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Abstract: Dehydration is a common problem among older adults. It can seriously affect their
health and wellbeing and sometimes leads to death, given the diminution of thirst sensation as
we age. It is, therefore, essential to keep older adults properly hydrated by monitoring their fluid
intake and estimating how much they drink. This paper aims to investigate the effect of surface
electromyography (sEMG) features on the detection of drinking events and estimation of the amount
of water swallowed per sip. Eleven individuals took part in the study, with data collected over
two days. We investigated the best combination of a pool of twenty-six time and frequency domain
sEMG features using five classifiers and seven regressors. Results revealed an average F-score over
two days of 77.5 ± 1.35% in distinguishing the drinking events from non-drinking events using
three global features and 85.5 ± 1.00% using three subject-specific features. The average volume
estimation RMSE was 6.83 ± 0.14 mL using one single global feature and 6.34 ± 0.12 mL using a
single subject-specific feature. These promising results validate and encourage the potential use of
sEMG as an essential factor for monitoring and estimating the amount of fluid intake.

Keywords: dehydration; electromyography sensors; EMG features; fluid intake; drinking; classification;
fluid estimation

1. Introduction

Dehydration affects older adults and can have detrimental effects on their health [1].
Older adults may feel less thirsty, which can make them drink less fluid since their bodies
are less effective at maintaining fluid balance [2]. Additionally, they may be more prone
to conditions that increase their risk of dehydration, such as kidney disease, diabetes,
and certain medications [3]. They face considerable hydration concerns since their bodies
contain 10 to 15% less water which may lead to many health problems [4]. A review revealed
that most older adults are more susceptible to renal issues and electrolyte abnormalities
due to medications that lead to dehydration, making them more susceptible to changes in
conditions and illnesses [4].

Fluid charts are one of the crucial clinical tools used in hospitals and care facilities
where nurses keep an eye on the consumption of meals and liquids to track patients’ fluid
intake and output throughout the day [5]. However, fluid charts have limitations because
nurses sometimes fail to note a patient’s intake [6]. According to Asogan (2021), only 25%
of the fluid charts at Kettering General Hospital had precise measurements, and only 14%
had thorough records of all intakes and outputs [7]. Therefore, there is a need to develop
technologies like wearable technologies for accurate fluid intake estimation and monitoring
to reduce the risk of dehydration.

There is a growing interest in the potential of wearable technologies to monitor various
aspects of health, including fluid intake [8]. Wearable devices may facilitate real-time
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monitoring and tracking of fluid intake. Many wearable technologies have been used to
monitor fluid intake, such as accelerometers, inertial sensors, smartwatches, cellphones,
acoustic sensors, and electromyography sensors [9–14]. These items are widely available
on the commercial market and have helped to identify drinking activities like drinking
from different containers (cups, bottles, straws, and glass) and continuous or discrete
volumes of fluid [6,15]. However, they cannot reliably estimate the fluid volume, despite
research showing that they can detect drinking events using machine learning with an
accuracy of >80%. Additionally, many older adults dislike these devices and do not
wish to wear them [16]. Another approach to measuring fluid intake is using smart
surfaces with embedded sensors [17]. These surfaces are impractical as they require
the users to lift the containers used for drinking and place them on the surface every
time they drink to determine the drinking actions and record the drink amount [18].
Any additional object placed on the surface or spilling the content in a sink will give
inaccurate information, leading to erroneous detections. Furthermore, some vision and
environmental approach techniques, like wearable cameras and radar, have focused only
on intake detection [8]. However, the detection accuracy depends on the camera resolution
and the surrounding environment (lighting, processing power, and data storage), most of
which have yet to be operated in real time. Nevertheless, these techniques can recognise
drinking events with close to 90% accuracy using deep learning techniques, but determining
whether fluid has been consumed and estimating the volume of fluid consumed remains
challenging [11,19–21].

