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Abstract: Infrared sensors capture infrared rays radiated by objects to form thermal images. They
have a steady ability to penetrate smoke and fog, and are widely used in security monitoring, military,
etc. However, civilian infrared detectors with lower resolution cannot compare with megapixel RGB
camera sensors. In this paper, we propose a dynamic attention mechanism-based thermal image
super-resolution network for infrared sensors. Specifically, the dynamic attention modules adaptively
reweight the outputs of the attention and non-attention branches according to features at different
depths of the network. The attention branch, which consists of channel- and pixel-wise attention
blocks, is responsible for extracting the most informative features, while the non-attention branch
is adopted as a supplement to extract the remaining ignored features. The dynamic weights block
operates with 1D convolution instead of the full multi-layer perceptron on the global average pooled
features, reducing parameters and enhancing information interaction between channels, and the
same structure is adopted in the channel attention block. Qualitative and quantitative results on
three testing datasets demonstrate that the proposed network can superior restore high-frequency
details while improving the resolution of thermal images. And the lightweight structure of the
proposed network with lower computing cost can be practically deployed on edge devices, effectively
improving the imaging perception quality of infrared sensors.

Keywords: infrared sensor; thermal image; super-resolution; attention mechanism; dynamic network

1. Introduction

RGB sensors are universally used in smartphones, drones, laptops, and other devices
due to their excellent imaging quality and speed. However, the image quality captured by
RGB sensors degrades dramatically under harsh conditions [1]. The wavelength of long-
wave infrared radiation ranges between 7 and 14 µm, while the wavelength of visible light
in the electromagnetic spectrum lies between 390 and 780 nm . Therefore, infrared sensors
have a robust ability to penetrate smoke, fog, and haze, and can replace RGB sensors in the
aforementioned scenarios. Nonetheless, high-resolution (HR) infrared focal plane arrays
are expensive, and civilian uncooled infrared detectors output low-resolution (LR) thermal
images that cannot match the megapixel RGB sensors [2]. The straightforward approach is
to design complex hardware devices to enhance the resolution of thermal images, but the
extended manufacturing time limits their practical application. In recent years, a method
known as super-resolution (SR) has been extensively developed to enhance LR image
resolution [3].

The purpose of image super-resolution (ISR) is to recover the corresponding HR
images from the observed degraded LR counterparts. The current ISR methods can be
classified into three categories based on technical approaches: interpolation based, recon-
struction based, and learning based. The linear interpolation algorithms (e.g., nearest,
bilinear, and bicubic) design interpolation weighting functions based on the assumption of
the local smoothness of the image [4]. They are simple and fast but are prone to aliasing arti-
facts in areas with rich high-frequency information. To overcome the shortcomings of linear
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interpolation, more works focus on nonlinear interpolation algorithms, i.e., adaptive image
interpolation. For example, adaptive interpolation methods based on edge guidance [5,6]
or perception [7] and non-local means [8] improve the perceptual quality of interpolated
images, but high-frequency details are still insufficient under large scale factors. The ISR
methods based on pixel domain reconstruction employ the introduced prior knowledge as
a constraint to iteratively solve the objective function until it converges to the local optimal
solution. Projection onto convex sets, iterative back projection and maximum a posteri-
ori (MAP) are representative algorithms [4]. The reconstruction-based ISR methods [4,9,10]
first establish a degradation model from HR images to LR images, which is the inverse
problem of ISR [11–13]. Therefore, the degradation model can be reversely solved based
on algorithms such as MAP estimation, and the HR image can be predicted. For instance,
Greenbaum et al. [13] generated HR images based on super-resolved stacks of multiple
shifted LR images to improve the field-of-view of dense samples captured by lensfree
holographic microscopy. As a shallow learning algorithm based on learning, traditional
sparse dictionary-based ISR methods suffer from slow speed and are limited by the size of
the overcomplete dictionary, resulting in unsatisfying performance [14]. However, with
the development of multimedia technology, the above methods have gradually reached
performance bottlenecks and cannot meet the needs of generating high-definition or even
ultra-high-definition images. Recently, ISR models based on deep convolutional neural
networks (CNNs) achieved impressive performance gains over traditional methods [1,3].
CNN-based ISR methods map LR images to HR images in an end-to-end manner according
to the datasets during training. Taking advantage of the powerful nonlinear fitting and
automatic feature learning capabilities of CNNs, as well as the emergence of dedicated
acceleration hardware such as the neural processing unit (NPU), the performance of the
ISR network trained with massive training data is significantly better than the above tradi-
tional methods. SRCNN [15,16], as the first CNN-based ISR model, exhibits significantly
superior performance than interpolation- and sparse coding-based methods. Relying on
the powerful nonlinear fitting ability of CNN, CNN-based ISR models for RGB sensors
have been continuously proposed [17]. However, there are relatively few ISR methods
specifically designed for infrared sensors. Therefore, there is an urgent need to develop a
thermal image SR model based on CNN that can be applied in practice.

Inspired by the human visual system (HVS), progressively ISR networks employ
attention mechanisms to improve performance [18]. The HVS is not equally capable of
processing all the information contained in the observed scene but concentrates limited
computing resources on the most information-rich regions. For instance, when humans
gaze at the sky, their attention is likely to be focused on objects like birds flying in the sky
rather than the background of the sky itself. Similarly, it is the high-frequency details such
as edges and textures rather than smooth areas that most affect the perceived quality of an
image. The purpose of ISR is to maximize the recovery of high-frequency information while
improving the resolution. Channel attention (CA) and spatial attention (SA) mechanisms
are currently widely used attention methods and have been proven to improve many
low-level computer vision tasks, including ISR [19–21]. CA and SA perform recalibration
operations in the channel and pixel spaces of feature maps, respectively. To make full use
of channel and spatial information interaction, many works stack CA and SA blocks to
form attention modules and reuse them [1,22,23]. Previous studies [18,24] have shown that
although LR images have insufficient resolution, they still contain a large amount of low-
frequency information and high-frequency details. ISR networks that without attention
blocks process all channels and image regions equally cannot effectively recover high-
frequency details. Therefore, the attention mechanism can enrich the edges and texture
details of the final super-solved HR image, thereby improving the perceptual quality.

The few existing CNN-based thermal image SR models for infrared sensors mainly
suffer from the following three shortcomings. (1) Inefficient sequential stacking of at-
tention modules. As shown by Chen et al. [18], simply using the same attention module
hierarchy to extract features is not always beneficial to the final RGB ISR performance. And
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we prove in Section 3 that thermal image SR for infrared sensors should embrace attention
modules variously at different depths of the network. The results show that the early atten-
tion feature extraction modules enhance low-level information, the tail modules extract
high-frequency details, and the middle attention modules enhance the above two features
mixedly. Therefore, it is necessary to dynamically adjust the attention weights according
to the characteristics of different stages of the network. (2) Networks are complex and
unwieldy. With the advent of residual structures [25], it is possible to stably train very
deep networks. Since then, more and more ISR networks have improved performance
by continuously increasing network capacity (i.e., increasing the number of layers of the
network and the width of each layer). For example, EDSR [26] has more than 40M parame-
ters, and the huge computing power requirement makes it almost impossible to deploy
in embedded devices, which limits its practical application. Although well-designed net-
works with more parameters can continuously improve performance, the resulting gains
and training/inference costs have to be considered. In other words, there should be a
trade-off between the performance and scope of parameters. (3) The designed attention
module is not compact. Inspired by SENet [27], more researchers [28–30] have invested
in designing complex CA structures to enhance channel dimension features extraction, or
combining convoluted SA blocks to improve performance. Although these methods enrich
the details of the super-solved images, the heavy computational burden leads to slow
inference, limiting their practical applications. Our initial idea was to design an efficient
attention module that could reduce the complexity of the network and achieve satisfactory
performance, making it possible to deploy on edge devices.

