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SA. IMU processing details 

 A brief overview of our IMU data processing is provided in the main text. Here, we expand on 
the processing details. After collecting raw data from each IMU, data were downloaded and 
processed offline using the following steps:  

SA.1. Calibration; 

SA.2. Quiet period identification; 

SA.3. Bias removal; 

SA.4. Saturation correction; 

SA.5. Low-pass filtering; 

SA.6. Drift correction; 

SA.7. Orientation estimation and gravity subtraction; 

SA.8. Coordinate system transformation.  

After these processing steps, each of the 642 trials we analyzed was segmented using a 10 N 
threshold from the time synchronized force signal. Trials were then entered into each of the individual 
methods as an f × 4 matrix (with f rows representing the number of frames during stance and the four 
columns representing time stamps and three acceleration axes).  

 

SA.1. Calibration  

All IMU data collected during this experiment were corrected with IMU-specific calibration 
matrices. These matrices were calculated by conducting a calibration procedure that ensured each 
IMU accurately expressed accelerations and angular velocities in an orthogonal coordinate system 
that was oriented square to the IMU housing.  

To do so, each IMU was secured to a centrifuge (ClearPath MCVC, Teknic, Victor, NY, USA) 
with custom 3D printed jigs (SOLIDWORKS 2019, Dassault Systèmes, Vélizy-Villacoublay, France) 
and calibrated in six orientations at 16 known accelerations (from 0 to 41.42 g where 1 g = 9.8 m/s2 
[104,105]) and angular velocities (from 0 to 78.54 rad/s). Adapting methods from Coolbaugh et al. 
[81], known data (K) from the centrifuge and measured data (M) from the IMU were used to calculate 



3 × 7 calibration matrices for each IMU (C; three signed magnitude terms, three absolute magnitude 
terms, and one bias term per axis) and quantify the sensor accuracy and precision with a hold-back 
procedure after subtracting out the biases observed during a quiet period (B).  

 𝐶 ∗ (𝑀 + 𝐵) = 𝐾         Equation S1  

 

One potential limitation of this procedure is that it treats each triaxial sensor independently 
(primary accelerometer, secondary accelerometer, and gyroscope) and assumes that their values do 
not affect each other. This assumption was tested while piloting the calibration procedure by 
quantifying inter-sensor dependencies between the primary accelerometer and gyroscope and 
between the secondary accelerometer and gyroscope. Observed dependencies were negligible and 
independent sensor calibration matrices yielded the best results; thus, we felt confident using this 
approach (which avoids the indeterminacy of the primary and secondary accelerometer having the 
same K values). 

After calibration, the IMU primary accelerometer errors were ≤ 0.01 ± 0.04 g, secondary 
accelerometer errors were ≤ 0.05 ± 0.07 g, and gyroscope errors were ≤ 0.01 ± 0.01 rad/s. 

Figure S1: (A) An IMU in a 3D printed housing. Computer-aided design software was used to ensure that the IMUs were friction fit square to their 
housing. (B) Two IMUs in their 3D printed housings mounted on the centrifuge. IMUs were checked to be square with an engineer’s square and level 
with a bullseye level. (C) Example of measured triaxial accelerations for the secondary accelerometer (M). The 16 accelerations being applied to the 
IMU in each of the six orientations correspond to known (K) values from the centrifuge. Accelerations between each orientation correspond to the IMU 
being repositioned on the centrifuge and checked to be square and level. 

 

SA.2. Quiet period identification 

Quiet periods were identified throughout the data collection (e.g., participant resting, participant 
preparing at the start of the runway, participant standing while receiving instruction) and used to 
periodically check for changes in bias (as bias can vary with battery life and temperature) and reset 
orientation algorithms (as orientation estimates are prone to drift over prolonged periods; discussed 
further below). These quiet periods were defined as any period where… 𝜔  0.5 𝑟𝑎𝑑/𝑠             Equation S2 𝑗  0.01 𝑚/𝑠          Equation S3 
 



…for at least 100 ms. 

  
Figure S2: (A) Resultant angular velocity (blue) and jerk (orange) at the sacrum across an entire data collection for a randomly selected example 
participant. (B) Zoomed in to show quiet periods (QP) where resultant angular velocities are < 0.5 rad/s and resultant jerks are < 0.01 m/s3 for at least 
100 ms. Thresholds noted with the dashed horizontal line. 

 

SA.3. Bias removal 

When the IMU is quiet, we know that it is not accelerating or rotating and thus, the only thing 
loading the axes should be the gravity vector. Based on this knowledge, we can create a temporary 
inertial coordinate system based on gravity: 

𝑌 =  ∑               Equation S4 

We can express Y as a unit vector, then make X and Z orthogonal unit vectors (with arbitrary 
sense). Using these vectors, we can create a temporary rotation matrix that will align our data with 
gravity: 

𝑅 = 𝑋𝑌𝑍              Equation S5 

We can then express our data in this temporary inertial coordinate system (and given our 
calibration, we know that the axes of the accelerometer and gyroscope are exactly aligned so the 
same rotation matrix can be used for both): 𝑎 = 𝑅 ∗ 𝑎          Equation S6 

Given the IMU is quiet, in every frame 𝑎  and 𝜔  should now equal [0 1 0] g and [0 0 0] 
rad/s, respectively. Thus, we can calculate bias (B) in the acceleration and angular velocity as the 
average deviation from those values across the quiet period: 



𝐵 = ∑ (    )                 Equation S7 

We can then remove the bias and re-express our data in the original coordinates:      𝑎 = 𝑎 𝑅 𝐵             Equation S8 
  

 

Figure S3: (A) Uncorrected resultant sacral acceleration (blue) and de-biased resultant sacral acceleration (orange) across the entire data collection for 
the randomly selected participant. (B) Zoomed in to show that the uncorrected resultant acceleration does not equal 1 g during quiet periods while the 
de-biased acceleration equals exactly 1 g. 

