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Abstract: Linear conveyors, traditional tools for cargo transportation, have faced criticism due to their
directional constraints, inability to adjust poses, and single-item conveyance, making them unsuitable
for modern flexible logistics demands. This paper introduces a platform designed to convey and
adjust cargo boxes according to their spatial positions and orientations. Additionally, a cargo pose
recognition algorithm that integrates image and point cloud data are presented. By aligning depth
camera data, the axis-aligned bounding box (AABB) point serves as the image’s region of interest
(ROI). Peaks extracted from the image’s Hough transform are refined using RANSAC-based point
cloud linear fitting, then integrated with the point cloud’s oriented bounding box (OBB). Notably, the
algorithm eliminates the need for deep learning and registration, enabling its use in rectangular cargo
boxes of various sizes. A comparative experiment using accelerometer sensors for pose acquisition
revealed a deviation of <0.7◦ between the two processes. Throughout the real-time adjustments
controlled by the experimental platform, cargo angles consistently remained stable. The proposed
two-dimensional conveyance platform, compared to existing methods, exhibits simplicity, accurate
recognition, enhanced flexibility, and wide applicability.

Keywords: information fusion; pose recognition; two-dimensional conveying

1. Introduction

Linear conveyors have become the backbone for end-to-end linear transportation
tasks, primarily due to their advantages of extended conveying distances and the ability to
handle substantial loads [1]. They find their major applications in the five key industries of
steel, coal, cement, ports, and power, collectively occupying 85% to 90% of the conveyor
belt market. With the widespread globalization of the economy and the improvement of
living standards, there has been a significant surge in the demand for lightweight logistics,
presenting immense potential. Notably, the evolution of online shopping has led to smaller,
more diverse, and varying-sized express cargo boxes [2]. More than 80% of these boxes
weigh under 15 kg, giving rise to new challenges such as sorting, consolidation, cargo
box disassembly and stacking, and warehousing. Faced with these new challenges, the
limitations of linear conveyors have become increasingly evident, including fixed routes,
directional constraints, lack of pose adjustment, complete downtime in case of malfunction,
and single-item conveyance. These shortcomings urgently require resolution.

To address the shortcomings of linear conveyors in lightweight logistics, the most
primitive approach is manual assistance, which is characterized by low efficiency and high
costs. Researchers have devised various automated solutions, which can be categorized into
two approaches: improvement and replacement. The improvement involves upgrading
the conveyor belt system. For instance, adding sorting equipment with scanning and
recognition capabilities and stacking robotic arms to reduce manual labor and enhance
efficiency [3,4]. However, due to the inherent structure of linear conveyors, these upgrades
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can only address singular issues and often lead to complex implementation processes.
Furthermore, the stacking robotic arms available in the market are typically limited by linear
conveyors, as they are fixed-position grabbers of a single type, capable of handling only
one item at a time, resulting in substantial energy consumption and poor environmental
sustainability. A novel conveyor belt system called “moveflex” has been invented, which
operates without consuming electricity. It relies on gravity and multiple rolling wheels
working together for transportation. While it doesn’t completely eliminate the criticisms
associated with linear conveyors, it introduces a novel concept of multi-wheel collaborative
cargo conveyance. Additionally, BIBA has developed a modular omnidirectional wheel
platform called “celluveyor” [5], opening the era of intelligent logistics for two-dimensional
omnidirectional transport within a flat surface. However, its practicality and complexity
are yet to be fully realized. On the other hand, the replacement approach involves entirely
forsaking the idea of improving linear conveyors and opting for alternative tools or methods
to transport goods. Examples include wheeled handling vehicles with path-planning
capabilities [6], guided shuttle cars [7], and material-handling robots. However, these
methods often come with complex algorithms, high technical requirements, immaturity,
and substantial costs.

