t− τ) during a period of time equal to τ. These
distances are directly influenced by driver behavior, and an update in the velocity of the LV
should be immediately observed by the FV and an acceleration or deceleration should be
applied accordingly. In the case of autonomous driven vehicles, the observed behavior of
the LV results from the sensor data processing, so the existence of high measurement errors
can lead to traffic collision between the FV and LV.

Figure 2. Dynamic characteristics of the car-following model [14].
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The state-space representation of the car-following model in continuous time and
without time delay in Equation (1) uses the dynamic characteristics illustrated in Figure 2
and also new characteristics such as the velocity (x1) and acceleration (u1) of the LV, the
velocity (x3) and acceleration (u2) of the FV, and the standard safety distance S [33,34].


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 ·


x1

x2

x3

x4

+


1 0
0 0
0 1
0 0

 ·
[

u1

u2

]

y =
[
0 −1 0 1

]
·


x1

x2

x3

x4

+ S

(1)

The calculation of the standard safety distance S applies the average length of the
vehicle for passenger cars (L = 4.50 m) according to Equation (2). The reason behind this
calculation is to avoid collisions between the FV and LV during movement.

S = L · (1 + x3

16.10
) (2)

The purpose of the calibration process is to identify the compensation values that will
be applied to the parameters of the simulated model to ensure that it fully reproduces
the behavior of the observed system. Equation (3) is the continuous-time state-space
representation of the calibration model corresponding to a car-following scenario [38]. This
illustrates the parameters to be calibrated and the corresponding compensation values such
as γ1(t) for the velocity of the LV, γ3(t) for the velocity of the FV, and γs(t) for the dynamic
distance between vehicles.

ẋ1(t) = x1(t) + γ1(t)
ẋ3(t) = x3(t) + γ3(t)
ṡ(t) = s(t) + [x1(t)− x3(t)] · T + γs(t)

(3)

Furthermore, the calibration considers the measurement errors that are already part of
the observed parameters as defined in (4) considering a space length T [38]. The notation
used has the following significance:ζ1(t) is the measurement error of the LV velocity, ζ3(t)
is the measurement error of the FV velocity, and ζs(t) represents the measurement error of
the dynamic distance between vehicles.

ẋobs
1 (t) = x1(t) + ζ1(t)

ẋobs
3 (t) = x3(t) + ζ3(t)

ṡobs(t) = s(t) + ζs(t)

(4)

3.2. Fuzzy-Based Calibration of Continuous-Time Car-Following Models

Implementing an FIS (Figure 3) requires the following key components: fuzzification,
knowledge base, inference, and defuzzification. The role of each component is explained
further in relation to the topic of this research. Fuzzification is responsible for converting
the numerical input values (i.e., the observed relative velocity RELATIVE_VELOCITY
and the spacing INTERVEHICLE_SPACING between the LV and FV at time t− τ) into
linguistic variables. The names chosen for the linguistic variables are similar to those
existing in other similar studies [21,27,39,40], such as negative big (NB), negative small
(NS), zero (ZE), positive small (PS), and positive big (PB). The knowledge base contains the
rules expressed as “IF THEN” conditions that define the logical relations between the inputs
RELATIVE_VELOCITY and INTERVEHICLE_SPACING and the output s_OFFSET_x,



Sensors 2023, 23, 8791 7 of 18

where x = {M; TS} is defined separately for Mamdani (Section 3.2.2) and Takagi–Sugeno
FISs (Section 3.2.3). These two components (i.e., fuzzification and knowledge base) are
the same for both the Mamdani and Takagi–Sugeno FISs and are further described in
Section 3.2.1, specially designated for the common configuration.

Figure 3. The main components of a fuzzy inference system (FIS).

Inference represents the decision-making process for the assessment of output values
based on the degree of membership of the inputs according to the content of the knowl-
edge base. Details related to each inference method are available in the specific sections
(Sections 3.2.2 and 3.2.3).

Defuzzification converts the fuzzy sets [35] into a numerical value s_OFFSET_x,
where x = {M; TS} represents the dynamic distance between the FV and LV that is used
as a compensation value to update, at time t, the simulated parameter of the running
distance x4 corresponding to the FV. The scientific literature uses the term “crisp value”
when referring to this output as a numerical value of an FIS.