Some techniques are based on physiological signals to monitor fluid intake, including
surface electromyography (sEMG) sensors. The use of physiological sensors to capture
swallowing events is based on the fair assumption that fluid consumption can only be
confirmed after it has been swallowed. Malvuccio and Kamavuako (2021) applied sEMG
recordings of individual and continuous swallows to distinguish between liquid and
saliva swallows using fine K-nearest neighbour (KNN) with an accuracy of 86.7 ± 5.52%.
Additionally, they achieved an accuracy of 99.0± 1.30% in classifying between the noise and
swallows using fine Gaussian support vector machine (SVM) [6]. They also investigated
the effect of sEMG features on classifying the swallowing events and estimating fluid
volume [21]. Ismail and Kamavuako estimated the volume of the fluid intake using
sEMG with a root mean square error of 1.37 ± 1.10 mL using random forest (RF) and one
feature [22].

Surface EMG and microphones were used to continuously monitor swallowing events
by Amft and Tröster to discriminate between solid and liquid meals in a single partici-
pant [23]. Nicholls et al. (2022) used EMG to detect eating behaviour and combined it
with real-time wristband haptic feedback to facilitate mindful eating. A support vector
machine was used for chewing classification, with an F-score of 0.95 and for swallowing
classification, with an F-score = 0.87 [24]. Vaiman et al. (2003) used EMG to make a database
for the duration and amplitude of muscle activities of 100 children during swallowing
and continuous drinking which can be used to detect abnormalities in pediatric patients
and provide a basis for comparison of swallowing performance, both within and between
patients [25]. Nederkoorn et al. (1999) measured the swallowing activity using (EMG) to
assess the amount of saliva secreted using the number of peaks in the EMG activity of
the musculus digastricus [26]. Vinyard et al. (2016) used EMG to study the relationships
between food textures and oral processing. In this study, food scientists used EMG from the
feeding muscles as (1) a general measure of food texture, (2) a measure of oral physiology,
(3) an estimate of absolute force, and (4) a measure of muscle work [27]. Another study
integrated the EMG sensor into wearable glasses to measure temporalis muscle activity to
detect intake-related events. It achieved 96% accuracy for counting the number of chewing
cycles and up to 90.8% accuracy for classifying five types of food [28]. sEMG has been used
in some studies to monitor food and fluid. However, its sole use to detect fluid-swallowing
events from a mixed pool with solid and saliva swallows and cough has not been attempted
before and the number of studies that estimate the volume remains limited.
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The challenge is not only to classify the liquids but also to estimate the volume of
the fluid intake. Therefore, this study aims to compare the effect of sEMG features on the
classification and estimation of the volume of fluid intake. Novel contributions of this paper
include (1) investigating the optimal subset of EMG features in classifying the drinking
events (from a mixed pool with solid, saliva, and cough) and in estimating the fluid
intake volume; (2) unravelling the dependency between the choice of classifier/regressor
and features; and (3) exploring cross-day data for classification and regression for fluid
intake quantification. To the best of our knowledge, this is the first study investigating the
combination of optimum feature classifiers across days for swallowing detection and fluid
volume estimation from sEMG.

This paper is organised so the Section 2 provides the experimental approach and data
analysis. Section 3 separates classification results from estimation results. Each subsection
breaks the results into single days and cross-days for clarity in both cases. Section 4
discusses the results and provides the conclusion.

2. Methodology
2.1. Subjects

This study was conducted in accordance with the declaration of Helsinki and was
approved by The Research Ethics Panel of King’s College London (LRS-18/19-10877).
Eleven individuals (nine females and two males), aged 20 to 59 years (median age 25 y),
participated in the study with no known pre-existing medical conditions and with normal
skin turgor. Each participant provided written consent after receiving comprehensive
information about the study.

2.2. Experimental Procedure

The experiment involved two sessions, each lasting 90 minutes, scheduled on two
consecutive days. Two Delsys Trigno sEMG sensors (Natick, MA, USA) were used to
capture sEMG. sEMG was analogue filtered between 10 and 850 Hz and sampled at 2.2 kHz.
The sensors were positioned on both sides (left and right) of the sternohyoid muscles’ belly,
which is part of the infrahyoid group. The choice of the sternohyoid muscles was based
on their superficial location, and the choice of two sensors was motivated by our previous
study [22], where four sensors did not improve performance. Participants were comfortably
seated, and the skin in the neck area was cleaned using alcohol wipes. The placement
of the sensors was determined by palpating the relevant swallowing muscles, as shown
in Figure 1. Once the sensors were correctly positioned anatomically, participants were
given verbal cues to perform nine different tasks. The order of the tasks was randomised
for each session. The first task involved participants pronouncing ten words while being
recorded. Participants were asked to cough for the second task, while the third and fourth
tasks involved swallowing saliva and solid food. Solid food provided to participants was
chocolate chip cookies, and they were instructed to take one bite at a time. Tasks five
through nine focused on participants swallowing water from a cup in a single sip, with
the volume of water gradually increasing by 5 mL for each task. The starting volume for
the fifth task was 5 mL, and it increased incrementally until reaching 25 mL in the ninth
task. A needleless syringe with markings was used for accurate measurement. Overall,
participants performed these tasks following verbal instructions, and their actions were
recorded for analysis and further evaluation.