Cargo pose recognition is the detection and determination of the position and ori-
entation of cargo items in scenarios such as automated logistics, robotics, and industrial
production. This is achieved using sensors and algorithms. Common methods for this pur-
pose encompass computer vision, deep learning, laser radar, ultra-wideband, marker-based
capture, tactile sensors, and multi-sensor fusion. Notably, computer vision stands out due
to its non-contact scanning, flexible deployment, rich information extraction, real-time
capabilities, and independence on external devices. The fusion of computer vision and
deep learning has a wide range of applications. For instance, Hinterstoisser et al. sam-
pled and extracted robust models for object registration, which were then subjected to
model matching and ICP refinement [8,9]. Drost et al. implemented a “global modeling,
local matching” strategy through descriptors, formed by a small number of point pairings
on point clouds [10,11]. Spatial pose resolution can be achieved through a three-point
correspondence, leading to the emergence of even more precise and robust descriptor
methods [12]. Regression methods utilizing random forests establish a map linking im-
ages to model coordinates [13]. Additionally, end-to-end registration is based on neural
networks [14], as well as iterative registration using probabilistic models. Although highly
accurate in complex environments, these methods require substantial data and computing
resources, which can limit real-time applications and decrease flexibility. Dilotis et al. recog-
nized and located boxed cargo by segmenting planes on point clouds [15]. Building upon a
successful 2D perspective image-based single-regression framework, Ali et al. extend it to
generate oriented 3D object bounding boxes derived from point clouds [16]. Due to the
limitations of square boxes, such as impractical spatial usage and unstable stacking, rectan-
gular boxes are prevalent. This led to the emergence of rectangular detection algorithms
based on geometric features. Two primary approaches include the Hough transform-based
rectangular detection algorithm and the rectangular geometric feature-based detection
algorithm [17]. Harris et al. introduce a corner feature-based rectangular detection algo-
rithm [18], while Feng et al. propose an improved minimum bounding rectangle algorithm
utilizing only point clouds [19].

This study seeks to address the drawbacks inherent in linear conveyors and the
prevailing issues in cargo box pose recognition. Inspired by celluveyor, we propose a
more optimized two-dimensional conveyance platform that seamlessly integrates cargo
pose recognition with adjustment functionalities. Our proposed method for cargo pose
recognition eliminates the complexities of extensive model training and deep learning and
instead harnesses a fusion of image and point cloud data to offer adaptive and accurate
recognition for rectangular cargo boxes. Additionally, we introduce an energy-efficient
conveyance approach, based on distance and proximity measures to prevent unnecessary
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motor operation. Experimental verification was conducted to validate the recognition and
adjustment of rectangular cargo boxes of varying sizes and styles.

The remainder of this paper is as follows: Section 2 elucidates the design of our
two-dimensional conveyance platform. Section 3 introduces our proposed cargo box
pose recognition method alongside the guiding principles of pose adjustment. Section 4
presents the experimental data acquisition using different sensors and methods under
similar conditions, with subsequent comparisons to validate and analyze the adjustment
process. Conclusions are then provided in Section 5.

2. Overall Structural Design
2.1. Mechanical Structure Design

The proposed two-dimensional conveyance platform employs a modular design, that
offers strong reusability across production, design, and programming—effectively enhanc-
ing development efficiency. This approach inherently simplifies testing, maintenance,
and upgrade phases, allowing direct access to critical components. Each independent
module comprises a module controller, support plate, multiple motors, and encoders.
Motor-driven wheels utilize a dual-row continuous-switching design, a specialized form of
omnidirectional wheels with radiating spokes, that enable the capacity for thrust in any
given direction. At the hub of the omnidirectional wheel are small passive wheels, oriented
perpendicular to the primary bearing rotation direction. Devoid of independent power
systems, these wheels rely on cargo friction for passive rotation, playing a pivotal role
in cargo movement with minimized resistance. The support plate is divided into upper
and lower tiers. The lower layer secures the module’s controller and motors, while the
upper layer conceals the motors and their corresponding wiring. Strategically positioned
holes in the supporting plate permit free rotation of the motor-driven omnidirectional
wheels. Elevated slightly above the upper support plate, these wheels interact directly with
the cargo. Their rotational movement, facilitated by friction, propels the cargo, allowing
coordinated movement and adjustments across multiple modules. The combination of
these independent modules forms a two-dimensional plane.

Leveraging the Intel RealSense D455 depth camera, both image and point cloud data
are concurrently captured. An integrated global shutter within the RGB sensor ensures the
alignment of RGB and depth information streams. This camera finds its position securely
mounted, hovering above the center of the two-dimensional conveyance plane using a,
held by a specialized camera mount. The entire framework of this platform is constructed
using 20 × 20 profile materials, visually represented in Figure 1.