3.2.1. Common Configuration

The fuzzification step is similar to the approach of Li and Zhu [39], who developed
a new control strategy for car-following scenarios. The main difference arises from the
choice of a minimum distance between the LV and FV (of S = 4.50 m) because this article
uses real-world traffic data for validation instead of simulation-generated data as in the
research by Li and Zhu [39] and, consequently, considers Equation (2) that, according to
Khodayari et al. [34] and Pan and Zheng [33], avoids collisions during a car-following
scenario. This influences the definition of both input linguistic variables, with the detailed
intervals shown in Table 2. In all cases, the significance of the membership functions is
defined at the beginning of Section 3.2. RELATIVE_VELOCITY is expressed in m/s and
the distance INTERVEHICLE_SPACING is expressed in meters.

Table 2. Linguistic variables for the input of the fuzzy inference systems (FISs).

Variable Name Membership Function Name Range Membership Function Type

RELATIVE_VELOCITY
NB [−25; 0] trapezoidal
M [−4.50; 4.50] triangular
PB [0; 25] trapezoidal

INTERVEHICLE_SPACING

NB [−30; 0] trapezoidal
ZE [−6.75; 6.75] triangular
PS [0; 9] trapezoidal
PB [9; 30] trapezoidal

Figure 4 shows a visual representation of the inputs as a result of the implementation
of the FIS in MATLAB R2023a, Natick, MA, USA: The MathWorks Inc. using the Fuzzy Logic
Toolbox. The expression of the linguistic variable called RELATIVE_VELOCITY can have
the membership values in one of the fuzzy sets NB, ZE, or PB. The choice of these three
fuzzy sets is related to the approach of Li and Zhu [39] and is strengthened by the need for
a fast decision-making process to identify the right reaction in the control strategy of the FV
based on the observed behavior of the LV. The reading of sensor data can introduce delays,
and, consequently, an erroneous value received from the sensor network could lead to an
unwanted collision between the FV and LV. In this way, it is not feasible to define the fuzzy
sets NS and PS for this variable because their use cannot guarantee collision avoidance.
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For the variable INTERVEHICLE_SPACING, the fuzzy sets NB, ZE, PS, and PB can be
defined because they represent the ideal spacing between the FV and LV as they result from
the observed model and there is no need for a real-time read of the sensor data. However,
the use of NS is not necessary because a correlation with the measurement of sensor data
can lead in some cases to collisions; consequently, the choice was to adopt a prudential
attitude for this variable also. The degree of membership for each input variable complies
with the definition from Table 2.

Figure 4. Membership functions of the inputs of the fuzzy inference systems (FISs).

Table 3 contains the knowledge base associated with Mamdani and Takagi–Sugeno
FISs. Consequently, this matrix form expresses the mapping between the output
s_OFFSET_M and s_OFFSET_TS, respectively, of the inference engine based on the fuzzi-
fied inputs RELATIVE_VELOCITY and INTERVEHICLE_SPACING.

Table 3. Fuzzy rules for the inputs and output variables of the fuzzy inference systems (FISs).

INTERVEHICLE_SPACING
RELATIVE_VELOCITY NB ZE PS PB

NB PB PS ZE NS
ZE PS ZE NS NB
PB ZE NS NB NB

3.2.2. Mamdani

Table 4 presents the membership functions for the output of the Mamdani FIS; the
significance is the same as defined at the beginning of Section 3.2, and s_OFFSET_M
is expressed in meters. The reason behind choosing the range as [−25.50; 25.50] for the
output s_OFFSET_M is that the implemented car-following model by default sums the
standard safety distance S in the FV control strategy as defined in Equation (1). Follow-
ing this approach, the range chosen for s_OFFSET_M corresponds to the range set for
INTERVEHICLE_SPACING.

Table 4. Linguistic variables for Mamdani fuzzy inference systems (FISs).