 

SA.4. Saturation correction 

Our IMU contained two tri-axial accelerometers with different ranges. The primary 
accelerometer had a range of ± 16 g while the secondary accelerometer had a range of ± 100 g. 
Although ± 16 g is a large enough range to capture the majority of accelerations at the tibia, iliac 
crest, and sacrum during running, we wanted to ensure that saturation did not occur, particularly at 
the tibia [106]. Thus, we used a threshold of |a| > 15.5 g and replaced any value above this threshold 
in our primary accelerometer with the corresponding frame from our secondary accelerometer (these 
values were highly correlated across the ± 16 g range that they could both measure). The remaining 
secondary accelerometer data were then discarded. 

  



 

Figure S4. (A) Tibia ~longitudinal axis accelerations from the primary accelerometer (orange) and secondary accelerometer (blue) across the entire data 
collection for the example participant. The horizontal black line indicates data outside the primary accelerometer’s range (defined as |a| > 15.5 g). (B) 
Secondary accelerometer measurements plotted against the primary accelerometer measurements for each axis (different colors). Black dashed 
diagonal line indicates perfect agreement. In this randomly selected example data, correlations between each axis ranged from r = 0.82 to 0.96. In 
general, correlations across the ranges shared between primary and secondary accelerometers were ≥ 0.90.  

 

SA.5. Low-pass filtering 

Next, accelerations and angular velocities were filtered with a 4th-order 50-Hz low-pass 
Butterworth filter. 

  
Figure S5: (A) Worst-case example of unfiltered (blue) and filtered (orange) ~longitudinal tibial acceleration (that experienced saturation and is now 
composed of data from the primary and secondary accelerometers). (B) Zoomed in on ~one step to better visualize the differences between the filtered 
and unfiltered signal. Filter parameters were chosen to qualitatively balance the preservation of major signal features (particularly peak magnitudes and 
locations) with the removal of high-frequency noise. 

 

SA.6. Drift correction 



Angular velocity measured by IMUs is prone to drift. This drift makes it difficult to integrate 
angular velocities and calculate the orientation of an IMU in space. Several sensor fusion algorithms 
have been developed to correct this drift including Kalman filters [107], Mahoney filters [108], and 
Madgwick filters [85]. We explored the use of each of these filters and found that converting our data 
to quaternion representation and entering it into a Madgwick filter (with beta set to 0.05 and no 
magnetometer fusion due to the amount of magnetic interference in our lab) was the most successful 
in eliminating drift in a “worst case” recreation of our experimental conditions (an 80 minute data 
capture with extreme angular rotations and accelerations and no quiet period corrections yielded a 
1.66 rad rotation error accumulated across the entire 80-minute duration). The code we adapted to 
execute the Madgwick filter is freely available from x-io at: 

https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/ 

and from MATLAB at: 

https://www.mathworks.com/products/sensor-fusion-and-tracking.html 

  
Figure S6: (A) Uncorrected angular velocity about the ~longitudinal axis of the sacrum (blue) for the entire data collection of an example participant. (B) 
Difference between the uncorrected and Madgwick filter-estimated angular velocities (orange). (C) Madgwick filter-estimated angular velocity about the 
~longitudinal axis of the sacrum (yellow). 

 

SA.7. Orientation estimation and gravity subtraction 

 After drift-correcting the angular velocity with the Madgwick filter, we created a rotation matrix 
based on the loading of gravity during quiet periods (see A.3 above), then used it to create a “tilt-
corrected” coordinate system (see A.8 below). Then, between each quiet period, we used angular 
velocity to calculate the changes in orientation based on Equations (2) and (3) in McGinnis and 
Perkins [88]. This provided a rotation matrix from the wearable coordinate system to the “tilt-
corrected” coordinate system for each time step. 

Using these time-varying rotation matrices, the acceleration data for each frame were 
expressed in the “tilt-corrected” coordinate system, then 1 g was subtracted from the y-axis (in line 
with gravity). This procedure removed the gravity component from the accelerometer data. To create 
the wearable and segment coordinate systems (in the next step), the data were then re-expressed in 
their original coordinate system using the inverse of the time-varying rotation matrices.      



  
Figure S7. (A) Uncorrected acceleration of the sacrum for the entire data collection of a randomly selected example participant (colors represent 
different axes). (B) Acceleration of the sacrum after subtracting 1 g from the y-axis in the “tilt-corrected” coordinate system and then re-expressing in the 
wearable coordinate system (colors represent different axes). 

 

SA.8. Coordinate system definition 

Finally, data were expressed in three different coordinate systems for analysis. First, data were 
expressed in the Wearable Coordinate System (WCS). This is not the raw coordinate system of the 
IMU. Rather, all data were corrected with the calibration matrices described in Section A.1 above. 
These calibration matrices ensured that the data were expressed in orthogonal axes aligned with the 
IMU housing. The IMU housing was positioned so that during quiet standing, the WCS axes were 
oriented roughly in the direction of progression (+x), the longitudinal axis (+y), and to the right (+z).  

