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Abstract: In this paper, we propose a robust and integrated visual odometry framework exploiting
the optical flow and feature point method that achieves faster pose estimate and considerable
accuracy and robustness during the odometry process. Our method utilizes optical flow tracking
to accelerate the feature point matching process. In the odometry, two visual odometry methods
are used: global feature point method and local feature point method. When there is good optical
flow tracking and enough key points optical flow tracking matching is successful, the local feature
point method utilizes prior information from the optical flow to estimate relative pose transformation
information. In cases where there is poor optical flow tracking and only a small number of key
points successfully match, the feature point method with a filtering mechanism is used for posing
estimation. By coupling and correlating the two aforementioned methods, this visual odometry
greatly accelerates the computation time for relative pose estimation. It reduces the computation time
of relative pose estimation to 40% of that of the ORB_SLAM3 front-end odometry, while ensuring that
it is not too different from the ORB_SLAM3 front-end odometry in terms of accuracy and robustness.
The effectiveness of this method was validated and analyzed using the EUROC dataset within the
ORB_SLAM3 open-source framework. The experimental results serve as supporting evidence for the
efficacy of the proposed approach.

Keywords: visual odometry; optical flow tracking; feature point method; ORB_SLAM3

1. Introduction

Using image frame information obtained from a camera to derive pose estimates,
commonly known as odometry, has been a key research topic in the field of Simultaneous
Localization and Mapping (SLAM) [1]. SLAM technology refers to the device carrying
a sensor in an unknown environmental map with no prior environmental information
through its own movement process to build the environment map and position the sensor in
the map and focus on the real-time state of the sensor [2]. In various sensor types, cameras
have the advantage of a lower cost and providing abundant environmental information,
which makes them well-suited for subsequent tasks, such as identification, seg-mentation,
and other semantic-based work. Hence, visual methods have emerged as a pivotal branch
and a prominent research focus within the field of SLAM.

At present, visual odometry, typically serving as the front-end component of visual
SLAM, is witnessing increasing adoption in more accessible mobile devices, like smart-
phones. This allows for the integration of more practical functionalities, thereby placing
a greater emphasis on the real-time performance and lightweight operation of odometry
algorithms. The core technical challenge is to achieve better accuracy and robustness
with limited hardware computing resources. The odometry process known as bundle
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adjustment is employed to establish the correspondence between the two-dimensional
pixel points in the image frames captured by the camera and the corresponding three-
dimensional map points [3]. Many solvers exist for bundle adjustment, which efficiently
solves the nonlinear least squares problem [4–7]. However, the fundamental challenge lies
in establishing the correspondence between information from different frames, specifically
relating to the same environmental features across different images. Currently, the classical
approaches for addressing this challenge are optical flow and feature point methods. These
two methods differ significantly in terms of their operating mechanisms, processing speed,
and computational accuracy.

Optical flow is based on the variations in image brightness to estimate pixel-level
motion. It assumes that the pixel intensities remain constant between adjacent frames
during motion. Based on this assumption, optical flow calculates the motion vector for
each pixel by tracking the changes in brightness across the image. On the other hand, the
feature point method relies on extracting a key point from the image for motion estimation.
These feature points typically possess unique positional and descriptor information, which
enables them to exhibit good matching properties across different frames.

The feature point method generally incurs higher computational complexity com-
pared to optical flow. This is primarily due to the intricate processes involved, such as
feature extraction, feature matching, and feature tracking. Firstly, feature point extraction
requires processing and calculations across the entire image. Secondly, the extracted feature
points need to be matched with corresponding points in other frames, involving distance
or similarity computations between features. Lastly, the feature point method estimates
camera motion by tracking the movement of feature points across consecutive frames,
necessitating matching and association operations. In contrast, optical flow operates at
the pixel level, eliminating the need for feature extraction, matching, and tracking, thus
resulting in a lower computational burden.

Compared to optical flow, the feature point method generally exhibits higher precision
and robustness under normal circumstances. By extracting feature points and performing
feature matching, the feature point method can provide more accurate camera motion
estimation. Feature point possess unique positional and descriptor information, rendering
them highly distinguishable and resilient during the matching process. On the other hand,
optical flow operates at the pixel level, allowing for the estimation of motion vectors for
each individual pixel. In cases of smooth motion and favorable lighting conditions, optical
flow can deliver reasonably accurate results. However, optical flow is prone to failure in
scenarios involving occlusions, texture deficiencies, or rapid motion, which may result in
imprecise estimation outcomes.