Variable Name Membership Function
Name Range Membership Function

Type

s_OFFSET_M

NB [−25.50;−4.50] trapezoidal
NS [−9; 0] triangular
ZE [−4.50; 4.50] triangular
PS [0; 9] triangular
PB [4.50; 25.50] trapezoidal
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A graphical representation of the membership functions associated with the output
s_OFFSET_M is available in Figure 5. The method chosen for defuzzification in the case of
the Mamdani FIS uses the center of gravity technique (i.e., centroid); this method is applied
in many other works [20,27,28,41,42]. According to this defuzzification technique, a crisp
output Z calculated for continuous values uses the curve of the scaled output membership
function µ(x), as expressed in Equation (5) [29,43].

Z =

∫
µ µ(x)x dx∫
µ µ(x) dx

(5)

Figure 5. Membership functions of the output of the Mamdani fuzzy inference system (FIS).

Figure 6 illustrates a three-dimensional view of the relationship between the in-
puts (i.e., RELATIVE_VELOCITY and INTERVEHICLE_SPACING) and the output (i.e.,
s_OFFSET_M) of the Mamdani FIS. The flat region on the right shows a constant behavior
in the output of the degree of membership of the output fuzzy set. The yellow area indi-
cates the area with the most activated output fuzzy set associated with the input values of
RELATIVE_VELOCITY and INTERVEHICLE_SPACING. The large flat area associated
with this yellow area shows that the activation of it has a constant behavior.

Figure 6. Surface visualization of the Mamdani fuzzy inference system (FIS).

3.2.3. Takagi–Sugeno

Figure 7 shows a visual representation of the configuration set for the membership
functions associated with the output s_OFFSET_TS. The significance of the membership
functions is kept as at the beginning of Section 3.2. Compared to the Mamdani FIS, the
Takagi–Sugeno technique uses crisp values to represent the output. The choice of values
corresponding to the membership functions is argued through a worst-case scenario where
an additional value of PB equal to the standard safety distance S = 4.50 m should be
applied as a compensation value to the simulated running distance of the FV x3 to avoid
collisions with the LV. Otherwise, the application of a compensation value corresponding to
NB contributes to the stability of the simulated model and directly influences the behavior
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of other pairs of (LV, FV) moving in a chain inside the same traffic lane, behind the pair of
(LV, FV) targeted for calibration.

Figure 7. Membership functions of the output of the Takagi–Sugeno fuzzy inference system (FIS).

The defuzzification of the Takagi–Sugeno FIS uses the weighted average technique for
the output and considers the constant values defined for the five membership functions
represented in Figure 7. Consequently, Equation (6) expresses the calculation of the crisp
output Z as a weighted average of the total clipped singletons [30,31].

Z =
∑n

i=1 µ(zi) · zi

∑n
i=1 µ(zi)

(6)

The surface diagram describing the three-dimensional relationship between the inputs
RELATIVE_VELOCITY and INTERVEHICLE_SPACING, respectively, and the output
s_OFFSET_TS of the Takagi–Sugeno FIS, is available in Figure 8.

Figure 8. Surface visualization of the Takagi–Sugeno fuzzy inference system (FIS).

3.3. Experimental Case Study—Simulation Model

The simulation experiment uses Simulink (MATLAB R2023a, Natick, MA, USA: The
MathWorks Inc.) to implement the car-following model (Figure 9). Compared to the
approach of Khodayari et al. [34] and Pan and Zheng [33], which represents the basis of
the model used in this research, this simulation model was modified to introduce parallel
calculations for the running distance x4 of the FV and for the dynamic safety distance
y to cover the needs for the visualization of the simulated behavior of the car-following
model in the presence of Mamdani and Takagi–Sugeno FISs, respectively. This allows for
an easier comparison to the observed model, which is considered as the ideal model (i.e.,
free of measurement errors). Consequently, Figure 9 illustrates three implementations of
the continuous-time car-following model [33,34] marked and referred accordingly in the
picture to comply with the methodology described in Figure 1. The observed car following
uses as input the velocities of the LV (x1) and FV (x3) and calculates the output consisting
of the dynamic safety distance (y) according to Equations (1) and (2).
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Following the methodology illustrated in Figure 1, a calibration system is introduced
to update the parameters of the simulated model by applying the right compensation
values so that this model can fully replicate the behavior of the observed model. Since there
are two fuzzy techniques to be evaluated within this research (i.e., Mamdani and Takagi–
Sugeno), Figure 9 shows its parallel implementation and emphasizes the application of the
determined compensation values (i.e., s_OFFSET_x, x = {M; TS}) to the corresponding
simulated car-following models. To observe the behavior of the two fuzzy-based calibration
models, measurement and simulation errors are simulated by noise injection using the
Simulink block entitled Band-Limited White Noise with the following characteristics: noise
power = 0.10, sample time = 0.10, and seed = 23,341 [13]. The noise produced is a function
of normally distributed random numbers and includes both measurement and simulated
model errors.