Figure 1. Overall structure of two-dimensional conveyance platform.
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2.2. Distribution Design and Motion Modeling of Omnidirectional Wheels

Aiming to deliver enhanced two-dimensional conveyance and pose adjustments for
various cargo box types, our study ingeniously designed the distribution of motors and
omnidirectional wheels on the two-dimensional conveyance platform, ensuring its flexibil-
ity. Meticulous motion modeling, focused on the synergistic operation of omnidirectional
wheel collaboration has been conducted to validate its feasibility. This research takes a
pragmatic approach, streamlining control complexity and computational load, yet main-
taining the foundation of two-dimensional conveyance. The overall process behind the
distribution of omnidirectional wheels on this platform is depicted in Figure 2.

Figure 2. Flowchart of omnidirectional wheel distribution design.

The process can be divided into four distinct steps:
Step 1: Two groups of omnidirectional wheels are installed orthogonally. One set

is oriented horizontally, and the other vertically. When a single group rotates uniformly
either forward or backward, the cargo boxes move linearly in one of four fixed directions.
The intersection of the two wheel sets forms concentric circles. Within this configuration,
the omnidirectional wheels align with the tangents of these circles, irrespective of their
rotational speed or the direction of frictional force propelling the cargo boxes. When all
four omnidirectional wheels rotate at the same speed, either clockwise or counterclockwise,
they generate a unified angular velocity, creating a rotational force upon the cargo boxes.

Step 2: Remaining spaces are filled with additional omnidirectional wheels to accom-
modate cargo boxes of diverse dimensions. These wheels are arranged systematically to
ensure that, at any given point, at least one wheel is oriented orthogonally in relation to
others. This arrangement not only preserves conveyance flexibility but also facilitates cargo
adjustment. This step culminates in the design completion for both cargo conveyance and
adjustment areas.

Step 3: Peripheral omnidirectional wheels are added. The first row, vertically aligned,
supports in ushering cargo toward the platform’s center. Flanking wheels on the left and
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right sides ensure conveyance flexibility, preventing cargo from falling off the platform
thereby ensuring that adjustments are confined to the central area.

Step 4: The distribution design for the omnidirectional wheels is finalized and segmented
into evenly sized modules. The experimental platform thus comprises 20 such modules.

2.2.1. Analysis of Linear Conveyance Motion

The rotational motion of omnidirectional wheels generates tangential frictional forces
upon the cargo boxes passing over them, resulting in a net force that drives the cargo in
a unified direction. The specific implementation can be simplified as follows: In the first
step, the translational velocity of the cargo box center is set to vbox, with the box’s angular
velocity denoted asω. In the second step, the omnidirectional wheels’ linear velocities, vx
and vy, are calculated based on the set values. In the third step, as the cargo approaches, the
omnidirectional wheels rotate at the predetermined linear velocities. Due to the concurrent
presence of horizontally and vertically arranged omnidirectional wheel groups, and using
motion along the X-axis as an example, the forward kinematic model when both wheel sets
influence the cargo boxes can be simplified by Equation (1):[

vbox
ω

]
=

[
v1x+v2x

2
v1x−v2x

r1

]
=

[
1/2 1/2
1/r1 −1/r1

][
v1x
v2x

]
(1)

As illustrated in the linear modeling shown in Figure 3, for this case, the angular
velocity ω is set to 0. When the omnidirectional wheels oriented in the X-axis direction
rotate with a linear velocity of vx, and those in the Y-axis direction have a linear velocity
of vy = 0, the cargo moves along the X-axis at a velocity of vbox. Conversely, when the
omnidirectional wheels in the Y-axis direction turn at a linear velocity of vy and those in the
X-axis direction remain stationary with a linear velocity of vx = 0, the cargo moves along
the Y-axis at the same velocity, vbox.

Figure 3. Modeling of single-module linear conveyance motion.

2.2.2. Analysis of Rotational Adjustment Motion

Cargo orientation adjustments can be achieved through two distinct control methods.
The first method involves the simultaneous rotation of one set of omnidirectional wheels.
Here, the rotation speeds of different rows or columns are opposite, as shown in Figure 4a.
According to Equation (1), in this scenario, the linear velocity of the cargo box’s center, vbox,
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remains constant at 0. Consequently, the simplified formula for the cargo angular velocity
can be derived from Equation (2):

ω =
v1 + v2

r1
(2)

Figure 4. Modeling of rotational adjustment motion. (a) Modeling the movement of cargo boxes
adjusted by reverse rotation between different rows or columns of the same group of omnidirec-
tional wheels; (b) Modeling of cargo box motion with fixed-position concentric omnidirectional
wheel adjustment.