To address the above issues, we propose a lightweight dynamic attention super-
resolution network (LDASRNet) for infrared sensors to super-resolve LR thermal images.
The LDASRNet consists of a shallow feature extraction (SFE) module, a deep feature extrac-
tion (DFE) module and a feature reconstruction (FRec) module. The SFE module consists of
only one convolutional layer with filter size 3 × 3, which is used to extract shallow features.
The DFE module consists of sequentially stacked dynamic attention blocks (DABs). Differ-
ent from previous works, our proposed DAB adaptively and dynamically assigns weights
to attention and non-attention branches according to different deep features of the network.
In particular, the efficient CA block efficiently aggregates channel dimension features. And
the pixel attention block generates 3D instead of 2D attention maps compared with SA, and
obtains more performance gains with less computational cost. The FRec module is used to
reconstruct the final HR thermal image.

In this paper, our main contributions are as follows:

• Aiming at the problem of the low perception quality of civilian LR uncooled infrared
sensors, we propose a CNN-based dynamic attention network to super-resolve LR
thermal images. The proposed network outperforms compared models with more
parameters while maintaining a lightweight structure, showing the potential to be
deployed on a handheld thermal imaging camera devices with limited computing
power. We train the proposed network with a mixture of data augmentation methods,
and experiments show that multiple pixel domain data augmentation methods can
effectively improve the ISR performance.

• We propose a lightweight DAB. DAB at different stages dynamically reweights the at-
tention and non-attention branches according to the input feature maps. Furthermore,
our proposed attention branch consists of an efficient CA block and a residual pixel
attention block; the latter differs from existing SA mechanisms that only generate 2D
attention maps but use 3D attention maps to enhance spatial features.

• Qualitative and quantitative results on multiple datasets demonstrate that the pro-
posed network can effectively improve thermal image resolution while recovering
visually pleasing high-frequency details. Specifically, the proposed network achieves
the highest performance metrics on the public testing dataset with ×3 scale factor.
And compared to the second-best model A2N, the scope of parameters is only 34% of
latter (i.e., 0.34 M vs. 1.0 M).
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The remainder of this paper is organized as follows. Section 2 describes the technical
details of the existing attention mechanism, as well as CNN-based SR methods for RGB and
thermal images. Section 3 shows the motivation and necessity of our proposed dynamic
attention for thermal image SR. Section 4 details our proposed dynamic attention network
structure. Section 5 qualitatively and quantitatively compares the proposed network with
state-of-the-art lightweight ISR models. We conclude this paper in Section 6.

2. Related Work
2.1. CNN-Based Image Super-Resolution

Traditional ISR methods based on the sparse coding framework represent HR image
patches as sparse linear combinations of atoms in an over-complete dictionary [14]. There-
fore, the ISR performance is limited by the dictionary size, and the inference speed is slow,
resulting in dissatisfactory ISR performance under large scale factors [1].

As CNNs have demonstrated impressive accuracy in the field of image recognition [31],
CNN-based ISR methods have emerged. SRCNN [15], as a pioneering CNN-based ISR
work, achieves significantly superior performance than traditional ISR methods. And
FSRCNN [16] further boosts SRCNN to obtain more gains at a lower computational cost.
However, SRCNN only has three convolutional layers, resulting in a relatively small
model capacity, which may not be able to recover sufficient details when faced with
large-scale upsampling scale factors. Following SRCNN, VDSR [32] explores multi-layer
small-size convolution kernels to expand the receptive field, and the resulting 20-layer
network greatly improves accuracy. As the residual connection in ResNet [25] makes it
possible to stably train very deep networks, the residual structure is widely used in the ISR
models. Unlike SRResNet [33], EDSR [26] consists of 32 residual blocks that remove batch
normalization, reducing memory consumption and artifacts. However, the above model
adopts the pre-upsampling method, that is, the LR input is first interpolated to the desired
size, which increases the difficulty and computational burden of subsequent deep feature
extraction. Therefore, more works adopt a post-upsampling structure, which upsample
features to the expected resolution at the end of the model [3]. RDN [34] employs residual
blocks with dense connections to make full use of the features of previous layers, and the
formed persistent memory mechanism effectively utilizes abundant features. Inspired by
SENet [27], RCAN [24] models interactions between channels to recalibrate the channel
features. As a scale-attention-based network, RCAN adopts a two-level residual CA
structure to deepen the network depth while utilizing more low-frequency information.
Similarly, HAN [35] with channel–spatial attention modules to explore the relationship
between pixel domain and channel dimension, and uses layer attention to utilize the output
features of all residual groups. The effectiveness of CA and SA to reweight features in
channel and spatial dimensions respectively to enhance high-frequency information has
been proven, and extensively adopted in low-level (e.g., ISR) and high-level computer
vision tasks [35–38].

Motivated by ISR in the visible spectral domain, Choi et al. [39] proposed TEN, a
network consisting of four convolutional layers for end-to-end mapping of LR thermal
images. Limited by the expensive HR thermal detectors at that time, it was difficult to
obtain a large number of paired LR-HR thermal images, TEN used RGB images as the
training dataset. Similarly, Marivani et al. [40] proposed multimodal SR models DMSC and
DMSC+, using HR RGB images as an auxiliary to super-resolve LR near-infrared thermal
images. However, Rivadeneira et al. [41] demonstrated that a network trained with thermal
images is superior for thermal image SR inference compared to RGB training datasets.
In addition, the authors also constructed a dataset consisting of 101,640 × 512 resolution
thermal images to activate the research in the field of thermal image enhancement. Aiming
at the problem of severe thermal image noise caused by high clutter in the maritime
environment, Bhattacharya et al. [42] proposed two CNN-based networks to perform
denoising and SR tasks, respectively, to improve the perception of maritime thermal images.
The idea of cascading two networks is also adopted in CDN_MRF [43]. The first residual
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network of CDN_MRF is used to extract thermal image structure, and the second network is
used for fine high-frequency details. As the champion of the Perception Beyond the Visible
Spectrum (PBVS)-2020 Thermal Image SR Challenge, the progressive feature extraction
module of the TherISuRNet [2] was adopted to generate HR thermal images. In order to
reduce redundant features extraction in the deep networks, ChaSNet [44] with the channel
separation method eliminates overload features in the trunk of the network. However, the
limited receptive fields of the convolution kernels adopted in the above models limit the
performance. Zhang et al. [1] proposed MPRANet, a thermal image network composed
of residual blocks with parallel convolution kernels of different sizes to effectively extract
local and global features.

Apart from discriminative models, some research efforts have focused on genera-
tive models, such as generative adversarial networks (GANs) [45] for thermal image SR.
Liu et al. [46] integrated the gradient prior knowledge of natural scenes, and trained the
GAN-based thermal image SR network with RGB images as style feature auxiliary infor-
mation. Rivadeneira et al. [47] proposed CycleGAN, a network based on [48] and with an
unsupervised training method. In general, GAN-based thermal image SR model training is
unstable and prone to mode collapse, so most thermal image SR methods are still based
on CNN.