Figure 9. Simulation model: implementation of the car-following model using Simulink
(MATLAB R2023a, Natick, MA, USA: The MathWorks Inc.).

The detailed view of the calibration subsystem (Figure 10 shows that it contains a
parallel implementation of Mamdani and Takagi–Sugeno FISs as shown in the conceptual
model (Figure 1). The development of these FISs uses the Fuzzy Logic Toolbox available in
MATLAB R2023a (Natick, MA, USA: The MathWorks Inc.) and complies with the definition
of membership functions previously presented in this methodology. This implementation
uses the notation INTERVEHICLE_SPACING to rename the dynamic distance s (i.e., the
ideal distance between the FV and LV as it results from the observed model without the
application of the standard safety distance S) so that it can comply with the fuzzy theory
that uses the notation with easily interpreted significance [24] and is according to the
notation adopted in the definition of membership functions. The use of the Simulink block
entitled Transport Delay immediately after the output of the Fuzzy Logic Controller blocks aims
to cover the processing and response time of these units and, consequently, to ensure that
the proposed calibration model fits to real-time processing.

The validation of the calibration models uses real traffic data from the local center for
traffic monitoring and control in Timis, oara city, Romania. The input data consist of velocity
profiles (Figure 11) for the LV and FV, collected by inductive loop detectors from urban
infrastructure during August 2019; the corresponding section of the road is located between
two crowded crossroads (i.e., Liviu Rebreanu–Calea S, agului and Liviu Rebreanu–Gheorghe
Ranetti) [13].
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Figure 10. Simulation model: implementation of the comparative calibration system using Simulink
(MATLAB R2023a, Natick, MA, USA: The MathWorks Inc.).

Figure 11. Simulation model: velocity profiles for the leader vehicle (LV) and the follower vehicle
(FV) used as input for the implementation of the car-following model using Simulink (MATLAB
R2023a, Natick, MA, USA: The MathWorks Inc.) [13].

3.4. Performance Evaluation

Performance analysis considers the calibration time of Mamdani and Takagi–Sugeno
FISs as the main method of evaluation; this metric is also observable based on a visual
analysis of the obtained results.

To obtain a better overview in terms of performance, this research also uses the same
methodology as in other similar studies [9,11,31,44–46]. These evaluation metrics are the
mean absolute error (MAE) and root mean square error (RMSE). Equations (7) and (8)
express the calculation for these metrics used for performance evaluation, where Yobs

i and
Ysim

i are the i-th recordings of observed and simulated values from a total of N recorded data.

MAE =
1
N
·

N

∑
i=1
|Yobs

i −Ysim
i | (7)

RMSE =

√√√√ 1
N
·

N

∑
i=1

(
Yobs

i −Ysim
i
)2 (8)

The calculation of these metrics for the running distance x4 of the FV and for the
dynamic safety distance y is available in Section 5.

4. Results

The simulation results (Figure 12) show that both the Mamdani and Takagi–Sugeno
FISs succeeded in calibrating the car-following model used in this simulation experiment.
A visual analysis of the results obtained demonstrates that collision avoidance is ensured
in both cases, something recognized by the absence of intersection points between the
running distances of the LV (x2) and FV (x4).