Both optical flow and feature point methods possess unique advantages, and the
fusion of these approaches has been a prominent area of academic research. One approach
is to initially employ optical flow for rapid and coarse pose estimation between images,
facilitating quick matching [8,9]. Subsequently, a subset of regions within the optical
flow key point, or regions with high matching scores in optical flow, can be selected for
feature point matching between the two images. This strategy effectively reduces the
computational burden and time required for matching. However, this method faces the
challenge of incorrect associations if the subset of regions selected based on coarse optical
flow matching fails to establish accurate correspondences. For instance, if a matched optical
flow key point lacks correct associations, such as a key point from the left side of image
A being matched with key points from the right side of image B, the overall front-end
matching will fail. Another approach involves incorporating an additional IMU (Inertial
Measurement Unit) sensor. In this method, coarse matching still relies on optical flow,
but the validity of matches is assessed by comparing the disparity between the estimated
pose derived from image motion within the matching period and the integrated pose from
the IMU. Feature point matching is subsequently performed based on this evaluation.
However, this method necessitates sensor augmentation and improvements to the front-
end algorithm, making it a hybrid solution that extends beyond pure visual odometry.
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Therefore, it is of great significance in the field of visual SLAM to develop visual odometry
methods that strike a balance between accuracy, computational speed, and robustness
while relying solely on visual information.

Motivated by this, this paper proposes a robust and integrated visual odometry
framework exploiting optical flow and feature point methods that leverages optical flow
tracking to accelerate the feature point matching process and obtain better-matched feature
points by utilizing high-quality feature point selection. This will allow for accurate pose
estimation using fewer feature points. When the performance of optical flow matching
is poor, the odometry system switches to a global feature point method with a filtering
mechanism to ensure both accuracy and robustness. By employing this approach, the
system aims to mitigate the limitations of optical flow and improve the overall performance
of the visual odometry.

The speed and accuracy of our odometry are experimentally verified and compared
with the front-end odometry of the classical ORB_SLAM3 solution. A robust and integrated
visual odometry framework exploiting the optical flow and feature point method exhibits
more than double the speed of the front-end visual odometry in ORB_SLAM3. Despite
the increased speed, the method maintains a similar level of measurement accuracy and
robustness as the front-end visual odometry in ORB_SLAM3, which is based on the classical
feature point method framework.

2. Related Work

Currently, the main methods for recovering camera poses and scene structures can be
categorized into direct and feature point methods. For feature point-based visual odometry,
the standard approach to solve this problem involves extracting a set of prominent image
features in each image, using feature descriptors for continuous frame matching, and
recovering camera motion and structure stably using pairwise polar geometry. Finally,
poses and structures are optimized by minimizing the reprojection error.

Most visual SLAM algorithms follow the basic idea presented in the literature [10], which
has a good robustness of feature detectors and descriptors, enabling a good image frame
matching in the presence of significant changes in illumination and angle. The MonoSLAM [2]
system was the first real-time single-view SLAM system and has a milestone significance
in the history of SLAM development. The PTAM [11] was the first SLAM scheme to use
nonlinear optimization as a back-end; it introduces the key looping mechanism and also
creatively realizes the parallelization of real-time localization and mapping processes, the
first time in the history of visual SLAM to distinguish the concept of front-end and back-end.
ORB_SLAM2 is the most typical characteristic-based SLAM system [12], and in 2020, Campos
and others introduced ORB_SLAM3 [13] by improving ORB_SLAM2.

However, visual SLAM systems based on feature point methods have some drawbacks,
including the need to handle robust estimate techniques corresponding to errors due to slow
feature extraction and matching per frame [14,15]. Furthermore, most feature detectors
prioritize accuracy over speed. Additionally, relying solely on well-localized, locally
obvious features only exploits a small fraction of the image information available.

The direct method-based visual SLAM system estimates structure and motion directly
by minimizing the error in the pixel-level intensity of the image [16]. It utilizes the magni-
tude and direction of the local intensity gradient in optimization, which is different from
the feature point-based visual SLAM system that only considers feature location distance.
The pixel correspondence is directly provided by the solution results, which eliminates the
need for robust data correlation techniques. The direct method can also be divided into
dense direct method and sparse direct method. DVO [17] and LSD-SLAM [18] are classic
SLAM schemes based on the dense direct method. DSO [19] is a classic SLAM scheme
based on the sparse direct method. However, this method requires a good initialization
and therefore must be located in a favorable position of the cost function.

Due to the extreme complementarity between the advantages and disadvantages of
the feature point method and the direct method, there are some schemes that combine the
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strengths of both methods. For example, [20] improved the traditional direct method by
extracting features only for selected key frames, significantly reducing the computation time.
After feature extraction, the direct method can quickly track features between two frames
and has good local corner features that can track any pixel with non-zero intensity gradients.