2.2. Attention Mechanisms in Image Super-Resolution

ISR networks extensively employ CA and SA modules to enhance channel and spatial
dimension feature maps, respectively. These two attention paradigms focus on rich patterns
to reconstruct HR images.

Channel Attention. Channel attention is divided into scalar-based CA [27] and
covariance-based CA [49]. The schematic diagram of the two paradigms is shown in
Figure 1. Scalar-based CA generates weights in the channel dimension for reweighting fea-
ture maps. This means that all pixels of each channel are rescaled by the same scalar, i.e., CA
is the channel dimension isotropy operator. Whereas covariance-based CA performs inner
product (i.e., self-attention) operation on the input features to generate a cross-covariance
matrix to transfer information between channels.

Scalar-based Channel Attention
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W
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Generate

C,1

Covariance-based Channel Attention
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Inner 

product

C,C
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Figure 1. Schematic diagram of channel attention and spatial attention in different paradigms.

Spatial Attention. Spatial attention can be viewed as an anisotropic operator, i.e., each
pixel of all channels is multiplied by various weights to highlight features. Spatial gate-
based [29,30] and self-attention-based [50,51] SA are two representative paradigms. As
shown in Figure 1, the spatial gate SA generates channel-independent weight masks, while
the self-attention SA computes the cross-covariance in the pixel domain. The information
interaction of the above two SAs is only in the spatial dimension, and there is no interaction
between the channels.
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As shown in Figure 1, the CA operation is isotropic in the spatial dimension, that is, the
computational complexity of CA is less than that of SA. Therefore, lightweight ISR networks
tend to adopt CA rather than SA. However, some research works [1,21] have shown that the
combined of CA and SA can help improve ISR performance. The aggregation capabilities
of CA and SA in different feature dimensions complement each other. We propose to use
pixel-wise attention, which is more effective than SA, and combined with CA, to improve
performance while maintaining a compact network structure.

3. Motivation

According to ISR research works on RGB sensors [18], LR images are mixed with low-
frequency information and high-frequency details, such as edges and textures. A network
without incorporating an attention mechanism handles all frequency bands equally at
all layers, resulting in inefficient redundant computation. The attention mechanism can
enhance high-frequency features and improve visual quality. However, there are few
studies on thermal image SR task for infrared sensors to prove the above assumptions.

We construct a network composed of attention modules to explore the properties of
the attention mechanism in thermal image SR task. The LR thermal image first passes
through a convolutional layer to extract shallow features, then sequentially extracts deep
features by 16 attention blocks, and finally outputs the HR thermal image through an
upsampling module. The proposed attention module consists of sequential channel and
spatial attention blocks such that each pixel in the feature map can be rescaled indepen-
dently. We visualize the feature maps of the outputs of some attention modules as shown
in Figure 2. As shown in Figure 2, the behaviors of attention modules at different depths
are quite different, even diametrically opposite. The shallow attention modules extract
low-frequency features, i.e., flat regions are enhanced, the tail attention modules enhance
high-frequency information, and the middle modules mix the above two operations.

Input

Block 1 Block 7 Block 12 Block 16

Input Feature

Output Feature

Attention Feature

Input

Block 1 Block 7 Block 12 Block 16

Input Feature

Output Feature

Attention Feature

Input

Block 1 Block 7 Block 12 Block 16

Input Feature

Output Feature

Attention Feature

Input

Block 1 Block 7 Block 12 Block 16

Input Feature

Output Feature

Attention Feature

Figure 2. Visualization of feature maps. In the input and output feature maps, white, red, and blue
pixels indicate zero, positive, and negative values, respectively. The brighter the pixels in the attention
maps, the larger the value of the attention coefficients.

Furthermore, to verify whether all attention modules contribute to the final perfor-
mance gain, we replace the attention modules of some layers with residual blocks, and
the results are shown in Table 1. The peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) are performance metrics. Table 1 shows that the attention module
actually improves the ISR accuracy, and the location of the attention module is critical to
the performance. The pure residual block structure achieved the same performance as the
structure with attention modules in the first half, and the quantitative comparison results
between the network with attention blocks in the second half and the fully attention net-
work were consistent. According to the above experiments, we can conclude the following
conclusions: (1) It is beneficial to adopt the attention mechanism for ISR task. (2) It is not
always optimal to embrace the attention blocks equally. Therefore, we propose a dynamic
attention network for infrared sensors to super-resolve LR thermal images.
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Table 1. Attention modules contribute to thermal image SR performance. Attention module index
indicates that the i-th position is an attention module and the rest are residual blocks, and PSNR and SSIM
are performance metrics. Red and blue text indicate best and second-best performance, respectively.

Attention Module Index PSNR↑ SSIM↑

None 32.95 0.8078
All 33.24 0.8099

{1, 2, 3, 4, 5, 6, 7, 8} 32.95 0.8078
{9, 10, 11, 12, 13, 14, 15, 16} 33.24 0.8099
{2, 4, 6, 8, 10, 12, 14, 16} 33.20 0.8089

4. Proposed Method

We describe the details of the proposed lightweight dynamic attention super-resolution
network (LDASRNet) for infrared sensors in this section. The structure diagram of LDASR-
Net is shown in Figure 3.

SFE Module 

DAB

DFE Module FRec Module 

DAB DAB
…

FRB

: Bilinear Upsampling : Element-wise Addition

0
x

1
x 1n

x
n
x

LR
I

SR
I

:          Conv3 3

Figure 3. The structure of the proposed lightweight dynamic attention super-resolution net-
work (LDASRNet).

The LDASRNet consists of the following three modules:

(1) Shallow feature extraction (SFE) module. The input LR thermal image first passes
through an SFE module consisting of a 3 × 3 convolution kernel to extract low-level
features. Our experiments show that using a single 3 × 3 convolution is a acceptable
balance between performance and parameters.

(2) Deep feature extraction (DFE) module. The output of the SFE module is used to
extract deeper features through the DFE module. As a key component of LDASRNet,
the DFE module consists of K dynamic attention blocks for dynamically enhancing
high-frequency feature extraction according to the input feature maps.

(3) Feature reconstruction (FRec) module. The FRec module constructs the outputs of the
DFE module into the final HR thermal image. Due to the lower LR spatial resolution
of the ×4 scale factor compared to the ×2 and ×3 scale factors, reconstruction is more
difficult. We designed two types of FRec modules specifically for the ×2/×3 and
×4 scale factors, respectively.

4.1. Shallow Feature Extraction Module

Given a LR thermal image ILR ∈ RC×H×W , where C is the number of channels, H and
W are the height and width, respectively. The function of the SFE module can be expressed
mathematically as:

x0 = fSFE(ILR) (1)

where x0 is the output of the SFE module and fSFE(•) represents the SFE function, which
consists of a single 3× 3 convolution kernel. An alternative scheme is to utilize more convo-
lutional layers to form the SFE module, but we found that this is inefficient and unnecessary.
A single 3 × 3 convolutional layer can already extract low-frequency information well, and
it balances ISR accuracy and computational burden.
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4.2. Deep Feature Extraction Module

As shown in Figure 3, the outputs x0 of the SFE module are then used to extract
high-level patterns through a DFE module composed of K DABs. Each DAB consists of a
dynamic weight block (DWB) as well as an attention branch and a non-attention branch.
The structure of DAB is shown in Figure 4.