The Takagi–Sugeno FIS behaves better than the Mamdani FIS in identifying the time-
varying appropriate compensation values that, applied to the simulated running distance
of the FV (x4_simulated_TS), are close to the observed value x4 compared to the simulated
running distance of the FV (x4_simulated_M) obtained in the case of the Mamdani FIS. A
detailed overview of the calibration process also demonstrates a more stable calibration
process in the case of the Takagi–Sugeno FIS, while the Mamdani FIS needs more time to
achieve a stable behavior, and some perturbations appear at the beginning. The perturba-
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tions are strongly related to the definition of the output membership functions as fuzzified
values in the case of the Mamdani FIS, while the definition of the output membership
functions for the Takagi–Sugeno FIS as a crisp constant value offers a more predictable
support in identifying the appropriate compensation values.

Figure 12. Experimental results: running distances for leader vehicle (LV) and follower vehicle (FV)
during calibration process.

At the same time, between achieving stable behavior and successfully calibrating the
car-following model, the Mamdani FIS introduces a higher uniform increase in computation
error that leads to scaled-down values of the running distance of the FV (x4_simulated_M)
compared to the values obtained in the case of the Takagi–Sugeno FIS (x4_simulated_TS).
However, these scaled-down values also appear in the case of the Takagi–Sugeno FIS
compared to the observed value of the running distance of the FV (x4), but are smaller; a
complete overview of this impact is provided in Section 5.

The effect of the two implemented calibration methods is also visible in the output
of the car-following model consisting of the dynamic safety distance y, as illustrated in
Figure 13. Here, a better overview of the impact of the differences between the two fuzzy
techniques is provided. The application of the standard safety distance S according to
Equation (2) makes it more visible that the Takagi–Sugeno FIS achieves better performance
compared to the Mamdani FIS. Based on several computations, the effect of the scaled-
down simulated values of the FV running distance is reflected in the scaled-up simulated
values of the dynamic safety distance y.

Figure 13. Experimental results: dynamic safety distance during calibration process.

5. Discussion

The results obtained after performing the simulation experiment demonstrate that
both fuzzy techniques analyzed in this article are suitable for applications responsible
for the online calibration of car-following models and fit to real-time processing. This
statement is strengthened by the existing literature because the uncertainties related to
the calibration process of car-following models require the implementation of applications
where interpretability and linguistic descriptions are needed (e.g., decision support systems,
expert systems, etc.) [6,24,47]. At the same time, the Takagi–Sugeno FIS is considered
suitable for applications (e.g., control systems, function approximation, etc.) that need crisp
numerical outputs [7,26,27].

However, there are differences in terms of computational efficiency; the existence
of perturbations and higher scale-down simulated values of the FV running distance
before the system achieves the calibrated state are explained by the existing literature. The
Mamdani FIS identifies fuzzy output values through the aggregation of multiple fuzzy rule
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outputs [6,24,26,27], like the center of gravity technique applied in this research, while each
fuzzy rule contributes a weighted linear function to the overall output in the case of the
Takagi–Sugeno FIS [7,26,27].

Table 5 presents the values of the performance metrics used in this research, calculated
based on the obtained values of the simulated running distance x4 of the FV corresponding
to both fuzzy techniques used in the calibration of the car-following models. MAE expresses
the average magnitude of errors between the observed and simulated values and shows
that the Takagi–Sugeno FIS is able to identify the most appropriate compensation values,
leading to closer values of the simulated FV running distance to the observed model
compared to the values obtained based on the Mamdani FIS. Furthermore, analysis of the
RMSE values indicates that the Takagi–Sugeno FIS has better predictive accuracy compared
to the Mamdani FIS.

Table 5. Comparison between results error in the running distance x4 of the follower vehicle (FV).

Fuzzy Inference System MAE RMSE

Mamdani 9.3816 11.6682

Takagi–Sugeno 2.5408 3.1904

Table 6 shows the values calculated for the performance metrics used in this research
(i.e., MAE and RMSE) based on the dynamic safety distance y to validate the application of
Mamdani and Takagi–Sugeno FISs in the calibration of a continuous-time car-following
model. Similar to the evaluation of these metrics in the case of running distance x4, the
Takagi–Sugeno FIS shows better performance demonstrated by reduced simulation errors.
The efficiency of both techniques is visible because the differences in the values obtained
for these indicators are similar to those obtained in Table 5, even if here the simulation
and measurement errors related to the velocity of the LV (x2_simulated) are additionally
considered. The application of the standard safety distance S in the calculation of y has
no effect on influencing the performance of the two fuzzy techniques because it applies to
all the time-varying processed parameters and is a constant value that is provided by the
car-following strategy and cannot be measured.