Data were also expressed in a Segment Coordinate System (SCS). This coordinate system 
was defined using an approach described in the Supplementary Materials of Cain et al. [89], which 
can be found at: 

http://dx.doi.org/10.1016/j.gaitpost.2015.10. 022 

In brief, accelerations during a quiet standing trial were used to define a gravity vector (similar 
to A.3 above), assuming that the segment was aligned with gravity during the standing trial. This 
gravity-based vector was defined as the proximal–distal axis (+y proximal). Then, a period of steady-
state running was manually selected from the dataset. Angular velocities from this period were 
entered into a principal component analysis and the principal component accounting for the most 
variability in angular velocity was selected to represent the average axis of rotation. During running, 
the average axis of rotation is assumed to correspond to the medial–lateral axis. We defined this as 
the z axis (+z right). The anterior–posterior axis is then defined as the cross-product of y and z (+x 
anterior). Finally, the z axis is recalculated as the cross-product of x and y to ensure orthogonality. 
These three unit vectors were then used to create a rotation matrix that transforms data from the 
WCS to the SCS. The rotation matrix was then plotted to visualize the differences between the WCS 
and SCS and ensure a solution consistent with our knowledge of the IMU placement had been 
reached (i.e., the axes were oriented correctly). 

 Finally, data were expressed in a pseudo-global system similar to Cain et al.’s “tilt-corrected” 
coordinate system (TCCS) [89]. First, we created a rotation matrix based on the loading of gravity 
during quiet periods (see Section A.3 above). This rotation matrix expresses data with the y-axis 
aligned with gravity during quiet standing (+y vertical). Next, the acceleration of each axis was double 
integrated to obtain displacement, then entered into a principal component analysis. The principal 



component accounting for the most variation in displacement was taken as the projection of the 
direction of progression onto the horizontal plane (+x direction of progression). Then, the projection of 
the medial–lateral axis onto the horizontal plane was defined as the cross product of x and z (+z 
right). The x-axis was then recalculated to ensure orthogonality. These three unit vectors were then 
used to create a rotation matrix and multiplied by the time-varying rotation matrices described in 
Section A.7 to express the data in the TCCS. Thus, the TCCS data are always expressed with y 
aligned with gravity, but with x and z free to rotate about y as the participant moves. 

 
Figure S8: All plots show the sacral accelerations from a randomly selected participant. The top row shows data in the Wearable Coordinate System 
(WCS). The middle row shows data in the Segment Coordinate System. The bottom row shows data in the Tilt-Corrected Coordinate System (TCCS). 
The first column shows the x-axis data (blue). The second column shows the y-axis data (orange). The third column shows the z-axis data (yellow). Due 
to the similarities between all three coordinate systems at the sacrum, the discrepancies are minor. 

 

SB. Description of force estimation methods and their implementation 



Here, we provide details on each of the force estimation methods included in our study. Brief 
descriptions, equations, and figures have been included to show the force estimation process for 
each method. For additional detail, please refer to the original publications. 

SB.1. Neugebauer [73,74] 

SB.2. Charry [75] 

SB.3. Wundersitz [54] 

SB.4. Meyer [76] 

SB.5. Gurchiek [55] 

SB.6. Thiel [48] 

SB.7. Kiernan [77] 

SB.8. Kim [78] 

SB.9. Pogson [79] 

SB.10. Pogson xynorm 

SB.11. Day [80] 

SB.12. Higgins [40] 

SB.13. Veras [63] 

All data for the figures in this section were taken from the same randomly selected trial (a 75.3 
kg male running 3.20 m/s on the ‘floor’ surface with a rear foot strike angle of 0.44 rad). For clarity, the 
different coordinate systems used across the original publications were standardized to the 
conventions described in our main paper and Supplementary Materials A. All example data are shown 
in the SCS regardless of the original coordinate system used by the method, but Supplementary 
Materials C demonstrates the effects of different coordinate systems on the data. 

Finally, our implementation of each of these methods is freely available at: 

https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a 

To use these implementations, simply feed the acceleration data during a single stance into the 
provided function as an f × 4 matrix where f is the frame and the columns correspond to time (in ms) 
and accelerations in the x, y, and z axes (in g).  

 

SB.1. Neugebauer method 

 Neugebauer et al. published two papers using linear regression to estimate the maximum 
vertical GRF from accelerometers worn on the hips of children and adults [73,74]. To do so, they used 
the generalized (non-participant-specific) equation: ln (𝐹 , ) =  𝛼 + 𝛼 𝑎 , , + 𝛼 𝑚 + 𝛼 𝐿 + 𝛼 𝐿𝑎 , ,    Equation S9 

where 𝑚 corresponds to participant mass and 𝐿 corresponds to the type of locomotion (with walking 
equal to 0 and running equal to 1). Thus, for running, their equation simplifies to: 



ln (𝐹 , ) =  (𝛼 + 𝛼 ) + (𝛼 + 𝛼 )𝑎 , , + 𝛼 𝑚    Equation S10 ln (𝐹 , ) =  𝑐 + 𝑐 𝑎 , , + 𝑐 𝑚      Equation S11   𝐹 , =  𝑒 , ,        Equation S12 

where 𝑐 , 𝑐 , and 𝑐  are constants replacing (𝛼 + 𝛼 ), (𝛼 + 𝛼 ), and 𝛼 , respectively. Note that 
Neugebauer and colleagues published a third paper estimating maximum vertical GRF from the 
accelerations of soldiers carrying a load during walking that can also be reduced to Equation (S12) if 
carrying a load of 0 [109].  