2.3. Data Analysis

Data analysis was carried out on Google Collab using Python 3.8 and preprocessed
using bandpass filtering between 10–400 Hz. Data were analysed for each individual subject
(intrasubject analysis). EMG signals were rectified, and the signal envelope was computed
to detect the highest peak where the swallowing event occurred. The EMG burst was then
extracted using the peak position. The region of the burst was located by identifying the
highest value of the peak involving 1 s before and after the highest peak, resulting in a total
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duration of 2 s. Twenty-six time and frequency domain features (Table 1) were calculated
from the raw data of that burst window, representing a single sip. A binary classification for
drinking events (swallowing fluid) vs. other events (swallowing solid or saliva, coughing,
and talking) was performed using single features and the combination of two to four
features to determine the subject-specific best features and global features (across subjects).
Carlotta and Kamavuako [21] used stepwise forward selection over 46 features to detect
swallowing events and demonstrated that performance reached a plateau around four
features. This motivated the choice of four features in this study. Subject-specific means
the set of features that maximise performance for a specific subject, while global features
means the set that maximises the average performance across subjects.

Figure 1. Representation of the anatomical position of the infrahyoid muscles where the Delsys
sensors were positioned on the neck, modified from an anatomical software [29].

Five classifiers were used in this study: support vector classifier (SVC), random forest
(RF), K-nearest neighbour (KNN) with k = 1, linear discriminant analysis (LDA), and
quadratic discriminant analysis (QDA). F-score was used as a performance metric due
to the imbalanced sample sizes between the classes. Each subject’s data had 60 drinking
samples and 40 nondrinking samples. The k-fold-cross-validation method was used in
the classification models with five folds. Thus, all the samples were randomly split into
five folds. For each iteration, one subset is designated as the test/validation set, while the
remaining four subsets are combined to create the training set. The result is then calculated
for each trial and averaged across all five trials to determine the overall effectiveness of
our model.

We tested eight regressors: support vector regressor (SVR), random forest (RF), K-
nearest neighbour (KNN) with k = 1, linear regressor (LR), decision tree (DT), lasso, ridge,
and artificial neural network (ANN) with two hidden layers with thirty-six neurons and
sixteen neurons, respectively. The root mean square error (RMSE) was used as the perfor-
mance metric. The data for each day and each feature type (global features vs. subject-
specific features) were analysed separately. The combination of the best features from both
sides was also tested. In cross-days analysis, a twofold validation procedure was used with
data from days 1 and 2 with the optimum subset of features, best classifiers, and regressors.

For each day and feature type (subject-specific vs. global), a three-way analysis of
variance (ANOVA) test was used to test if there were significant differences between the
number of features, between the classifiers, and between the right and left side sEMG
electrodes. A two-way ANOVA test was used to test if there were significant differences
between the regressors and the right and left sides of the sEMG electrodes.
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Table 1. This table presents the twenty-six features included in this study, maintaining the same order
in which they were computed.