Non-attention Branch

C
O

N
V

(1
,1

)

CONV(3,3)

Attention Branch

Channel 
Attention

Pixel 
Attention

n-att

att

C
O

N
V

(1
,1

)

A
v

g
P

o
o

l

1
-D

 

C
O

N
V

F
C

S
o

ft
m

a
x
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Figure 4. The overall structure of the dynamic attention block. AvgPool and FC represent global
average pooling and full connection operations, respectively.

4.2.1. Dynamic Weights Block

As mentioned in Section 3, simply stacking attention blocks failed lead to optimal
performance gains. Therefore, we propose a dynamic attention mechanism to maximize the
enhancement of high-frequency information. The specific implementation of the dynamic
attention mechanism is shown in Figure 4.

The input xi−1 ∈ RCi−1×Hi−1×Wi−1 passes through the global average pooling (GAP)
layer of i-th DAB to obtain a feature vector zi−1 ∈ RCi−1×1×1, where the k-th statistic of zi−1
is calculated according to:

z(k)i−1 = favg(x(k)i−1)

=
1

Hi−1 ×Wi−1

Hi−1

∑
m=1

Wi−1

∑
n=1

x(k)i−1(m, n)
(2)

where favg(•) is channel-wise GAP, x(k)i−1 ∈ R1×Hi−1×Wi−1 and z(k)i−1 ∈ R1×1×1 are the feature
map of the k-th channel and its corresponding GAP output, respectively. There are many
other sophisticated methods for aggregating global information; we use the simplest GAP
to achieve this goal efficiently. Intuitively, the usual approach is to follow zi−1 with two fully
connected layers, namely a channel reduction layer and a channel increase layer, to enhance
the information interaction between channels [27]. However, we use 1D convolution to
simplify the above operation and achieve superior performance while reducing the number
of parameters. We will demonstrate the necessity of choosing 1D convolution instead of
two fully connected layers.

If we choose two fully connected layers, the output w can be expressed as:

w = σ( f{w1,w2}(g(zi−1))) (3)

where w ∈ RCi−1×1×1, σ is a sigmoid function, and the specific form of f{w1,w2} is:

f{w1,w2}(y) = W2RELU(W1y) (4)
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where RELU is the rectified linear unit [52]. As the weights of the channel reduction layer
W1 and channel increase W2 have sizes C× C

r and C
r × C respectively, r is an adjustable

attenuation parameter. The above operation reduces the parameter burden but destroys the
direct one-to-one correspondence between channels and weights [53]. One weight element
of a fully connected layer utilizes all channel information; however, the operation shown
in Equation (4) first maps full-size features to a low-dimensional space, and then maps
back to a high-dimensional space. The direct relationship between channels and weights
is broken. We show that 1D convolution elegantly preserves the explicit correspondence
between channels and weights.

We enhance the cross-channel interaction using 1D convolution as shown in the
following equation:

w = σsoftmax( fFC( fC1Dt(zi−1))) (5)

where fC1Dt(•) represents a 1D convolution with filter size t, and fFC(•) and σsoftmax(•)
are fully connected layer and softmax functions, respectively.

Our goal is to generate two weights for the attention and non-attention branches
respectively from the input feature maps. We use GAP based on the following two consid-
erations: (1) As the depth of the network increases, GAP effectively increases the receptive
field, thereby extracting global image information. (2) Compared with directly applying
the fully connected layer, the GAP drastically reduces parameters, suppresses overfitting
and can flexibly adapt to changes in the size of input feature maps. Therefore, the outputs
of our proposed DWB block are:

wattn, wn−attn = σsoftmax( fFC(RELU( fC1Dt(zi−1)))) (6)

We use wattn and wn−attn to recalibrate the attention branch and no-attention branch,
respectively. The above operation can be formulated as:

xi = f1×1(wattn
i−1 × xattn

i−1 + wn−ttn
i−1 × xn−attn

i−1 ) + xi−1 (7)

where wattn
i−1 and wn−ttn

i−1 represent the weights of the attention branch and the non-attention
branch, respectively. xattn

i−1 is the output of the attention branch, and xn−attn
i−1 is the output of the

non-attention branch. f1×1(•) is a convolution layer with a convolution kernel size of 1 × 1.
In order to reduce the learning difficulty and compress the filter space, we let

wattn + wn−attn = 1, and the softmax function obtains the normalized weights.
The size of the 1D convolution kernel t determines the interaction range between local

channels. In order to avoid manually determining t, which consumes time and resources,
we automatically determine t in the following way:

t = φ(Ci−1) = |
log2(Ci−1)

γ
+

b
γ
|odd (8)

where |z|odd represents the odd number closest to z, Ci−1 denotes the number of channels,
γ and b are two hyper-parameters, and we empirically set γ = 2 and b = 1, respectively.
We use nonlinear mapping instead of linear mapping to extend the representation capacity,
and the local interaction range is proportional to the channel dimension size.

4.2.2. Attention Branch

As shown in Figure 4, the attention branch consists of a channel attention block (CAB)
and pixel attention block (PAB), and their structures are shown in Figure 5 and
Figure 6b, respectively.

Similar to DWB, we use GAP to obtain channel-by-channel global information, and
then perform cross-channel interaction with 1D convolution without channel dimensional-
ity reduction. Our efficient CAB reduces model complexity while capturing local depen-
dencies between channels.
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Figure 5. The overall structure of the channel attention block. GAP represents global average pooling,
and k = 5 represents the 1D convolution kernel size.
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a Spatial attention block

b Pixel attention block

Figure 6. The overall structures of the spatial and pixel attention blocks. (a) Spatial attention block.
(b) The proposed residual pixel attention block.

The characteristics of feature map of each channel vary greatly. As shown in Figure 6a,
the conventional spatial attention block equally weights all pixels of each channel feature
map, which cannot fully enhance the spatial information. Inspired by PAN [54], we
propose pixel attention with residual connections, which weights the pixels of each channel
independently as shown in Figure 6b.

4.2.3. Non-Attention Branch

As a complement, we introduce the non-attention branch to extract information
ignored by the attention branch. We use a single 3 × 3 convolutional layer to form the
non-attention branch. It is worth noting that non-attention branches with more complex
structures can be adopted as alternatives, but 3 × 3 convolutional layers are suitable for
our proposed lightweight structure.

To sum up, the output of the DFE module is:

xn = f K−1
DAB( f K−2

DAB(· · · f 1
DAB( f 0

DAB(x0)) · · · )) (9)

where f i
DAB(•), i = 0, 1, · · · , K− 1, is the i-th DAB.

4.3. Feature Reconstruction Module

The FRec module is used to reconstruct the outputs of the DFE module into the
final HR thermal image. There are few works that carefully design upsampling modules.
We design two FRec modules for ×2/×3 and ×4 scale factors, respectively, as shown in
Figure 7.
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a Feature reconstruction module with ×2 and ×3 scale factors 

b Feature reconstruction module with ×4 scale factor 

Figure 7. The overall structures of the feature reconstruction blocks. NN Inter is nearest neighbor
interpolation operation. (a) Feature reconstruction block for ×2 and ×3 scale factors. (b) Feature
reconstruction block for ×4 scale factor.