The second method employs omnidirectional wheels arranged in a concentric circle
formation with four equidistant axes at 90◦ angles. This facilitates a rotation adjustment of
the cargo without altering its position, as illustrated in the rotational modeling in Figure 4b.
The fixed-position rotation adjustment can be simplified as follows: First, determine the
angular velocity ω for the cargo’s rotation. Second, using the set angular velocity, calculate
the linear velocities—va, vb, vc, and vd—of the four omnidirectional wheels that constitute
the concentric circle. Finally, in scenarios where the cargo’s orientation presents a deviation
angle of θ, the omnidirectional wheels commence rotation at these predetermined linear
velocities. The rotation formula, based on the basic definition of angular velocity, can be
expressed as given in Equation (3):

ω =
va + vb + vc + vd

R
=
θ

t
(3)

If the velocities of the concentric circles’ four omnidirectional wheels are equal, such
that va = vb = vc = vd = v0, then it can be concluded that:

t =
θR
4v0

(4)

From Equation (4), it is clear that the rotational angular velocity, ω, of the cargo boxes,
the linear speed, v0, of the omnidirectional wheel, and the radius, R, of the concentric circle
formed by the four omnidirectional wheels are fixed values. Both the angular deviation, θ,
and the adjustment duration, t, have a direct proportionality. Therefore, by assessing the
angular magnitude, the rotation-adjustment time can be ascertained, corresponding to a set
PWM waveform output time for driving the motors.

2.3. Control Unit

In terms of operation, the control module utilizes a master-slave control mode. The
main control unit is responsible for receiving information from the upper computer, per-
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forming the necessary calculations, and sending commands to the respective module
control units. These module control units, upon receiving instructions from the main
control unit, control the rotation of motors to accomplish either cargo conveyance or pose
adjustments. To guarantee prompt reactions during the control phase, a high-performance
microcontroller, boasting a maximum clock frequency of 72 MHz was employed as the
control chip, ensuring real-time response in the control process of this study. Group control
of the two-dimensional convey platform is achieved through controller area network (CAN)
bus control. The motor driver employed is the A4950, which is an integrated full-bridge
circuit motor driver chipset. This chip receives commands from the control chip, sending
pulse width modulation (PWM) signals to the motors. It also receives encoder feedback,
using it to control motor speed through proportional-integral (PI) control, ensuring steady
operation. Due to the limited number of timers available in the microcontroller and the
need to address the control requirements of nine motors within a single module simulta-
neously, this research employs two distinct analog switch chips. These are applied to the
encoder’s input and the PWM’s output terminals, respectively, effectively expanding the
communication pathways to accommodate the demands of multi-channel control. Figure 5
shows the connection diagram and circuit diagram of the single module control unit of
the platform.

Figure 5. Circuit diagram of a single module’s control unit.

3. Pose Recognition and Adjustment
3.1. Estimation of Cargo Box Angular Deviation from Image Acquisition

The orientation deviation of the cargo can be computed by extracting features associ-
ated with its alignment. In this study, the cargo’s location is designated as the “region of
interest” (ROI). The Canny edge detection technique is applied to the ROI, resulting in a
binary image. Utilizing the Hough transform, the Cartesian coordinate lines represented by
the equation y = kx + b within this binary image undergo a transformation into a parametric
equation, as shown in Equation (5). This equates to the parameterization of lines in the
context of the polar-coordinate parameter space:

r = x ∗ cos(θ) + y ∗ sin(θ) (5)

When straight lines in the Cartesian coordinate system are mapped to the polar-
coordinate parameter space, they correspond to intersections. By extracting the peaks from
these intersections, the longest straight-line segments are identified. From these segments,
both the gradient and the angle of inclination can be directly calculated. The inclination
angle, θ, is then determined by solving Equation (6).

θ =
tan−1 (y2−y1)

(x2−x1)
∗ 180

π
(6)

Figure 6 visualizes the methodology to acquire the orientation angles of the cargo box
from the captured images. Within this process, the two highest peaks are extracted, and
subsequently, the slope and angle of the corresponding lines are calculated.
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Figure 6. Processing workflow for obtaining cargo box attitude angles from images.

While images consist of an arrangement of pixels in a two-dimensional matrix, offering
higher information density, ensuring accurate feature extraction, and rapid processing,
they lack in providing spatial information regarding the positioning of the cargo. This is a
significant drawback in recognition tasks. Moreover, features extracted from these images
might include unwanted noise points, which, instead of aiding, act as disturbances in the
recognition process. Such discrepancies necessitate further refinement and selection.