Table 6. Comparison between results error in the dynamic safety distance y.

Fuzzy Inference System MAE RMSE

Mamdani 9.7868 11.6840

Takagi–Sugeno 2.9459 3.3012

Thus, even if both fuzzy techniques can be successfully applied for the calibration of
car-following models, the Takagi–Sugeno FIS is characterized by more accurate results, the
computational efficiency being ensured by the use of constant crisp values in the definition
of the membership functions and the application of the weighted average technique in the
determination of the FIS output.

6. Conclusions

This article addresses a gap in the scientific literature consisting of the absence of
a comparative analysis between the application of Mamdani and Takagi–Sugeno FISs
for the calibration of car-following models. The proposed methodology for performing
this comparison consists of defining the membership functions of both FISs considering
the standard safety distance that should be applied in the FV control strategy to avoid
collisions during travel. Although the input membership functions and the fuzzy rules
are the same, the differences arise from the definition of the output membership functions
(i.e., the Mamdani FIS contains fuzzified values and the Takagi–Sugeno FIS has constant
crisp values).
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A simulation experiment performed in Simulink (MATLAB R2023a, Natick, MA, USA:
The MathWorks Inc.) shows that both FISs succeeded in calibrating the car-following model.
However, the Takagi–Sugeno FIS obtains better results in terms of performance according
to the evaluation of performance metrics represented by MAE and RMSE, widely used for
evaluation in related work. The impact of the computation errors that lead to scaled-down
values of the running distance of the FV is also observable in both cases, but the differences
are smaller in the case of the Takagi–Sugeno FIS.

Furthermore, the Takagi–Sugeno FIS is suitable for use in the calibration process
of car-following models based on the stability process of the identification of the time-
varying compensation values, whereas the approach using the Mamdani FIS is affected
by perturbations. The source of these perturbations is strongly connected to the definition
of output membership functions: the higher surface of values covered in the case of the
Mamdani FIS can introduce erroneous compensation values, while the Takagi–Sugeno FIS
offers a more stable behavior because of the definition of output membership functions as
crisp constant values.

However, this research also has some limitations that can be addressed in future
research. This results from the intervals chosen for the membership functions and also
from the type of function chosen. The particularity of the continuous-time car-following
model used in this research can influence the behavior of the calibration method and can
impact the performance of the FIS. The weaknesses of this research are also related to the
use of simulated fault injection to represent the errors from the measurement of sensor
data and those introduced by the simulation process, the configuration of the Simulink
Band-Limited White Noise block also having influence on the calibration process.

7. Future Research

Future research can perform comparative evaluations of these two fuzzy techniques
in the presence of additional control mechanisms such as genetic algorithms or neural
networks. Also, it is worth analyzing how Mamdani and Takagi–Sugeno FISs behave
for the calibration of traffic models at upper levels of modeling, such as mesoscopic
and macroscopic.

Future research can also address the limitations of this research described at the end
of Section 6. It is worth analyzing the impact of the use of combinations of different types
of membership function (i.e., Gaussian, triangular, trapezoidal, etc.) on the calibration
of car-following models. Also, changes can be made in the intervals associated with the
membership functions, and the compensation values obtained can be monitored.

The use of fault injection mechanisms can be replaced by approximated values of the
possible measurement errors calculated according to the worst-case scenario by subtracting
the values corresponding to the tolerance associated with the sensors used for traffic data
acquisition. Currently, the data used in this research are provided by the local traffic
management center, and the obtained data do not have details related to the data sheets of
the inductive loops placed in the city for traffic monitoring.

Another way to collect data for the simulation is to use specific simulators and human
subjects. In addition to recording the traffic profiles from the simulator, the emotional
behavior of the human subject can also be recorded. The use of tools such as eye-tracking,
galvanic skin response analysis, or heart rate analysis facilitates the classification of driver
behavior that can be introduced as a third input variable of the FIS. This is essential for
adopting the appropriate car-following strategy in the case of autonomous vehicles due to
the possible interaction with human-driven vehicles on the road.
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