The proposed robust and integrated visual odometry framework exploiting the optical
flow and feature point method utilizes optical flow tracking to accelerate the traditional
feature point method, improving the speed of odometry pose optimization while still
retaining the global feature point method odometry to ensure robustness in the case of poor
optical flow tracking.

3. Methods

The proposed odometry method utilizes optical flow and feature fusion to collect
observation information from adjacent image frames. Initially, the object’s pose is estimated
using optical flow, and key points are extracted from the image frames. Then, optical flow
tracking is utilized to establish the matching relationship between neighboring frames,
and to obtain a rough position estimation. Meanwhile, the matching relationship between
neighboring frames established using optical flow tracking will also be used as the initial
matching relationship for the subsequent local feature point method odometry. Tracking
quantity judgment is introduced to evaluate the effectiveness of the optical flow matching
results, based on the number of successfully matched key points.

If the tracking quantity judgment determines that the number of key points is sufficient,
the system proceeds to the local feature point odometry module. In this module, key point
descriptors are computed, and high-quality feature points are selected for pose estimation
using geometric constraints. On the other hand, if the number of successfully matched
key points in the optical flow is too small, the odometry system switches to the global
feature point odometry module. In this module, uniform distribution key point quadtree
selection is performed to achieve an even distribution of key points. Subsequently, feature
point matching is conducted, followed by pose estimation using geometric constraints to
obtain an optimized pose. The specific data-processing flow is illustrated in Figure 1. The
subsequent section provides a detailed introduction to the functionality of each module.
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3.1. Optical Flow Tracking Module

The object collects its own observation information in the form of image frames into
the optical flow tracking module; it first extracts all the key points in the image frames,
and then performs optical flow tracking matching on the key points in adjacent image
frames to obtain the key point optical flow tracking matching relationship between adjacent
image frames.

3.1.1. Key Point Extraction

The object feeds its own observation information into the optical flow tracking module
and initially extracts all the key points from the image. The optical flow tracking module
employs an improved version of the FAST key point detection method, which incorporates
pre-detection based on FAST detection [21]. Common detection methods include FAST-9
and FAST-12. In the FAST-9 key point detection method, it is required that 9 consecutive
pixels exceed the contrast threshold, while in the FAST-12 key point detection method,
12 consecutive pixels need to exceed the contrast threshold. For example, if A is the
currently recognized key point, and B is one of the 16 pixels near A, then if the pixel
gray of B is greater than 120% of the pixel gray of A or less than 80% of the pixel gray
of A, it is considered that B exceeds the contrast threshold of A. However, traditional
FAST-9 and FAST-12 also have some problems: FAST-9 only requires 9 consecutive pixels
to exceed the detection threshold, thus leading to too many key points passing through the
detection threshold and increasing the amount of calculation in subsequent steps. FAST-12
requires 12 consecutive pixels to exceed the threshold detection, which will cause some
excellent pixels to fail the detection, such as 10 or 11 consecutive pixels exceeding the
detection threshold.

Therefore, the detection method in our proposed odometry takes into account the
advantages of the above two methods. This method requires 9 consecutive pixels and
a total of more than 12 pixels need to exceed the detection threshold, which requires
both to ensure that most of the better pixels pass the threshold detection (9 consecutive
points) and to ensure that the key points that pass threshold detection are good (a total
of 12 points). Figure 2 shows the threshold detection states of 16 pixels adjacent to pixels
that are considered key points in different FAST key point detection methods. Black pixels
represent the key points currently recognized, while blue pixels represent pixels that exceed
the detection threshold of the 16 pixels compared during detection; white pixels represent
pixels that did not exceed the detection threshold among the 16 pixels compared during
detection, and gray pixels represent other pixels near the currently evaluated pixel. From
Figure 2, it can be intuitively seen that the requirements of FAST-9 are too lenient, and
the requirements of FAST-12 are too strict, while the detection method in our proposed
odometry takes into account the advantages of both methods, and its requirements are
demonstrated very appropriately in future results.
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in different FAST key point detection methods. (a) Threshold detection of the FAST-12 key point
detection method. (b) Threshold detection of the FAST-9 key point detection method. (c) Threshold
detection of the key point detection method in our proposed odometry.
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The detection method in our proposed odometry still retains the pre-detection part
(pick four pixels at locations 4, 8, 12, and 16 for threshold detection) of the FAST-12 key point
detection method. Although a small number of pixels that meet the requirements cannot
pass the pre-detection, the pre-detection can identify most of the pixels that do not meet
the requirements in advance, which greatly improves the efficiency of key point detection.
And the number of pixels that meet the requirements, but do not pass pre-detection, is a
low proportion of all pixels that meet the requirements; so, the impact on critical point
detection is quite limited.