3.2. Point Cloud-Based Localization and Pose Estimation of Cargo Boxes

Point clouds provide a wealth of three-dimensional spatial information, with each scan
point encapsulating its own set of three-dimensional coordinates. Due to the relatively fixed
positions of the two-dimensional convey platform and depth camera, deducing the three-
dimensional coordinates of the two-dimensional convey platform in relation to the depth
camera’s coordinate system remains constant. This consistency was harnessed to adopt
an attribute-based filtering method, focusing on attributes such as coordinate positions,
to extract the point cloud data of the cargo box. Alternatively, fixed geometric spatial
constraints can be imposed to achieve targeted control objectives. The process begins by
determining the three-dimensional coordinates of the two-dimensional convey platform,
its modules, and omnidirectional wheels within the depth camera’s coordinate system.
Techniques such as point cloud conditional filtering and radius-based filtering then define
attribute ranges. This process effectively removes extraneous elements such as the ground,
platform, and camera support, concentrating solely on the point cloud data of cargo boxes
positioned above the platform. Figure 7 details the extraction process for the cargo box
point cloud.

Figure 7. Workflow for cargo box point cloud extraction.

After extracting the top surface of the cargo box point cloud, its edges were delineated.
The random sample consensus (RANSAC) [20] algorithm was employed on the extracted
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top-surface point cloud, allowing for the recognition of rectangular edge lines. This pro-
cedure aids in determining the cargo box’s angular misalignment. RANSAC operates by
iteratively selecting random samples from the point cloud dataset, classifying samples
consistent with the model as “inliers” and inconsistent ones as “outliers”. This process is
continued until a model that fits most closely within a predefined range is obtained, typi-
cally representing the longest line segment within the point cloud edges. For RANSAC’s
sampling iterations involving n points in the point cloud and boasting a confidence level of
P (95–99%), the termination iteration count, h, can be obtained using Equation (7):

h ≥ log(1 − P)

log
(

1 −
(

inliers number
inliers number+outliers number

)n) (7)

Within this study, each iteration yields the longest edge in the point cloud, and
subsequent calculations deal with the remaining points. This iterative approach continued
until all four edge lines of the rectangular cargo box point cloud were ascertained. Figure 8
depicts the arbitrary edge lines drawn from the point cloud via RANSAC’s iterative
fitting mechanism.

Figure 8. Repetitive RANSAC fitting for extracting arbitrary line edges from point clouds.

The point cloud bounding box algorithm computes bounding boxes for point cloud
data, providing valuable geometric information for point cloud processing tasks. In this
study, we utilized both the axis-aligned bounding box (AABB) and the oriented bound-
ing box (OBB) techniques from the point cloud bounding box algorithm. The AABB is
determined by directly traversing the point cloud to find the extremities of the coordinate
points, forming an approximation of the point cloud boundary as a box, with all six faces
parallel to the coordinate axes. In contrast, the OBB generates a bounding box that can
rotate relative to these axes, adapting its size and orientation based on changes in the point
cloud’s size and orientation. To compute the point cloud normal vectors and construct
the OBB, we utilized principal component analysis (PCA) [21]. Assuming each point pi in
the point cloud has a neighboring set {p1, p2, . . ., pk}, where k represents the number of
nearest neighbors and pi’s coordinates are (xi, yi, zi), the point cloud’s covariance matrix C
is calculated using Equation (8):

C =
1
k

k

∑
i=1

(pi − m)(pi − m)T (8)

where m represents the average position of the K-nearest neighbors within the point cloud:

m =
1
k

k

∑
i=1

pi (9)

By distributing points evenly across the coordinate axes and leveraging linear algebra
principles, the covariance matrix is diagonalized: |A − λE| = 0 facilitates the extraction of
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eigenvalues λ1, λ2, λ3. Through back-substitution, we acquire the corresponding eigenvec-
tors ε1, ε2, ε3. The primary OBB axis direction aligns with the eigenvector corresponding to
the largest eigenvalue. As depicted in Figure 9, PCA was utilized to approximate the point
cloud normal vectors and design the point cloud OBB. The lower-left corner of Figure 9
displays the pertinent output information related to the point cloud’s OBB.

Figure 9. Point cloud normal vector and point cloud bounding box.