Here, we made two assumptions: (1) that Neugebauer defined their WCS with ~vertical as 
positive, and (2) that 𝐹 ,  is analogous to 𝐹 , . We then used a leave-one-out cross-validation 
to iteratively calculate the error for one participant using the 𝑐 , 𝑐 , and 𝑐  values calculated from the 
other 73 participants while the final 𝑐 , 𝑐 , and 𝑐  values were calculated using the data from all 74 of 
our participants. Also note that in their 2012 and 2014 papers, Neugebauer and colleagues were 
unable to synchronize their accelerometers and force plates and thus used 𝑎 , ,  averaged 
across 30 s and 10 s, respectively, in those papers. In contrast, we used 𝑎 , ,  during the single 
stance for which 𝐹 ,  is being estimated. 

 
Figure S9: Hip y-axis acceleration (proximal–distal in the SCS; ~ longitudinal in the WCS; blue line) maxima (yellow circle) and participant mass are 
entered into Equation (S12) to estimate the vertical GRF second peak magnitude. 

 

SB.2. Charry method 

 Charry et al. [75] placed a ± 24 g accelerometer on the medial midshaft of three participants 
tibiae and measured 𝑎 ,  at 100 Hz while the participants ran 1.7 to 7.2 m/s overground. Charry et 
al. evaluated the efficacy of four potential acceleration variables to predict the vertical GRF second 
peak magnitudes: (1) heel-strike, (2) initial peak acceleration, (3) minimum peak (specified as the 
maximum in their paper but the minimum here based on differences in coordinate conventions), and 
(4) peak-to-peak (Figure S10A). They found that minimum peak acceleration was the best predictor of 
vertical GRF second peak magnitude and thus discarded the other three predictor variables. Charry 
et al. evaluated both a linear and logarithmic prediction equation and found that the logarithmic 
equation better predicted vertical GRF second peak magnitude; thus, they discarded the linear fit and 
used: 



𝐹 , =  𝑙𝑜𝑔 ( 𝑎 , , + 1)       Equation S13 

where 1 was added to acceleration values to prevent taking the log of a negative value. Charry et al. 
then added additional terms to their prediction equation to create slopes and intercepts that were a 
function of participant mass, using the form: 𝐹 , =  𝑠(𝑚) ∗ 𝑙𝑜𝑔 𝑎 , , + 1 + 𝑖(𝑚)     Equation S14 

where s(m) and i(m) were found by taking the participant- and leg-specific slopes and intercepts 
(respectively) from Equation (S13) (Figure S10B) and plotting them against participant mass (Figure 
S10C), then defining s(m) and i(m) as the equation for that line. Thus, Equation (2) can be expanded 
to the form: 𝐹 , = (𝑠 𝑚 + 𝑠 ) ∗ 𝑙𝑜𝑔 𝑎 , , + 1 + (𝑖 𝑚 + 𝑖 )   Equation S15 

The original s(m) and i(m) were found on the three participants in Charry et al.’s study. Here, we used 
a leave-one-out cross-validation to iteratively calculate the error for one participant using s(m) and 
i(m) terms calculated from the other 73 participants while the final s(m) and i(m) terms were 
calculated using the data from all 74 of our participants. 

 

Figure S10: (A) Tibia y-axis acceleration (proximal–distal in 
the SCS; ~longitudinal in the WCS; blue line) features 
Charry et al. used to predict vertical GRF second peak 
magnitude. HS = heel strike, IPA = initial peak acceleration, 
MP = minimum peak (originally specified as a maximum but 
here as a minimum due to differences in coordinate 
conventions), and P-to-P = peak-to-peak. ‘Minimum peak’ 
was found to be the best predictor and all other variables 
were discarded. 

 

(B) Fit for Charry et al.’s Equation (1) for a single leg from 
the selected participant. Each blue point represents one 
stance. To account for differences in coordinate 
conventions, the negative value of the minimum peak was 
used. Although 1 was added to all accelerations, 0.2% of 
results when using the SCS were still imaginary numbers. 
These results were discarded from the analysis. 



 

(C) Participant- and leg-specific intercepts from the line of 
best fit in the preceding figure plotted against participant 
mass for each participant and leg (blue points). The 
equation describing the line of best fit for the black line was 
used to define the i(m) term in Charry et al.’s Equations 
(S14) and (S15). A similar procedure was conducted using 
the slopes from the previous step (Figure S9B) to define the 
s(m) term. 

 

SB.3. Wundersitz method 

Wundersitz et al. [54] measured the vertical GRF and second thoracic vertebra acceleration 
from 17 competitive team sport athletes while they ran either in a straight line or with a change in 
direction. To estimate force, they multiplied acceleration by mass. They then filtered the estimated 
force with a 4th-order low-pass Butterworth filter of either 10, 15, 20, or 25 Hz and extracted the peak 
value. We assumed that the peak force they were estimating corresponded to the vertical GRF 
second peak such that: 𝐹 , = 9.8𝑚𝑎 , ,         Equation S16 

where 𝑚 is mass in kg and 𝑎 , ,  is acceleration in g (with 1 g = 9.8 m/s2).  

Here, we adapted this upper back approach to our sacrum data. 

 
Figure S11: Sacrum y-axis acceleration (proximal–distal in the SCS; ~longitudinal in the WCS) was multiplied by participant mass then low-pass filtered 
at 10, 15, 20, 25-Hz, and no filter (dark blue, light blue, yellow, orange, and red lines, respectively). Maxima were then identified and used to estimate the 
vertical GRF second peak. 