Feature Full Name Abbreviation References

Autoregressive Coefficients AC [30,31]
Avergare Amplitude Change AAC [32,33]
Calc Centroid CC [34]
Different Absolute Standard Deviation Value DASDV [32,33]
Entropy MYop [35]
Empirical Cumulative Distribution ECDF [34]
Frequency Ratio FR [33]
Linear Prediction Cepstral Coefficients LPCC [34]
Log Detector LOG [30,36]
Kurtosis Kurt [37,38]
Mean Power MNP [33,39]
Mean Frequency MNF [39,40]
Median Frequency MDF [33,39]
Mean Absolute Value MAV [41,42]
Myopulse Percentage Rate MYOP [33]
Mel Frequency Cepstral Coefficients MFCC [43]
Peak Frequency PKF [33]
Power Spectrum Density Bandwidth PW [36]
Skewness Skew [38,42]
Spectral Centroid SC [34]
Spectral Entropy SE [34]
Spectrogram Frequency SF [34]
Variance VAR [30,31]
Wavelength WL [30,41]
Willison Amplitude Change WAMP [30,31]
Zero Crossing Rate ZC [30,41]

3. Results

Swallowing events were successfully recorded using the EMG sensors for all subjects.
Figure 2 depicts raw EMG data recorded for one subject for two different volumes of water,
10 mL and 25 mL, and other nondrinking activities like saliva, solid, cough, and talk. The
responses to swallowing the two volumes exhibit different characteristics.

Figure 2. Cont.
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Figure 2. Representation of raw sEMG data of swallowing (A) 10 mL of water, (B) 25 mL of water,
(C) saliva, (D) solid, (E) cough, and (F) talk.

3.1. Classification

Overall, LDA and RF showed good performance for each day and cross-days, as
shown in Figure 3. There was no difference between the right and left EMG channels. Three
features showed overall good performance.

Figure 3. Classifiers performance with error bars depicting for the F-score and standard error over
day 1, day 2, and cross-day.
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3.1.1. Day 1

Using global features, the ensemble mean F-score for day 1 was 77% ± 2, with the
right side (78% ± 1) performing similarly (p = 0.39) to the left side (76% ± 2). A significant
difference was found between classifiers (p = 0.02) and the number of features (p = 0.001).
The best three classifiers were LDA (79% ± 2), QDA (79% ± 2), and RF (78% ± 1). Three
features (80%± 1.8) performed better than one and two, as shown in Figure 4. There was an
interaction between sides and classifiers (p < 0.001), between sides and number of features
(p = 0.004), and between sides, classifiers, and number of features (p = 0.04). Figure 5 depicts
the variation in performance of the combination of three features across different classifiers.

Figure 4. The average F-score of the performance of each number of features of day 1 and day 2.

For subject-specific features, the global mean F-score for day 1 was 84%1, with the
right side (84% ± 2) performing the same (p = 0.64) as the left side (84% ± 1). A significant
difference was found between classifiers (p ≤ 0.001) and between the number of features
(p < 0.001). The best three classifiers were RF (86%± 1), LDA (85%± 1), and QDA (85%± 1).
Three features (86% ± 2) performed significantly (p < 0.001) better than the two features
(85% ± 1) and the one feature ( 78% ± 2). There was an interaction between sides and the
number of features (p < 0.001), and between sides, classifiers, and the number of features
(p = 0.02).

However, it can be seen from Figure 5 that their performance is feature-set-dependent,
especially the LDA. On the other hand, the SVM showed robustness over changes in the
feature set and could be explored more in future studies, allowing for the selection of
features with low computation costs.
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Figure 5. The performance of the three features’ combination with all the classifiers of the right
side of day 1. The rounded area in black indicates that only a limited number of sets provide good
performance for the LDA.

3.1.2. Day 2

Global features produced an ensemble global mean F-score for day 2 of about 78% ± 0.7.
Four features (83%± 1) and the three features (82%± 1) performed significantly (p < 0.001) bet-
ter than the single and the two features. The best three classifiers were LDA (81 ± 0.7%), SVC
(81% ± 0.8), and RF (79% ± 1). In contrast to day 1, there was no interaction between factors.

On the other hand, subject-specific features resulted in a global mean F-score for
day 2 of 87% ± 1. The best three classifiers were LDA (88% ± 1), QDA (88% ± 1), and RF
(88% ± 0.9). In contrast to day 1, there was no difference between the number of features
(p = 0.51). For example, four features gave 89% ± 1, and three features gave 89% ± 2. There
was no interaction between factors. Table 2 depicts the best single-specific features with
the best classifiers of day 1 (right side) which shows that the best feature combination is
data-dependent and subject-dependent.

Table 2. The F-score of the best subject-specific feature with the best classifiers of day 1 (right side).