We use nearest neighbor interpolation in the FRec module to upsample the feature
maps to the desired size, and leverage PAB to enhance information representation. Since
the ISR task with ×4 scale factor is more burdensome, we designed the FRec module as
shown in Figure 7b for the ×4 scale factor.

Overall, the generated HR thermal image output ISR can be expressed as:

ISR = fFRec(xn) + fup(ILR) (10)

where fFRec(•) and fup(•) represent the FRec module and bilinear interpolation, respec-
tively. We interpolate the LR thermal image to the desired size, allowing the network
to learn the residual information, thereby reducing the burden and stability of the net-
work training.

5. Experimental Analysis
5.1. Training and Testing Datasets

We use the dataset proposed by Rivadeneira et al. [47] as the training dataset. This
dataset was serviced as the training and testing dataset for the PBVS [55] Thermal Image
SR (TISR) challenge, which we simply abbreviate as the Challenge dataset. The Challenge
dataset was created by capturing thermal images from three thermal cameras mounted
on a panel. The panel was installed on the car and controlled by a developed multi-
threaded script to acquire images simultaneously. The specific specifications of the three
thermal cameras and the composition of the Challenge dataset are shown in Table 2 and
Table 3, respectively.

Table 2. Thermal camera specifications for creating the Challenge dataset.

Image Resolution Camera Model FOV Focal Length Pixel Size Spectral Range Operating Temperature Range

Low (LR) Axis Domo P1290 35.4 4 mm 12 µm 8–14 µm −30–55 ◦C
Mid (MR) Axis Q2901-E 35 9 mm 17 µm 8–14 µm −40–60 ◦C
High (HR) FC-632O FLIR 32 19 mm 17 µm 7–13.5 µm −50–70 ◦C

Since the medium-resolution (MR) Axis and LR Domo thermal images of the Challenge
dataset are not completely aligned, we adopt the Flir HR subdataset as the training dataset,
and the corresponding LR counterparts are obtained by the bicubic interpolation method.
As for the testing datasets, in addition to the Challenge testing dataset, in order to reflect
the superior generalization of the proposed LDASRNet, we also handle Iray (http://iray.
iraytek.com:7813/apply/E_Super_resolution.html/, accessed on 20 September 2023) and

http://iray.iraytek.com:7813/apply/E_Super_resolution.html/
http://iray.iraytek.com:7813/apply/E_Super_resolution.html/
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FLIR (https://www.flir.in/oem/adas/adas-dataset-form/, accessed on 20 September 2023)
as two additional testing datasets.

Table 3. The structure and composition of the Challenge dataset.

Phase Subdataset Resolution Amount

Training
Domo 160 × 120

951Axis 320 × 240
Flir 640 × 480

Testing
Domo 160 × 120

50Axis 320 × 240
Flir 640 × 480

5.2. Evaluation Metrics

PSNR and SSIM are adopted to quantitatively evaluate the performance of the pro-
posed LDASRNet and compared models. All performance reports are evaluated on the
Y channel of YCbCr color space. Following previous research [1], we crop s pixels around
the generated ISR, where s = 2, 3, 4 is the corresponding scale factor.

5.3. Data Augmentation Method

Previous studies have shown that feature domain data augmentation (DA) methods
harm the performance of ISR task, while pixel domain DA methods boost ISR accuracy. In-
spired by CutBlur [56] and MPRANet [1], we adopt a mixture of DA (MoDA) strategy when
training the proposed LDASRNet. Specifically, in addition to random horizontal/vertical
flipping and rotation of the LR-HR pairs in each iteration during the training, one of the
following pixel domain DA methods is also randomly selected to enhance the LR-HR image
pairs: CutMixup [56], RGB permute [56], Blend [56], CutBlur [56], CutOut [57], CutMix [58]
and Mixup [59]. Quantitative performance comparison of the proposed LDASRNet with
various DA methods is shown in Table 4.

Table 4. Quantitative performance comparison of the proposed LDASRNet using various data
augmentation methods. We take LDASRNet trained using horizontal/vertical flipping and random
rotation without the MoDA strategy as the baseline. Results are reported on the Challenge testing
dataset with ×4 scale factor. Red and green text indicate the best metric and the gain relative to the
baseline, respectively.

Data Augmentation Method PSNR↑ SSIM↑

LDASRNet w/o
MoDA (Baseline) 36.52 (+0.00) 0.9291 (+0.0000)

LDASRNet w/CutOut 36.62 (+0.10) 0.9300 (+0.0009)
LDASRNet w/CutMix 36.63 (+0.11) 0.9303 (+0.0012)
LDASRNet w/Mixup 36.61 (+0.09) 0.9300 (+0.0009)

LDASRNet w/CutMixup 36.64 (+0.12) 0.9309 (+0.0018)
LDASRNet w/RGB permute 36.61 (+0.09) 0.9299 (+0.0008)

LDASRNet w/Blend 36.60 (+0.08) 0.9298 (+0.0007)
LDASRNet w/CutBlur 36.64 (+0.12) 0.9310 (+0.0019)

LDASRNet w/MoDA (Our) 36.65 (+0.13) 0.9312 (+0.0021)

Table 4 demonstrates that the pixel domain DA methods can effectively improve ISR
performance. For example, compared with the baseline model, the proposed LDASRNet
trained using RGB permute or Mixup improved the PSNR metric by at least 0.09 dB, while
using the CutMixup or CutBlur method improved it by 0.12 dB. Furthermore, we obtained
the highest performance gains using the MoDA strategy. The results show that the pixel
domain MoDA strategy in the ISR task can effectively boost accuracy.

https://www.flir.in/oem/adas/adas-dataset-form/
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5.4. Implementation Details

We train the proposed LDASRNet using the PyTorch [19] framework. We adopt the
AdamW [60] optimizer instead of Adam [61] optimizer, and ablation experiments show
that AdamW can slightly improve performance compared to Adam. There are 2000 epochs
in total, and the initial learning rate 5× 10−4 decreases by half every 200 epochs. The
cropped ground truth resolutions corresponding to×2,×3 and×4 scale factors are 96 × 96,
128 × 128 and 192 × 192, respectively.

We propose a variant network of LDASRNet named LDASRNet-T. The only difference
from LDASRNet is that the non-attention branch in LDASRNet-T consists of a convolution
layer with a convolution kernel size 1 × 1.

5.5. Ablation Experiments

AdamW vs. Adam. We find that LDASRNet trained with the AdamW optimizer
achieves higher scores on PSNR and SSIM metrics compared to Adam. The results are
shown in Table 5. We speculate that this is because AdamW directly uses the weight decay
term when updating the weights.

Table 5. Performance comparison between AdamW and Adam optimizers. All results are reported
on the ×2 scale factor. Red text indicates the best metrics.

Adam AdamW MoDA
Challenge Dataset FLIR Dataset Iray Dataset

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

X 44.18 0.9774 35.29 0.8583 33.26 0.9358
X 44.20 0.9788 35.33 0.8599 33.31 0.9376

X X 44.33 0.9785 35.44 0.8689 33.40 0.9384
X X 44.34 0.9870 35.48 0.8683 33.48 0.9466

Table 5 shows that LDASRNet trained with the AdamW optimizer on the Challenge,
FLIR and Iray testing datasets achieved performance improvements of 0.01 dB, 0.04 dB
and 0.08 dB, respectively, in the PSNR metric compared to Adam. Moreover, the MoDA
training strategy achieves improved accuracy with AdamW or Adam optimizer, further
confirming the rationality of MoDA for ISR task.