  

SB.4. Meyer method 



 Meyer et al. [76] had 13 moderately active children perform a range of tasks including jogging 
and running while they wore triaxial accelerometers on their right hip. Meyer et al. did not explicitly 
define their coordinate convention but reported extracting the “minimum acceleration of the vertical 
axis”. We assumed that this corresponded to a maximum in the ~longitudinal axis as defined in our 
WCS (see Figure S9 above). Acceleration and force signals were not time synchronized; thus, Meyer 
et al. extracted and averaged their acceleration minima across 8–15 steps per trial. The correlation 
between these average accelerations and the “peak impact forces in the vertical plane” were then 
explored (which we interpreted as the maximum vertical GRF and not the vertical GRF first peak 
magnitude based on their reported magnitudes and on the fact that their other tasks would not have 
an “impact peak”, as the term is commonly used in the running literature). Meyer et al. also explored 
sex, age, weight, height, and leg length as potential explanatory variables but found that they were 
not significant predictors. Thus, they ultimately used a correlation between the mean 𝑎 , ,  
across 8–15 steps and the 𝐹 ,  of a single stance on the force plate (expressed in body weights), 
observing an r2 of 0.81. This can be expressed as: 

,. = 𝑎 , ,          Equation S17 

and rearranged as: 𝐹 , = 9.8𝑚𝑎 , ,         Equation S18 

where 𝑚 is mass in kg and 𝑎 , ,  is acceleration in g (with 1 g = 9.8 m/s2), and with the 
assumption that the 𝐹 ,  they attempted to estimate corresponded to 𝐹 ,  at the running speeds 
they studied. This equation resembles the one used by Wundersitz et al. [54] (above) but with 
different data entered into the equation. 

 We used Equation (S18) to estimate 𝐹 ,  across our 74 participants using the 𝑎 , ,  
from the same stance the force was taken from. 

 

SB.5. Gurchiek method 

 Gurchiek et al. [55] had 15 participants perform sprint start and change of direction tasks while 
wearing an IMU on their sacrum. Data were low-pass filtered at 30 Hz then re-expressed in a GCS. 
The force time series and average across stance were estimated by scaling acceleration by mass: 𝐹 , = 9.8𝑚𝑎 , ,          Equation S19 

where 𝑚 is mass in kg and 𝑎 , ,  is acceleration in g (with 1 g = 9.8 m/s2). This equation resembles 
the one used by Wundersitz et al. [54] and Meyer et al. [76] (above) but with different data entered 
into the equation. 

 

B.6. Thiel method 

 Thiel et al. [48] placed IMUs above the medial malleoli of three elite sprinters and had them 
sprint 50 m on a track with embedded force plates. They calculated the maximum vertical GRF as: 𝐹 , =  𝑐 (𝑛)𝑎 , + 𝑐 (𝑛)𝑎 , + 𝑐 (𝑛)𝑎 ,          Equation S20 



where 𝑐 , 𝑐 , and 𝑐  are coefficients that varied linearly as a function of stride number 𝑛 and where we 
assumed that 𝐹 ,  was the vertical GRF second peak and that each “acceleration component” was 
the maximum value observed during stance, such that: 𝐹 , = (𝑐 𝑛 + 𝑐 )𝑎 , , + (𝑐 𝑛 + 𝑐 )𝑎 , , + (𝑐 𝑛 + 𝑐 )𝑎 , ,    

 Equation S21 

Thiel et al. noted that this stride-varying approach was suitable until the maintenance (steady-state) 
phase, where an approximately constant relation between acceleration and force is expected. Thus, 
during steady state running, the coefficients could be assumed constant, and the equation can be 
simplified as: 𝐹 , =  𝑐 𝑎 , , + 𝑐 𝑎 , , + 𝑐 𝑎 , ,     Equation S22 

Here, we assumed that (1) participants were running at a steady-state and therefore used the 
constant expression Equation (S22), and that (2) Thiel et al. used a WCS with ~vertical, ~anterior, 
and ~medial defined as positive (although they did not fully describe their coordinate convention, they 
did provide time-series acceleration figures that suggest this was their convention. Note that their text 
suggests that the right and left medial–lateral axes were defined with positive in opposite directions; 
however, we inferred that the minima was taken from the right and the maxima from the left, 
effectively making the method the maxima from the ~medial direction).  

To execute this method, we used a leave-one-out cross-validation to iteratively calculate the 
error for one participant using the 𝑐 , 𝑐 , and 𝑐  coefficients calculated using the other 73 participants 
while the final 𝑐 , 𝑐 , and 𝑐  coefficients were calculated using the data from all 74 of our participants. 

 
Figure S12: Tibial accelerations from the x- (anterior–posterior in the SCS; ~direction of progression in the WCS; dark blue line), y- (proximal–distal in 
the SCS; ~longitudinal in the WCS; light blue line), and z-axes (medial–lateral in the SCS; ~right in the WCS; pink line) maxima were found (dashed 
circles). Note that we inferred that the largest medial value was taken from the z-axis; thus, for right stances (such as the one shown here), the z-axis 
was multiplied by −1. These values were multiplied by the coefficients 𝑐 , 𝑐 , and 𝑐  to estimate the vertical GRF second peak magnitudes. 