Subjects 1F 2F 3F 4F

S1
80%
(LogD)
SVC, QDA

85%
(Kurtosis, PW)
RF

84%
(LogD, WL, FR)
(MAV, LogD,
PW)
RF, QDA

86%
(PW, CC, Kurt,
AAC)
RF

S2

80%
(MNF) (MDF)
(AC)
LDA

99%
(MNP, MNF)
(FR, MNP)
RF, SVC, KNN,
LDA

99%
(Fr, MP, MF)
(MP, MF, MDF)
(Fr, MP, MF)
(FR, MNP, SF)
RF, SVC, KNN,
LDA, QDA

99%
(FR, MNP, MNF,
MDF)
(MNP, MNF,
MDF, PF)
(FR, MNP, MNF,
MDF)
RF, SVC,
KNN, LDA
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Table 2. Cont.

Subjects 1F 2F 3F 4F

S3

77%
(MAV) (LogD)
(MAV) (WL)
(AAC)
SVC, QDA, LDA

82%
(SC, Skew)
(AC, DASD)
RF, LDA

91%
(AC, Entropy,
SC)
LDA

83%
(MDF, PF, AC,
MAV)
LDA

S4
89%
ZC
LDA, QDA

93%
(MNP, ZC)
QDA

96%
(MNP, MNF, ZC)
QDA

96%
(AAC, DASDV,
ZC, MNP)
QDA

S5
81%
SC, CC
LDA

83%
(MNF, PW)
(MFCC, MNP)
RF, QDA

96%
(MNP, MNF, ZC)
LDA

84%
(Entropy, ECDF,
SC, LogD)
LDA

S6 78%
SF, SVC

87%
(myop, LPCC)
LDA

89%
(MDF, PF, myop)
SVC

86%
(FR, MNP, MNF,
ZC)
QDA

S7
88%
Kurt
SVC

91%
(AC, SC)
LDA

91%
(AC, myop,
ECDF)
LDA

94%
(PW, CC,
Kurtosis, AAC)
RF

S8
88%
AC
QDA

89%
(myop, Kurt)
SVC

94%
(kur, skew, WL)
RF

94%
(LogD, WL,
AAC, PW)
RF

S9
77%
myop
SVC

83%
(MNP, WL)
QDA

79%
(MNP, MDF,
PW)
RF

79%
(MNP, MNF,
MDF,
MFCC)
RF
(DASDV, ZC,
WAMP, PW)
KNN

S10

73%
WAMP
RF, LogD,
LDA

80%
(SF,MDF)
RF

83%
(MF, MDF, PW)
LDA

80%
(WAMP, myop,
VAR, Kurt)
LDA
(WAMP, myop,
VAR, PW)
QDA
(DASDV, ZC,
WAMP, PW)
KNN

S11
88%
AC
QDA

83%
(MNP, myop)
LDA

83%
(myop, VAR,
MNP)
LDA

92%
(PF, AC, myop,
MDF)
LDA

In the cross-day section, training was implemented using the best three global features
with the best three classifiers of day 1, and then testing was carried out using the data of
day 2. Similarly, training was implemented using the best three global features with the best
three classifiers of day 2, and then testing was carried out using the data of day 1. The global
mean F-score for the two days was (69% ± 3.95), with no significant difference between the
right and the left sides (p = 0.87). There was no significant difference (p = 0.51) between the
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best three classifiers, LDA (70% ± 4.15), RF (71% ± 4.95), and QDA (66.5% ± 7.2). Table 3
presents the F-score of the best global features with the best classifiers on the right side of
day 1 and day 2.

Table 3. A summary of the F-score of the best global features with the best classifiers of the right side
of day 1 and day 2.

– Number of
Features Best Global Features F-Score Best

Calssifiers

Day 1

1F AAC 74% ± 2 RF
2F LPCC, MAV 83% ± 1.9 LDA
3F LPCC, MAV, LogD 83% ± 1.9 LDA
4F LPCC, MAV, LogD, WL 83% ± 2.1 LDA

Day 2

1F FR 69% ± 1.3 SVC
2F LogD, WAMP 82% ± 1.7 SVC
3F LPCC, MAV, AAC 84% ± 1.7 LDA
4F SC, SE, SF, ECDF 84% ± 1.8 SVC

3.2. Estimation

Overall, ANN had the lowest absolute RMSE, as shown in Figure 6, and the right side
channel performed better than the left side. Using more than one feature did not improve
the performance of the regressors.