Validity of DAB structure. To verify the effectiveness of the proposed DAB structure,
our ablation experiments compare the impact of a single path and two paths (i.e., attention
branch and non-attention branch) on ISR performance. All experiments were performed on
the Challenge testing dataset with the ×4 scale factor, and the results are shown in Table 6.
Table 6 shows that, only equipped with non-attention branch or attention branch, the PSNR
metric is 0.28 dB and 0.51 dB lower than LDASRNet, respectively. This justifies attention
and non-attention branches to complement each other. Note that using only the non-
attention branch results in a 0.23 dB improvement compared to using the attention branch,
but the number of parameters of the former is 2.7 times that of the latter, which shows that
our attention branch composed of CAB and PAB is an efficient lightweight structure.

In addition to the addition we used, the fusion methods of the two branches also
include strategies such as concatenation [54] and adaptive weight [18]. We compare the
performance and parameter trade-offs of the adopted addition versus concatenation and
adaptive weight. As shown in case 3 and case 5 in Table 6, concatenation has 25.6 K
more parameters than the additive and adaptive weight fusion methods but has the worst
performance. We adopt the simplest addition strategy to achieve the best accuracy while
maintaining the smallest scope of parameters.

Model capacity. The capacity of the model, i.e., the width and depth of the network,
is critical to ISR accuracy. The number of filters in each convolutional layer in the DAB of
LDASRNet is 40. In order to ablate the impact of the model capacity on performance, we
propose two variant networks, LDASRNet w/Fewer Channels and LDASRNet-T. There are
32 feature channels in the DAB of LDASRNet w/Fewer Channels. The number of channels
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of LDASRNet-T remains the same as LDASRNet, but the kernel size of the convolutional
layer in the non-attention branch is 1 × 1. Case 6 and case 8 in Table 6 show that fewer
channels or a small convolution kernel in the non-attention branch is not conducive to the
final thermal image SR performance. Our LDASRNet achieved optimal performance while
remaining lightweight.

Table 6. Ablation studies: effects of different DAB structural configurations. LDASRNet w/Fewer
Channels means that the number of channels of the feature map in DAB is reduced to 32. All
experiments were performed on the Challenge testing dataset with the ×4 scale factor. Red text
indicates the best metrics.

Path Path Fusion

Params (K)

Metric

N
on-A

ttention

A
ttention

A
ddition

C
oncatenation

A
daptive-W

eight

LD
A

N
et(1

×
1

conv)

LD
A

N
et(3

×
3

conv)

PSN
R
↑

Single Path LDASRNet w/Non-Attention X 323.299 36.37
LDASRNet w/Attention X 119.187 36.14

Two Paths w/o DAB
LDASRNet w/Addition X X X 349.587 36.50

LDASRNet w/Concatenation X X X 375.187 36.47
LDASRNet w/Adaptive-Weight X X X 349.587 36.46

LDASRNet
LDASRNet w/Fewer Channels X X X 232.811 36.58

LDASRNet-T X X X 146.131 36.60
LDASRNet X X X 350.931 36.65

Configuration of two-path structure. We show the ablation experimental results in
Table 7 to verify the impact of different configurations of the two-path structure. The two
pairs of configurations, case 1 and case 5, and case 4 and case 7, show that non-attention
branch equipped with CAB or PAB with dynamic attention block failed always bring
positive gains. And the case 6 results indicate that dynamically assigned weights to CAB
and PAB are 0.2 dB higher than the cascaded CAB and PAB structure, and the dynamic
attention strategy can obtain clear performance improvements. Our non-attention branch
and attention branch are supplemented with the dynamic weight structure to achieve
superior accuracy.

Table 7. Ablation studies: effects of various structural configurations of two paths. C-P AB means
channel- and pixel-wise attention block. All experiments were performed on the Challenge testing
dataset with ×4 scale factor. Red text indicates the best metric.

Settings
Params (K)

Metric Gains from DAB

Non-Attention CAB PAB C-P AB DAB PSNR↑ PSNR↑

X X 323.347 36.40 –
X 119.187 36.17 –

X X 349.587 36.53 –
X X 349.539 36.51 –
X X X 324.691 36.38 +0.02

X X 120.531 36.19 −0.02
X X X 350.883 36.60 +0.09
X X X 350.931 36.65 +0.12
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5.6. Quantitative Experiments

The proposed LDASRNet is a lightweight ISR network, and we choose the following
networks with parameters less than 1M for comparison: SRCNN [15], FSRCNN [16], SR-
LUT [62], PAN [54], DRRN [63], A2F [64], AWSRN-S [65], IMDN [66], VDSR [32] and A2N [18].
To verify that LDASRNet has comparable or even better performance than larger networks,
we select models AWSRN [65], SRMDNF [67], CARN [68], ChaSNet [44], MPRANet [1] and
MDSR [26] with parameters ranging from 1.4M to 6.5M for comparison. In addition, we
select RCAN [24] and EDSR [26], two networks with parameters exceeding 10M (EDSR has
more than 40M parameters) as reference. The qualitative measurement results of LDASRNet
and the above models on the Challenge, FLIR and Iray datasets are shown in Table 8. We
show the comparison results of the three metrics PSNR, SSIM and FLOPs.

Table 8. Quantitative comparison results of PSNR/SSIM/FLOPs metrics. Red and blue texts indicate
the best and second-best performance, respectively (except those with parameters greater than 10 M).
† indicates that the model parameters are larger than our LDASRNet but the accuracy is worse.

Scale Size Scope Network Prams
Testing Datasets

Challenge FLIR Iray

×2

≤1 M

FSRCNN 0.012 M 42.11/0.9841/0.0010T 34.95/0.8637/0.0010T 32.20/0.9361/0.0003T
SR-LUT 0.017 M 41.23/0.9783/0.0039T 34.49/0.8563/0.0041T 30.96/0.9200/0.0014T
SRCNN 0.057 M 39.22/0.9790/0.0176T 34.79/0.8607/0.0187T 31.83/0.9314/0.0063T

PAN 0.1 M 39.06/0.9649/0.0142T 33.25/0.8205/0.0152T 28.85/0.8804/0.0051T
DRRN 0.3 M 43.44/0.9848/0.8161T 35.34/0.8663/0.8705T 32.92/0.9423/0.2938T

A2F 0.3 M 44.26/0.9868/0.0236T 35.43/0.8676/0.0251T 33.25/0.9451/0.0085T
AWSRN-S 0.4 M 43.89/0.9861/0.0304T 35.38/0.8670/0.0324T 33.03/0.9438/0.0109T

IMDN 0.7 M 44.12/0.9861/0.0015T 35.46/0.8672/0.0016T 33.36/0.9451/0.0006T
VDSR 0.7 M 43.77/0.9868/0.2042T 35.36/0.8679/0.2178T 32.89/0.9438/0.0735T
A2N 1.0 M 44.23/0.9867/0.0826T 35.47/0.8679/0.0881T 33.28/0.9450/0.0297T
Ours 0.34 M 44.34/0.9870/0.0295T 35.48/0.8683/0.0315T 33.48/0.9466/0.0106T