 

SB.7. Kiernan method 

 Building on work by Neugebauer et al. [75,74,109], Kiernan et al. [77] had 40 participants run 
overground at slow, typical, and fast speeds while recording accelerations from their iliac crests and 
sacra. In an effort to estimate both the first and second peak of the vertical GRF, the 𝑎 ,  signal from 
each location was divided into signals composed of 0–8 Hz ‘LoF’ frequency content and a ≥10 Hz 



‘HiF’ frequency content [91]. For each of the two sensor locations, maxima from the LoF and HiF 
signals were found and entered into a linear regression along with the sex, height, mass, and leg 
length to estimate the log transformed vertical GRF first and second peaks. Kiernan et al. also 
explored models, including the speed and participant as fixed and random effects. They found that 
this could improve model performance; however, we used the generalizable form of their model: ln (𝐹 , ) =  𝑐 + 𝑐 𝑎 , , , + 𝑐 𝑎 , , , + 𝑐 𝑠 + 𝑐 𝑚 + 𝑐 ℎ + 𝑐 𝑔  Equation S23 

which can be rearranged as: 𝐹 , =  𝑒𝑐1+𝑐2𝑎𝑆𝐶𝑆,𝑦,𝐿𝑜𝐹,𝑚𝑎𝑥+𝑐3𝑎𝑆𝐶𝑆,𝑦,𝐻𝑖𝐹,𝑚𝑎𝑥+𝑐4𝑠+𝑐5𝑚+ 𝑐6ℎ+𝑐7𝑔    Equation S24 

where 𝑐 :  are constants, 𝑎 , , ,  and 𝑎 , , ,  are low and high frequency acceleration 
maxima, 𝑠 is the self-reported participant sex (with female = 0, male = 1, and no non-binary reported), 𝑚 is participant mass, ℎ is participant height, and 𝑔 is the height of the greater trochanter. 

 To replicate this method, we used a leave-one-out cross-validation to iteratively calculate the 
error for one participant using 𝑐 :  values found using the other 73 participants while the final 𝑐 :  
values were found using data from all 74 of our participants. Note that the original model published by 
Kiernan et al. was developed with a subset of the current sample (40 of our 74 participants). 

 
Figure S13: Sacrum y-axis acceleration (proximal–distal in the SCS; ~longitudinal in the WCS; light blue line) and its low frequency (dark blue line) and 
high frequency components (pink line). The peak in the low frequency was identified (dark blue circle), then the earliest occurring peak in the high 
frequency between the start of the stance and the low frequency peak was identified (pink circle). These peaks were entered into a linear regression to 
estimate vertical GRF second peak magnitude.  

 

SB.8. Kim method 

 To estimate GRF from acceleration during running, Kim et al. [78] used a feed-forward neural 
network (FFNN). They proposed two models: a “SLIP” model (spring loaded inverse pendulum) that 
estimated GRF from sacrum displacement (double integrated acceleration) and a “rigid dynamics” 
model that estimated GRF from sacrum acceleration. 

Kim et al. tested these two models on seven participants who ran on a treadmill while sacral 
acceleration was recorded via motion capture. Triaxial accelerations were low-pass filtered at 10 Hz 
with a 5th-order Butterworth filter. Accelerations (or displacements) at a single time point, and the time 
point itself, were then entered into an FFNN with a single 10-node hidden layer to estimate triaxial 



forces normalized to body weight. Here, however, we followed the approach laid out in Equation 
(S16) (above) and instead multiplied the acceleration input by mass to estimate non-normalized force.  

Kim et al. did not report a normalization procedure for the acceleration inputs to the FFNN but 
based on their previous work [34], we assumed that data were normalized by maximum acceleration 
so that all values ranged from 0 to 1. Similarly, we inferred from their figures that time was expressed 
as percent stance from 0 to 100. Few details were provided regarding model parameters; thus, we 
assumed that log-sigmoid and pure linear activation functions were used in the hidden and output 
layers and that a 2000 epoch Levenberg–Marquardt function was used for training. 

To evaluate their model, we used a leave-one-out approach and iteratively trained a network to 
minimize the mean square errors on 73 participants using an 80–20 training–validation split. We then 
calculated the errors between the estimated and actual 𝐹 ,  on the remaining participant. Weights and 
biases for the final model were calculated by training the FFNN on all 74 participants. 

 

Figure S14: (A) Sacral accelerations normalized from 0 to 
1 based off the minimum and maximum observed values in 
the x- (anterior–posterior in the SCS; ~direction of 
progression in the WCS; dark blue line), y- (proximal–distal 
in the SCS; ~longitudinal in the WCS; light blue line), and z-
axes (medial–lateral in the SCS; ~right in the WCS; pink 
line). Tri-axial values from each time point were used to 
estimate corresponding vertical GRF values. 

 

(B) Sacral displacements normalized from 0 to 1 based off 
the minimum and maximum observed values in the x- 
(anterior-posterior in the SCS; ~direction of progression in 
the WCS; dark blue line), y- (proximal-distal in the SCS; 
~longitudinal in the WCS; light blue line), and z-axes 
(medial-lateral in the SCS; ~right in the WCS; pink line). Tri-
axial values from each time point were used to estimate the 
corresponding vertical GRF values. 