In comparison to imagery, point cloud data demonstrate shape invariance during rigid
transformations, implying the robustness of point cloud processing algorithms against
object rotations and translations. However, dealing with large point cloud datasets poses
computational challenges, while small datasets can lead to inaccurate calculations. Conse-
quently, even if the position of bounding boxes is accurate, determining the main orientation
of different-sized cargo boxes can fluctuate in accuracy. Point clouds, being composed
of discrete points, are susceptible to noise interference, particularly along edges where
stability is often compromised during application. This susceptibility intensifies in cases
with varying noise levels, leading to pronounced changes and instability areas along the
boundaries. RANSAC’s suitability for fitting edge lines in point clouds allows for stable
extraction of these edges. However, the calculated values were not consistently stable,
exhibiting real-time variations and potential errors when discerning the longer from the
shorter edges.

3.3. Pose Recognition by Fusing Image and Point Cloud Data

By separately investigating cargo box pose recognition using image and point cloud
approaches, the distinct advantages and disadvantages of each method become evident.
This research integrates image and point cloud data to overcome the shortcomings inherent
in each method. Firstly, alignment of the image with the point cloud data is achieved. A
variety of point cloud filtering techniques are employed to extract compliant top-surface
data for the cargo boxes. Using the point cloud AABB, the box’s position in relation to the
depth camera’s coordinate system is discerned. This position then utilizes the ROI within
the image, where the Hough transform is then applied to extract line segments. Edges were
derived from the filtered point cloud data, followed by the implementation of RANSAC
for line fitting. Comparing the point cloud edge lines with those from image processing
verified the alignment of image-derived lines with the top edges of cargo boxes, refining the
image-based Hough line detection. Post-refinement, the longest line, representative of the
box’s longer edge, was identified. The derived inclination angle signified the cargo box’s
angular deviation. Figure 10 presents comparative experiments conducted on varied-sized
and styled rectangular boxes. The upper portion shows the extraction of the two highest
peak points from image processing, forming the basis for slope and angle calculations. The



Sensors 2023, 23, 8754 11 of 18

lower section contrasts the results from peak point extraction and RANSAC line fitting post-
validation. This comparison highlights that combining image-based Hough line extraction
with RANSAC point cloud line fitting consistently extracts the longer top edge of cargo
boxes, thereby obtaining the overall angular deviation of the box.

Figure 10. Comparison and selection between image Hough line extraction and RANSAC point
cloud edge line fitting.

Upon jointly applying point cloud edge fitting and the image-based Hough transform,
the angle of the chosen longest line is calculated. This angle is then compared and fused
with the angle derived from the PCA of the point cloud’s OBB main direction. In cases of
similar angles, an averaged value was taken. However, if a significant difference is detected,
the angle obtained from image data is adopted. In cases where image-based edge angle
acquisition proves unattainable, the angle obtained from the PCA’s main OBB direction is
employed. Figure 11 illustrates this comprehensive operational paradigm.

Figure 11. Fusion principle of image and point cloud.

3.4. Implementation of Cargo Pose Adjustment through Distance and Proximity

In this study, the microcontroller supports low-power modes such as sleep and standby.
These modes allow real-time comparison between independent modules and cargo box
positions to determine whether a module should be operational or on standby. With the
fixed positioning of the two-dimensional conveyor platform and camera, the platform’s
position relative to the camera’s coordinate system remains constant. If point cloud data
are present at the platform’s outermost omnidirectional wheels, it indicates that cargo
is either entering the platform or is at risk of falling. In these cases, no calculations are
performed. The outermost omnidirectional wheel rotates inward, guiding the cargo to the
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platform’s central conveyor and adjustment area. When point cloud data are exclusively
situated within this central region, it implies that the cargo has completely entered the
platform, triggering pose calculation data processing. On the two-dimensional plane, each
independent module corresponds to a fixed center point coordinate (xn, yn) (where n = 1, 2,
3, . . .) within the camera’s coordinate system. Each of these coordinates is enclosed within
a circle, centered on the module’s center point and with a radius of r1. Regardless of its
orientation, the cargo box’s body remains within a circle with center (X, Y) and radius r2.
The upper-level computer sends real-time cargo box information from the depth camera to
the two-dimensional conveyor platform’s primary control unit through a serial port. This
main control unit then conducts instantaneous calculations and comparisons between the
pre-stored center point coordinates (xn, yn) (where n = 1, 2, 3, . . .) of each module and the
cargo box information. This relationship is expressed by Equation (10):

dn =
√
(X − xn)

2 + (Y − yn)
2 (n = 1, 2, . . .) (10)

where dn represents the relative distance between each module and the cargo. By comparing
it with the combined radius, r (r = r1 + r2), the module currently positioned on the cargo box
can be determined. This enables the identification of modules that need to be operational
and those that can remain in standby mode, thereby preventing wasteful motor rotations
and conserving resources. The underlying principle and methodology are depicted in
Figure 12.