Figure 6. The regressors’ performances with error bars depicting the RMSE and standard error over
day 1 and day 2.

3.2.1. Day 1

The global mean RMSE of day 1 using one global feature was 6.85 ± 0.18 mL, with
the right side (6.33 ± 0.27 mL) performing significantly (p = 0.008) better than the left side
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(7.36 ± 0.2 mL). A significant difference (p < 0.001) was found between the regressors ANN
(5.92 ± 0.24 mL), KNN (6.6 ± 0.23 mL), and LR (6.64 ± 0.3 mL). The best global features
used with the ANN were skew for the right side and LPCC for the left side, respectively.
With subject-specific feature, the global mean RMSE of day 1 was 6.31 ± 0.15 mL, with
the right side (5.89 ± 0.25 mL) performing significantly (p = 0.01) better than the left side
(6.7 ± 0.15 mL). A significant difference (p < 0.001) was found between the regressors ANN
(4.88 ± 0.2 mL), LR (6.09 ± 0.21 mL), and SVR (6.14 ± 0.17 mL). Table 4 illustrates the
optimal subject-specific feature paired with the best regressor of the right side for day 1.

Table 4. The RMSE of the best subject-specific feature with the best regressor of day 1 (right side).

Subjects RMSE 1F

S1 4.67 FR
S2 3.07 MFCC
S3 5.04 Kurt
S4 5 MFCC
S5 4.58 Kurt
S6 2.88 Skew
S7 3.87 FR
S8 5.07 MDF
S9 5.59 ZC

S10 6.05 Kurt
S11 4.94 SF

3.2.2. Day 2

The global mean RMSE of day 2 using global features was 6.81 ± 0.1 mL, with the
right side (6.38 ± 0.15 mL) performing significantly (p = 0.007) better than the left side
(7.25 ± 0.18 mL). Similar to day 1, there was a significant difference (p < 0.001) between
the regressors ANN (5.57 ± 0.24 mL), SVR (6.69 ± 0.17 mL), and KNN (6.73 ± 0.19 mL).
The best global features used with the ANN were FR for the right side and MDF for the
left side.

With subject-specific feature, the global mean RMSE of day 2 was 6.36 ± 0.08 mL, with
the right side (5.97 ± 0.14 mL) performing significantly (p = 0.004) better than the left side
(6.75 ± 0.13 mL). Similar to day 1, there was a significant difference (p < 0.001) between
regressors ANN (4.62 ± 0.24 mL), SVR (6.26 ± 0.13 mL), and KNN (6.26 ± 0.13 mL).

3.2.3. Cross-Day

In the cross-day analysis, training was implemented using the data and the best global
features with the best regressor (ANN) of day 1, and then testing was carried out using
the data of day 2. Similarly, training was implemented using the data and the best global
features with the best regressor (ANN) of day 2, and then testing was carried out using
the data of day 1. The global mean RMSE for the two days was (8.69 ± 1.1 mL), with no
significant difference between the right and the left sides (p = 0.51).

4. Discussion

The results obtained in this study suggest that sEMG signals can be used effectively to
distinguish between drinking events and nondrinking events (solid food, saliva, cough, and
talk). The performance is acceptable as the nondrinking events also contain swallowing of
solid food and saliva, demonstrating the power of indirect classification between drinking
and eating and volume estimation with single-channel sEMG across two days. Identifying
the optimal global set of features enhances the classification model’s performance instead
of using only single features.

The performance of the right side of the infrahyoid muscles was higher in absolute
value than the left side, but there were no significant differences between the two sides.
Three and four features showed overall higher performance than one and the two features.
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There was no significant difference between three features and four features for day 1 and
day 2; therefore, choosing three features for our implementation will be a good option for
computational efficiency and cost-effectiveness, particularly in continuous online tasks.
This study revealed that optimum features are subject-dependent and classifier-dependent.
Subject-specific features performed better than general features, but their generalisation
power needs to be quantified in a real-life environment. The F-score metric was used
to evaluate the classification performance due to the imbalance of the sample number.
Furthermore, there are other papers that focus on classifying and estimating fluid intake
volume using sEMG. Malvuccio et al. (2022) classified the liquid swallows from nonliquid
swallows using five features and two sEMG channels. However, our study used only three
features and only a single sEMG channel. Malvuccio and Kamavuako detected noise from
swallows and classified saliva from other liquid swallows [21]. This study classified liquid
classes; however, our study detected liquid swallows from nonliquid swallows.