 

SB.9. Pogson method 

 Pogson et al. [79] measured resultant forces and upper back accelerations while 15 team sport 
athletes ran overground. Given our goal of estimating vertical GRFs, we instead used the y-axis force 
and acceleration. Accelerations were segmented by stance, then zero-padded to the duration of the 
longest stance (we zero-padded to 0.4 s to ensure that the method could accommodate all future 
data). Acceleration and force data were then entered into a principal component analysis. The 



acceleration principal components (PCs) and signal duration were then entered into a multilayer 
perceptron (MLP) that was trained to estimate the force PCs. Pogson et al. used a stochastic particle 
swarm optimization to determine the number of inputs (acceleration PCs), hidden layers, number of 
nodes in each layer, and outputs (force PCs) that minimized the force PC estimation error. They 
reported that all optimizations returned similar values but found slightly better results with an MLP 
using six acceleration PCs, with five hidden layers containing 45, 36, 45, 82, and 40 nodes, and 
trained to estimate eight force PCs. The force PCs were then used to reconstruct the force signal. We 
assumed that the input data were normalized from 0 to 1 and that the sigmoid activation functions 
were used between each of the layers, except for the output layer, where a linear activation function 
was used. 

The reconstructed force signal could vary in duration from the input and target signals. To 
address this issue, Pogson et al. reported appending the signal duration to the output layer (as a 
quantity to be estimated), then trimming the force signal to the estimated duration. During 
development, however, we observed that this approach often led to input and output signals of 
different durations, increasing error (consistent with Pogson et al.’s Figure 4). Given that the 
estimated force should always have the same duration as the acceleration input (because both are 
segmented based on the stance onset and offset), we trimmed any values following the point where 
the estimated force fell below 10 N, then interpolated the force signal to match the duration of the 
input signal. This approach greatly reduced the errors. 

To evaluate Pogson’s method, we tuned the hyperparameters of the MLP solver using a grid 
search, then used a leave-one-out approach to iteratively train a network that minimized mean square 
errors on 73 participants using an 80–20 training–validation split. We then calculated the errors 
between estimated and actual 𝐹 ,  on the remaining participant. Weights and biases for the final 
model were calculated by training the MLP on all 74 participants. 

 

Figure S15: (A) Sacral acceleration in the y-axis (proximal–
distal in the SCS; ~longitudinal in the WCS; light blue line) 
zero-padded to 400 ms.  



 

(B) The first six principal component reconstructions for the 
example trial (solid lines; PC scores multiplied by 
coefficients) and mu (dashed line; the estimated means of 
each time point across the sample). The sum of these 
seven lines reconstructs the original signal. The scores 
used to calculate the solid lines were entered into the 
machine learning model to estimate the vertical GRF PC 
scores. 

 

SB.10. Pogson xynorm method 

We observed that the Pogson et al. [79] method was promising but that the majority of errors 
originated from differences between the duration of the original force signal and the estimated force 
signal. To deal with this source of error, we modified Pogson et al.’s approach: instead of zero-
padding the data, we standardized all signals to 101 time points and followed the approach laid out in 
Equation (S16) (above), multiplying the acceleration input by mass before applying the principal 
component analysis. After estimating the PC scores and reconstructing the signal, it was rescaled to 
its original duration. 

To evaluate this model, we tuned the hyperparameters of the MLP solver using a grid search, 
then used a leave-one-out approach to iteratively train a network that minimized the mean square 
errors on 73 participants using an 80–20 training–validation split. We then calculated errors between 
the estimated and actual 𝐹 ,  on the remaining participant. Weights and biases for the final model 
were calculated by training the MLP on all 74 participants. 

 

SB.11. Day method 

Day et al. [80] had 30 NCAA Division 1 cross country runners run on an instrumented treadmill 
while wearing an IMU clipped to their posterior waistband. They filtered 𝑎 ,  at 5, 10, and 30 Hz. 
Other filter parameters were not reported; thus, we assumed that they used the same 8th-order low-
pass Butterworth filter that was used to filter their force data. Then, using an approach similar to 
Wundersitz et al. [54], Meyer et al. [76], and Gurchiek et al. [55], they multiplied acceleration by mass 
to estimate the force:  𝐹 , = 9.8𝑚𝑎 , ,          Equation S25 

where 𝑚 is mass in kg and 𝑎 , ,  is acceleration in g (with 1 g = 9.8 m/s2) at time 𝑡. This equation 
resembles the one used by Wundersitz et al. [54], Meyer et al. [76], and Gurchiek et al. [55] (above) 
but with different data entered into the equation (namely, the data had different filtering, a different 
coordinate system, and came from a different sensor location). 

For this method, we found that the aggressive filtering (particularly the 5 Hz) led to signal 
distortion when using stance-segmented data and thus, in contrast to the other methods, here, we 



filtered before segmenting by stance. If using this method, please be aware that your data must be 
filtered before passing your stance-segmented data into our provided code. 

 
Figure S16: Sacrum y-axis acceleration (proximal–distal in the SCS; ~longitudinal in the WCS) low-pass filtered at 5, 10, and 30-Hz (dark blue, light 
blue, and pink lines, respectively) maxima (dashed circles) were multiplied by participant mass to estimate the vertical GRF second peak magnitude. 