Figure 12. Principle and workflow of pose adjustment implementation.

This study’s upper-level computer system employs the robotics operating system
(ROS) [22] on the Linux platform, capitalizing on both the OpenCV and PCL libraries
for its processing. Outcomes were consolidated through the nodes’ publication and sub-
scription, and these amalgamated data were communicated to the main control unit for
further processing using serial communication. As shown in Figure 13, it illustrates the
synchronization of timestamps between rviz simulation and ROS nodes. The upper-level
computer sends the processed angle data to the main control unit, which, after a one-second
delay, returns the information unchanged to validate successful communication.
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Figure 13. Synchronization of timestamps between rviz simulation and ROS nodes.

4. Results
4.1. Experimental Data

An industrial-grade accelerometer sensor was employed in this study to validate the
experimental data. The accelerometer sensor was calibrated, achieving an accuracy of
within 0.2◦ along the Z-axis (horizontal angle axis). The accelerometer sensor was securely
mounted on the experimental cargo box and rotated along with the box’s movement.
Figure 14 illustrates the setup and experimental environments.

Figure 14. Installation of accelerometer sensor and experimental environment.
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The experimental data collection underwent nine adjustments, each made from the
initial pose. These adjustments were approximately 10◦ apart, determined by observing
the Z-axis values from the accelerometer sensor while rotating the experimental cargo box.
The detailed adjustment process is illustrated in Figure 15.

Figure 15. Process of box rotation variation.

After each adjustment, four angle datasets were recorded: the accelerometer sensor’s
angle (control group), the angle obtained through mutual filtering of point cloud and image
datasets, the angle from the point cloud’s OBB, and the angle following the complementary
fusion of the image and point cloud datasets. The recorded angle values are presented
in Table 1.

Table 1. Data acquisition during experimental cargo box adjustment.

Number of
Adjustments

Control Group
(◦) Image (◦) Point Cloud

OBB (◦) Data Fusion (◦)

0 159.292 −1.042 −1.197 −1.120
1 148.328 10.035 9.589 9.812
2 138.802 18.847 18.787 18.817
3 128.983 28.171 27.708 27.940
4 118.950 37.967 35.493 37.967
5 108.697 47.994 48.651 48.323
6 98.791 57.969 56.551 57.969
7 89.793 67.145 67.666 67.406
8 78.915 77.986 75.421 77.986
9 68.913 88.023 85.881 88.023

The specific orientation angle of the box is influenced by variation due to reference
points and various other factors. Therefore, this study undertook a comparative analysis
of the same cargo box, under equivalent conditions, using different methods to obtain the
angles. The differences in angles before and after each adjustment from Table 1, as well as
the overall changes, were used to create Table 2.
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Table 2. Angle variation before and after adjustment.

Number of
Adjustments

Control Group
(◦) Image (◦) Point Cloud

OBB (◦) Data Fusion (◦)

0 0 0 0 0
1 10.964 11.077 10.786 10.932
2 9.526 8.812 9.198 9.005
3 9.819 9.324 8.921 9.123
4 10.033 9.796 7.785 10.027
5 10.253 10.027 13.158 10.356
6 9.906 9.975 7.785 9.646
7 8.998 9.176 11.115 9.437
8 10.878 10.841 7.755 10.580
9 10.002 10.037 10.460 10.037

Total variation 90.379 89.065 87.078 89.143

A comparison of the four datasets revealed that, under the same experimental condi-
tions, the image-based angle estimation exhibits higher accuracy. Although the discrete
point cloud data are stable, it is also susceptible to noise, which can affect its precision.
However, these data still provide a reference. By fusing information from both image and
point cloud sources, the accuracy can be further improved, reducing errors during the
variation process.