<7 M

AWSRN 1.4 M 44.38/0.9871/0.1068T 35.53/0.8680/0.1140T 33.60/0.9474/0.0385T
SRMDNF † 1.5 M 44.14/0.9869/0.1146T 35.41/0.8671/0.1222T 33.18/0.9445/0.0412T

CARN † 1.6 M 43.97/0.9867/0.0743T 35.43/0.8676/0.0792T 33.35/0.9459/0.0267T
ChaSNet † 3.2 M 32.73/0.9564/0.2433T 30.27/0.8184/0.2592T 25.93/0.8580/0.0876T
MPRANet 4.4 M 45.50/0.9903/0.3892T 35.88/0.8857/0.4152T 33.99/0.9537/0.1401T
MDSR † 6.5 M 40.66/0.9804/0.4993T 34.40/0.8573/0.5325T 30.49/0.9168/0.0799T

>10 M RCAN 15.4 M 44.50/0.9873/1.1766T 35.63/0.8697/1.2708T 33.91/0.9496/0.4289T
EDSR 40.7 M 44.44/0.9872/3.1282T 35.56/0.8687/3.3368T 33.81/0.9490/1.1261T

×3

≤1 M

FSRCNN 0.012 M 37.68/0.9487/0.0004T 32.15/0.7958/0.0003T 28.29/0.8562/0.0002T
SR-LUT 0.017 M 37.12/0.9410/0.0017T 32.14/0.7858/0.0019T 27.79/0.8415/0.0006T
SRCNN 0.057 M 37.68/0.9505/0.0176T 32.54/0.7980/0.0186T 28.32/0.8584/0.0063T

PAN 0.1 M 35.00/0.9249/0.0089T 31.08/0.7582/0.0094T 26.43/0.8038/0.0032T
DRRN 0.3 M 38.78/0.9586/0.8148T 33.07/0.8075/0.8657T 29.22/0.8811/0.2938T

A2F 0.3 M 39.38/0.9617/0.0105T 33.15/0.8082/0.0112T 29.39/0.8848/0.0038T
AWSRN-S 0.5 M 38.97/0.9549/0.0162T 33.05/0.8067/0.0172T 29.19/0.8819/0.0058T

IMDN 0.7 M 39.38/0.9621/0.0007T 33.17/0.8082/0.0008T 29.34/0.8858/0.0003T
VDSR 0.7 M 38.76/0.9594/0.2039T 35.03/0.8075/0.2166T 29.17/0.8814/0.0735T
A2N 1.0 M 39.44/0.9620/0.0392T 33.17/0.8086/0.0417T 29.41/0.8854/0.0141T
Ours 0.34 M 39.56/0.9628/0.0157T 33.24/0.8099/0.0167T 29.50/0.8873/0.0057T

<7 M

AWSRN 1.5 M 39.60/0.9630/0.05101T 33.24/0.8103/0.0532T 29.64/0.8912/0.0181T
SRMDNF † 1.5 M 39.14/0.9603/0.0514T 33.10/0.8075/0.0546T 29.33/0.8841/0.0185T

CARN † 1.6 M 39.31/0.9617/0.0395T 33.18/0.8092/0.0420T 29.49/0.8878/0.0143T
ChaSNet – – – –

MPRANet 4.4 M 40.72/0.9741/0.2113T 33.34/0.8190/0.2245T 30.62/0.9092/0.0762T
MDSR 6.7 M 36.67/0.9942/0.1365T 32.00/0.7881/0.1456T 27.40/0.8361/0.0463T

>10 M RCAN 15.6 M 39.87/0.9646/0.5287T 33.33/0.8120/0.5617T 30.00/0.8966/0.1906T
EDSR 43.7 M 39.76/0.9640/1.4899T 33.30/0.8118/1.5830T 24.73/0.6140/0.5372T
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Table 8. Cont.

Scale Size Scope Network Prams
Testing Datasets

Challenge FLIR Iray

×4

≤1 M

FSRCNN 0.012 M 35.11/0.9102/0.0002T 31.01/0.7439/0.0003T 26.58/0.7922/0.0001T
SR-LUT 0.017 M 34.59/0.8994/0.0010T 30.64/0.7308/0.0011T 26.10/0.7748/0.0003T
SRCNN 0.057 M 35.05/0.9107/0.0175T 30.96/0.7435/0.0187T 26.45/0.7901/0.0063T

PAN 0.2 M 33.18/0.8813/0.0071T 29.79/0.7029/0.0075T 24.97/0.7353/0.0025T
DRRN 0.3 M 35.97/0.9139/0.8161T 31.48/0.7574/0.8705T 27.14/0.8176/0.2938T

A2F 0.3 M 36.45/0.9289/0.0060T 31.59/0.7603/0.0064T 27.36/0.8266/0.0022T
AWSRN-S 0.6 M 36.21/0.9263/0.0112T 31.51/0.7585/0.0120T 27.21/0.8210/0.0040T

IMDN 0.7 M 36.51/0.9290/0.0005T 31.62/0.7607/0.0005T 27.31/0.8275/0.0002T
VDSR 0.7 M 35.98/0.9249/0.2042T 31.46/0.7579/0.2178T 27.15/0.8197/0.0735T
A2N 1.0 M 36.40/0.9280/0.0242T 31.58/0.7592/0.0258T 27.23/0.8233/0.0087T
Ours 0.35 M 36.65/0.9312/0.0109T 31.68/0.7625/0.0116T 27.35/0.8296/0.0039T

<7 M

AWSRN † 1.6 M 36.37/0.9316/0.0304T 31.67/0.7630/0.0324T 27.53/0.8343/0.0109T
SRMDNF † 1.5 M 36.25/0.9270/0.0294T 31.53/0.7591/0.0314T 27.33/0.8260/0.0106T

CARN † 1.6 M 36.48/0.9296/0.0303T 31.63/0.7616/0.0323T 27.40/0.8292/0.0109T
ChaSNet † 14.5 M 34.49/0.8957/0.2769T 30.55/0.7162/0.2954T 26.25/0.7722/0.0997T
MPRANet 4.41 M 36.95/0.9365/0.1494T 31.92/0.7700/0.1593T 27.82/0.8488/0.0538T
MDSR † 6.7 M 34.23/0.9032/0.1366T 30.51/0.7336/0.1456T 27.40/0.8361/0.0492T

>10 M RCAN 15.6 M 36.94/0.9244/0.2978T 31.74/0.7647/0.3177T 27.72/0.8407/0.1072T
EDSR 43.7 M 36.81/0.9331/1.4899T 33.30/0.8118/1.5830T 27.70/0.7922/0.5372T

The quantitative comparison results in Table 8 show that the proposed LDASRNet
achieves the highest PSNR and SSIM and the lowest complexity, i.e., the smallest FLOPs,
on the three testing datasets with ×2, ×3 and ×4 scale factors. On the Challenge dataset
with ×3 scale factor, for instance, LDASRNet is 0.12 dB higher than the second-best A2N,
while the scope of parameters is only about one-third of it (0.34 M vs. 1.0 M).