 

SB.12. Higgins method 

 Higgins et al. [40] had 30 participants perform a range of tasks including jogging and running 
down a 23 m pathway with an embedded force plate while wearing an accelerometer on their right hip 
and ankle. Higgins et al. took the maximum acceleration in 𝑎 ,  during each stance and entered it 
into linear mixed models (note that their coordinate convention was not explicitly defined outside of 
stating that the vertical vector is “typically in line with the majority of gravity related loading”; based on 
this statement, we inferred that they used a WCS with the ~vertical direction defined as positive). In 
addition to 𝑎 , , , Higgins et al. explored several variables including sex, age, and “activity code” 
as potential predictors of either average vertical loading rate or vertical GRF first peak magnitude. 
Potential predictors that were not significant were iteratively removed, leading to the development of 
the following equations: 𝐹 , =  𝛼 + 𝛽 𝑎 , , + 𝛽 𝐴            Equation S26 𝐹 , =  𝛼 + 𝛽 𝑎 , , + 𝛽 𝐴 + 𝛽 𝑦          Equation S27 

where 𝐴 is activity code (jogging = 1, running = 2) and 𝑦 is age in years. Here, we assumed that a 
single type of activity (running) resulted in a constant activity code 𝐴. Furthermore, although Higgins 
et al. originally specified 𝛼 as a participant-specific intercept, our goal here was to produce a 
generalizable method, thus we simplified their approach to: 𝐹 , =  𝑐 + 𝑐 𝑎 , ,              Equation S28 𝐹 , =  𝑐 + 𝑐 𝑎 , , + 𝑐 𝑦           Equation S29 

where 𝑐  corresponds to (𝛼 + 𝛽 𝐴) with 𝐴 being constant and where 𝑐  and 𝑐  correspond to 𝛽  and 𝛽 , respectively. 



 Note that Higgins et al. also attempted to estimate the average vertical loading rate and 
vertical GRF first peak magnitude using the same approach but with shank accelerations. They found 
that hip accelerations provided better estimates across the activities they studied and thus did not 
report the full details on their shank models (despite reporting that 𝑎 , ,  measured at the shank 
had the highest observed correlation with vertical loading rate during running). Thus, to replicate their 
shank method, we assumed that it was identical to their hip method. 

We used a leave-one-out cross-validation to iteratively calculate the error for one participant 
using the 𝑐 , 𝑐 , and 𝑐  values found using the other 73 participants while the final 𝑐 , 𝑐 , and 𝑐  
values were found using data from all 74 of our participants. 

Figure S17: (A) Hip y-axis acceleration (proximal–distal in 
the SCS; ~longitudinal in the WCS; blue line) maxima 
(yellow circle). 

 

(B) Shank y-axis acceleration (proximal–distal in the SCS; 
~longitudinal in the WCS; blue line) maxima (yellow circle). 

 

 

SB.13. Veras method 

 Veras et al. [63] had 131 participants walk and run on an instrumented treadmill while wearing 
accelerometers on their tibiae, hips, and sacra. Peak accelerations and jerks (first derivative of 
acceleration) were extracted from 𝑎 ,  and 𝑎 ,  signals low-pass filtered with a 4th-order 20-Hz 
Butterworth filter. These values were entered into linear regressions along with participant mass to 
predict  𝐹 ,  and 𝐹 , . Body mass index and body mass index “category” were also explored as 
potential predictor variables, but did not improve model performance. On the other hand, models 



were improved by the inclusion of random effects for speed and participant. To maintain 
generalizability, however, we omitted these variables, resulting in the equations: 𝐹 , =  𝑐 + 𝑐 𝑎 , , + 𝑐 𝑚 + 𝑐 𝑚𝑎 , ,     Equation S30 𝐹 , =  𝑐 + 𝑐 𝑎 , , + 𝑐 𝑚 + 𝑐 𝑚 𝑎 , ,    Equation S31 

where 𝑐 , 𝑐 , 𝑐 , and 𝑐  are constants and 𝑚 corresponds to participant mass. 

Here, we assumed that 𝐹 ,  is analogous to 𝐹 , . We then used a leave-one-out cross-
validation to iteratively calculate error for one participant using the 𝑐 , 𝑐 , 𝑐 , and 𝑐  values found 
using the other 73 participants while the final 𝑐 , 𝑐 , 𝑐 , and 𝑐  values were found using data from all 
74 of our participants.  

 

Figure S18: (A) Shank y-axis (proximal–distal in the SCS; 
~longitudinal in the WCS; blue line) and resultant (pink line) 
accelerations and maxima (dashed circles). 

 

(B) Hip y-axis acceleration (proximal–distal in the SCS; 
~longitudinal in the WCS; blue line) maxima (yellow circle). 



 

(C) Sacrum y-axis acceleration (proximal–distal in the SCS; 
~longitudinal in the WCS; blue line) maxima (yellow circle). 

 

SC. Results across wearable, segment, and tilt-corrected coordinate systems 

Despite the fact that the majority of the publications described in Section B expressed their 
acceleration data in the WCS (11 of 13), we presented our results in the main paper based on 
acceleration data expressed in the SCS. We made this choice based on an a priori expectation that 
the WCS would be more prone to errors due to IMU misplacement/misalignment, differences in 
participant morphology, and/or differences in participant posture/kinematics. We did, however, also 
execute the same analyses presented in the main paper, but with WCS and TCCS acceleration data 
as inputs.  

Overall, we found that, for all linear regression and machine learning methods that had 
coefficients, weights, or biases fit to the specific input data (i.e., had different values for WCS, SCS, 
and TCCS), there were no systematic effects. In contrast, for methods that simply multiplied 
acceleration by mass, WCS error was systematically higher. This result was consistent across all of 
the estimated features (first peak, loading rate, second peak, average, and time series); thus, we only 
present our time series results here for the purposes of illustration (Figure S19).  

 



Figure S19: Mean RMSE for each method capable of estimating vertical GRF time series based on acceleration inputs. Orange and yellow represent 
estimations made with models trained on WCS input data, blue on SCS input data (identical to the main paper), and red on TCCS input data. The 
‘Gurchiek’ and ‘Day’ methods did not have coefficients, weights, or biases fit to individual coordinate systems and showed systematically higher errors in 
the WCS. 

 