Testing outcomes indicated that precise cargo box orientation angles can be achieved
without employing deep learning or registration techniques, by solely processing data
from depth cameras. This approach proves effective for adjusting cargo box poses on a
two-dimensional conveyor platform. The system’s capability to retrieve cargo pose and
make real-time adjustments was verified by interfacing with the main control chip through
serial communication. When cargo boxes of arbitrary orientations were placed in the
two-dimensional conveyor platform’s adjustment area, the depth camera recognized the
boxes and adjusted their angles. Table 3 illustrates the real-time angular adjustments,
starting from an initial angle of 71.24◦ and adjusting to a near-horizontal position of
approximately 0◦.

Table 3. Real-time angle changes during cargo box adjustment.

Record Times Angle (◦) Record Times Angle (◦) Record Times Angle (◦)

1 71.240 14 48.537 27 20.817
2 70.078 15 40.900 28 18.534
3 68.074 16 41.889 29 13.122
4 66.512 17 36.145 30 11.486
5 65.402 18 38.920 31 10.181
6 63.588 19 32.261 32 7.746
7 58.223 20 31.449 33 8.198
8 59.304 21 32.030 34 6.598
9 55.823 22 29.885 35 1.720

10 56.258 23 26.057 36 0.962
11 55.751 24 26.211 37 1.445
12 51.553 25 20.394 38 0.138
13 49.892 26 19.272

The experimental platform utilizes omnidirectional wheels with a diameter of 58 mm
and a set of fixed omnidirectional wheels arranged in concentric circles with a radius R of
0.1 m. The cargo box adjustment experiment was conducted based on a foundation where
the line speed v0 of the omnidirectional wheels was set at 120 revolutions per minute. The
adjustment was completed within 4–5 s, aligning with the rotational adjustment motion
analysis outlined in Equation (4). To mitigate the effects of inertia, we set a stop criterion:
the adjustment operation ceased when the identified angular deviation from the expected
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result was <1◦. In other words, the adjustment operation was halted after recognizing
an angle of 0.962◦, and the final angle at the point of cessation was 0.138◦, with minimal
deviation from the expected value of 0◦, indicating a high level of precision.

4.2. Experimental Results Comparison

We initialized all four angle estimation methods from a base value of 0 and then
made adjustments using incremental changes. The resulting comparative data are shown
in the bar chart given in Figure 16. This comparison revealed that angles obtained from
the complementary fusion of image and point cloud information closely match those
acquired by the accelerometer sensor, with only a maximum difference of 0.7◦ and a total
variation difference of merely 1.24◦. Even with the least performing method, the point
cloud OBB angle, the total variation difference remained modest at 3.3◦. This approach,
which avoids the need for deep learning or model registration, offers low complexity,
minimal computational requirements, and wide applicability. It proves to be effective in
real-world applications for cargo pose adjustments.

Figure 16. Comparative analysis of angle estimation methods.

Figure 17 presents a comparison between the real-time angular adjustments of cargo
boxes on the two-dimensional convey platform from Table 3 and the ideal trend line. The
ideal trend line represents the most optimal trend of angular adjustment in the absence of
interference and errors. By comparison, it can be observed that during the actual correction
process on the two-dimensional convey platform, the deviation angle of the cargo boxes
changes relatively smoothly, allowing for the adjustment of the cargo box’s orientation to
meet the predetermined requirements, with a final error of less than 1.5◦.
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Figure 17. Real-time variation of cargo box angles during adjustment process and ideal trend line.

5. Conclusions

In our study, we investigated a two-dimensional conveyance system based on deep
camera pose recognition. This platform can be used in conjunction with linear conveyance
devices, serving as an aid and decision-making tool during various phases of logistics
operations. It also possesses the capability to independently perform multi-directional con-
veyance, recognition, and pose adjustments. This contributes to the optimization of cargo
box logistics, reduction in energy consumption, and the enhancement of automation and ef-
ficiency. We introduced a recognition method that fuses image and point cloud information.
By leveraging the advantages of pixel-level processing in images and position-based pro-
cessing in point clouds, we bypassed the complex procedures associated with deep learning
and registration. Instead, the methodology directly targets the precise identification of
the rectangular box’s edge features to determine and compute its posture. The system’s
physical development and the fundamental control of the two-dimensional conveyance
system were brought to realization. Experimentation and verification were conducted
to retrieve the cargo pose, emphasizing determining the posture angles with precision.
This led to real-time and accurate readings, facilitating precise communication between
the top-tier computer and the main control unit via the ROS. The conveyance approach
presented in this study exhibits increased intelligence, flexibility, and energy efficiency. The
posture-recognition method’s complexity is low, it showcases wide adaptability, and its
precision and real-world applicability are commendable.
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