Surprisingly, we still achieve superior performance compared to networks with a
size scope larger than LDASRNet. Specifically, the networks identified with † in Table 8
represent parameters larger than LDASRNet but the performance is worse. ChaSNet with
×4 scale factor has 14.5 M parameters, which is 41 times that of LDASRNet, and the PSNR
metric is 2.16 dB lower than ours. Even compared to EDSR with more than 40M parameters,
LDASRNet is only, at most, 0.2 dB lower than it on the Challenge dataset.

We also adopt an edge preservation index (EPI) metric to measure the degree of
high-frequency detail recovery in the super-resolved HR thermal images. A higher EPI
score indicates a higher perceived quality of the generated HR thermal image. The EPI
measurement results of LDASRNet and compared models are shown in Table 9. As shown
in Table 9, our LDASRNet obtains the highest EPI metric, meaning that the proposed
LDASRNet can recover the most complete high-frequency details.

Table 9. Edge preservation index (EPI) metric measurement. All experiments were performed on the
Challenge testing dataset with ×2 scale factor. Red and blue text represent the best and second-best
metrics respectively.

Model Bicubic FSRCNN SR-LUT SRCNN PAN A2F IMDN A2N AWSRN SRMDNF ChaSNet MDSR Ours

EPI↑ 0.7549 0.8069 0.6820 0.7743 0.7587 0.8456 0.8442 0.8470 0.8478 0.8428 0.7502 0.7517 0.8497

5.7. Qualitative Experiments

The qualitative comparison results are shown in Figures 8–10. Due to space limitations,
we perform qualitative experiments on the Iray, FLIR and Challenge testing datasets with ×2,
×3 and×4 scale factors, respectively. Note that since ChaSNet only provides model structures
with ×2 and ×4 scale factors, the comparison results of ×3 exclude ChaSNet. As can be seen
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from Figures 8–10, the proposed LDASRNet not only obtains the best PSNR and SSIM metrics,
but also recovers the most complete details compared to the compared networks.
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Figure 8. The qualitative results on the Iray testing dataset with the ×2 scale factor.
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Figure 9. The qualitative results on the FLIR testing dataset with the ×3 scale factor.
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Figure 10. The qualitative results on the Challenge testing dataset with the ×4 scale factor.

Specifically, Figure 8 shows on the thermal image img0005 from the Iray test dataset with
the ×2 scale factor that our LDASRNet achieves a PSNR metric that is 0.11 dB higher than
the second-best model AWSRN, i.e., 36.33 dB vs. 36.22 dB. Similarly, Figure 9 exhibits that
LDASRNet outperforms the second-best and third-best networks by 0.05 dB/0.0012 and
0.09 dB/0.0027 in terms of the PSNR/SSIM metrics, respectively, and still achieves the
highest quantitative measurements. Figure 10 indicates that LDASRNet achieves the
maximum performance gain on the ×4 scale factor of the Challenge test dataset for the
img0037, with a PSNR of 35.22 dB and SSIM of 0.9195, outperforming A2N and AWSRN by
0.31 dB and 0.0042, respectively.

5.8. Compare with Lucy–Richardson–Rosen Algorithm

In addition, we further compare the proposed LDASRNet with the recent Lucy–
Richardson–Rosen algorithm (LRRA) [69,70] that exhibits superior deblurring performance.
Empirically, we set the maximum number of iterations of LRRA to 8, and we use a synthetic
Gaussian-type point-spread function (PSF) with standard deviation 0.3 and filter of size
3× 3. The quantitative test results of our LDASRNet and LRRA on the×2,×3 and×4 scale
factors of the three test datasets of Challenge, FLIR and Iray are shown in Table 10. The
comparison results of the visual perception quality of the generated images are shown in
Figure 11. Note that due to space limitations, our results only show img0011 from Iray,
img0006 from FLIR and img0035 from Challenge.
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Table 10. Quantitative comparison results of the proposed LDASRNet and LRRA. PSNR (dB) and
SSIM are the metrics.

Scale Method
Testing Datasets

Challenge FLIR Iray

×2 LRRA 37.27/0.9673 31.64/0.7901 32.35/0.9119
Ours 44.34/0.9870 35.48/0.8683 33.48/0.9466

×3 LRRA 33.16/0.9086 29.36/0.6867 28.30/0.8563
Ours 39.56/0.9628 33.24/0.8099 29.50/0.8873

×4 LRRA 30.42/0.8452 27.80/0.6060 26.37/0.7883
Ours 36.65/0.9312 31.68/0.7625 27.35/0.8296

2´

img0011

HR LRRA Ours

3´

img0006
3´

img0006

4´

img0035
4´

img0035

28.14 dB / 0.9126 31.29 dB / 0.9478PSNR / SSIM

PSNR / SSIM

PSNR / SSIM

30.95 dB / 0.7379 32.18 dB / 0.7703

29.91 dB / 0.8355 34.23 dB / 0.9145

HR LRRA OursHR LRRA Ours

HR LRRA Ours

HR LRRA OursHR LRRA Ours

Figure 11. Comparison of the visual quality of thermal images processed by the proposed LDASRNet
and LRRA.

Table 10 shows that our LDASRNet achieves the highest metrics compared to LRRA
on the three test datasets with all scale factors. Specifically, on Challenge with ×2, ×3 and
×4 scale factors, our LDASRNet is 7.07 dB, 6.4 dB and 6.23 dB higher than LRRA in the
PSNR metric, respectively. Similarly, on the FLIR and Iray test datasets, LDASRNet is at
least 3.84 dB/0.0782 and 0.98 dB/0.4313 higher than LRRA in PSNR/SSIM metrics, respec-
tively, i.e., 35.48 dB/0.8683 vs. 31.64 dB/0.7901 and 27.35 dB/0.8873 vs. 26.37 dB/0.8563.
The results show that the proposed LDASRNet has a higher signal-to-noise ratio and more
complete structural recovery than the reconstruction results of LRRA.

Qualitatively, Figure 11 shows that the HR thermal images generated by our LDAS-
RNet possess more high-frequency details than LRRA. For example, for the buildings in
img0011 and img0006, the edges and textures in the results of our method are clearer, while
the LRRA images are blurry. Similarly, in img0035 in Challenge, the fence generated by
LRRA obviously lacks high-frequency details and has poor perceptual quality compared to
our result.
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Notably, LRRA demonstrated its excellent deblurring performance in a previous
study [70]. We believe that the input LR thermal image is almost free of blur, which
is the main reason why LRRA is not as expected. Accordingly, comparison with deep
learning-based networks and LRRA demonstrate the superior performance of the proposed
LDASRNet for thermal image SR. The superior HR thermal image reconstruction accuracy
and compact model size of the proposed LDASRNet show the potential for deployment in
edge devices.

6. Conclusions

In this paper, we show that simply stacking attention modules at different depths of the
deep network is suboptimal. Based on this observation, we propose a lightweight thermal
image super-resolution network LDASRNet based on the dynamic attention mechanism for
infrared sensors. The dynamic weight block in the proposed LDASRNet provides masks to
the attention and non-attention branches according to the input features to enhance high-
frequency detail extraction. Specifically, we use 1D convolution without dimensionality
reduction to replace the fully connected layer to enrich the interactions between channels.
The attention branch consisting of efficient channel attention and pixel attention blocks
complements the non-attention branch to extract local and global features. Qualitative and
quantitative experiments on three testing datasets containing various scenarios show that
the proposed LDASRNet can recover high-frequency details accurately, and the lightweight
structure has the potential to be deployed on edge devices.
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