For the regression, the study suggests that estimating fluid volume intake is feasible
using sEMG. This study showed how regression performance differed depending on
the regressor and feature. ANN produced the best performance for the estimation with
only a single feature. Increasing the number of features did not improve the results
compared to the classification. The right side channel performed better than the left
side. Estimation results were poorer than previous studies [6,22], potentially because the
recorded amounts of drinking were discreet: 5 mL, 10 mL, 15 mL, 20 mL, and 25 mL.
Previous studies used self-controlled volumes dictated by the swallowing capacity of the
subjects [6,22]. This study revealed that no single regressor achieves optimal performance
across all features, suggesting that the choice of regressor depends on the specific feature
being considered. Consequently, utilising a single feature can offer advantages in terms
of reducing computational expenses and saving time, particularly in the context of online
tasks. Nevertheless, we aim to explore the use of neural networks in future studies focusing
on architecture and hyperparameter optimisation.

Moreover, the number of studies focusing on fluid volume estimation from sEMG
is very limited. Kobayashi et al. used a throat microphone to measure the amount of
liquids consumed, with an RMSE value of 3.33 mL [21]. Malvuccio also estimated the
amount of fluid consumed using sEMG recordings of both individual and continuous
swallows, with RMSE of 2.80 ± 1.22 mL [21], using recordings of single swallows with
RMSE value (2.01 ± 1.39 mL), and recordings of continuous swallows with RMSE of
(25.82 ± 26.39 mL) [6]. Ismail and Kamavuako estimated the fluid intake volume, using
sEMG with an RMSE of 1.37 ± 1.1 mL, using only a single feature [22]. In the previous
study [22], utilising the mean absolute value (MAV) as the best average feature for fluid
volume estimation and employing an ANN resulted in a poorer performance than previous
studies. Our conclusion is that the best approach for volume estimation is to let the user
drink to the best of their ability, and this will be the approach we take in all future studies.
Imposing the volume (5 mL to 25 mL) forces the user to drink unnaturally, which might
affect muscle activation. In this study, different window sizes (from 0.1 s to 2 s) were tested
to see the effect of changing the window size on our results of classification and estimation.
The results indicated that there is no need for larger windows, and the window size can be
reduced to 0.5 s or 1 s without degradation in performance.

Limitations of the Study

Despite achieving good and comparable performance, there is room for improvement
in reducing errors and increasing the system’s performance. It would be beneficial to make
further improvements in further research, such as larger sample sizes and deep neural
networks, including real-time detection and estimation. Additionally, we expected to
observe symmetry in the classification and regression results of the right side and the left
side; however, the results revealed that the performance of the right side is higher than the
left side, which may be due to the difference in electrode placement. The left electrodes
may not have been positioned properly on the swallowing muscles, and may have slid
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over the skin. Electrode placement should be considered carefully in the future, by possibly
using lighter electrodes such as Delsys Trigno minisensors. Furthermore, participants in
this study are relatively young compared with potential users of such a system. Although
we provided proof of concepts in normal skin conditions, future studies should consider
including older adults, where skin turgor decreases due to ageing. Skin turgor should be
considered with older adults as the interface between electrode–skin–muscle might change,
affecting the quality of the EMG.

5. Conclusions

The findings of this study indicate that sEMGs (surface electromyograms) can differ-
entiate between fluid and nonfluid swallowing events, as well as provide some degree
of fluid intake volume estimation by utilising an optimal feature set. The LDA (linear
discriminant analysis) demonstrated strong performance in detection using three features,
while the ANN (artificial neural network) excelled in volume estimation, particularly when
utilising the right sEMG channel. These results are a step forward in developing a non-
invasive device for effectively monitoring fluid intake, thereby enhancing the health and
care system.
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