In order to test the actual operation effect of different FAST key point extraction
methods, we selected a colorful image frame from the rgbd_dataset_freiburg1_desk series
of the TUM dataset, so as to obtain more key points and then better analyze the difference
between the extracted key point detection method in our proposed odometry and those of
the traditional FAST-9 and FAST-12. Through the actual test, we obtained the following
data: FAST-9 key point detection method extracts 1032 feature points, FAST-12 key point
detection method extracts 332 feature points, and key point detection method in our
proposed odometry extracts 587 feature points. As it can be seen in Figure 3, the number of
feature points obtained by the FAST-9 key point extraction method is too high, and more
neighboring key points are extracted in some regions where the features are more obvious,
which results in most of the key points being redundant for expressing the features of the
whole image frame. Most of the key points obtained by the FAST-12 key point extraction
method are located in the more obvious regions, and almost no key points are extracted in
the edge regions of the image frame, which results in an uneven distribution of key points
in the whole image frame. The key point detection method in our proposed odometry
combines the advantages of the above two methods, so that the number of extracted key
points is not too large, but also ensures that the distribution of key points in the whole
image frame is more uniform.
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3.1.2. Optical Flow Tracking

All key points are matched between adjacent frames using optical flow tracking after
they are extracted from the image frames. In our odometry, the Lucas–Kanade optical flow
method [22] is used, and the matching relationship between key points in two adjacent
image frames can be obtained by solving the minimum photometric error in the optical
flow tracking process. The resulting corresponding key point matches are then sent to the
tracking quantity judgment to determine whether the number of key points successfully
matched by optical flow tracking is sufficient.

In the actual optical flow tracking process, our proposed odometry divides the neigh-
boring key points in an image frame into multiple windows and assumes that the key
points within each window have the same motion. The distribution of feature points is
closely related to the number of windows. Taking part of the image frame in Figure 3 as an
example, in Figure 4 we use black dots to represent the feature points and red squares to
represent the delineated windows, using our key point extraction method, as in subplot (a)
of Figure 4, the distribution of key points is more uniform and the number of windows is
higher, while using the FAST-9 key point extraction method, as in subplot (b) of Figure 4,
the key points are typically distributed non-uniformly and the number of windows is lower.
When extracting the key points in an image frame, we have to make sure that the windows
are distributed as evenly as possible over most of the image frame, so as to ensure that the
feature information of the image frame is fully utilized.
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Figure 4. Image frame window divisions for different feature point detection methods. (a) Window
division of our proposed feature point detection method. (b) Window division of the FAST-9 feature
point detection method.

The quality of the window division directly affects the quality of the optical flow
tracking; if the window is too little and too dense, it may lead to the poor accuracy of
the photometric error minimization results solved by the least squares method. If the
window is too much and dense, it may lead to redundant feature information and excessive
computation of photometric error minimization, thus affecting the efficiency of optical flow
tracking. The key points extracted using the method proposed in the previous section are
more uniformly distributed in the image frames, which is conducive to dividing the image
frames into a more appropriate number of windows in the optical flow tracking process,
thus ensuring the accuracy of the photometric error minimization solution and taking into
account the efficiency of the optical flow tracking process.

3.2. Local Feature Point Method Odometry

If a sufficient number of key points are matched successfully by optical flow tracking,
the input is then passed to the local feature point odometry module. First, the key point
descriptors are calculated for the completed optical flow tracking, and then high-quality
feature point selection is performed to extract only a few high-quality feature points from
the image frames. Finally, the local feature point pose estimate is completed using geometric
constraint relations to obtain the optimized pose.

3.2.1. Computing Local Feature Point Descriptors

The matching relationship between key points is established through optical flow
tracking in the optical flow tracking module, and the descriptors of successfully matched
feature points are computed for the subsequent steps’ selection of high-quality feature



Sensors 2023, 23, 8655 8 of 19

points. In our proposed odometry, the BRIEF descriptor with rotational invariance is
utilized. The optical flow method of our proposed odometry is not based on all pixels in
the image frame but the key point after screening; so, usually, the key points for the success
of optical flow tracking are usually two to three times that of the basis for this judgment,
which greatly reduces the amount of calculation in the subsequent steps.

3.2.2. High-Quality Feature Point Selection

After the computation of descriptors for the tracked key points, the selection of high-
quality feature points was required. We used the score in Equation (1) to describe the quality
of the feature points. The selection process considers the following three aspects: Firstly,
the Hamming distance between the descriptors of two successfully tracked feature points
in adjacent image frames, which is H in Equation (1). Secondly, the ratio of the Hamming
distance between two successfully tracked feature point descriptors and the Hamming
distance between each feature point and its neighboring feature point descriptors, which is
N in Equation (1). Lastly, the absolute value of the angle between the optical flow tracing
vector between two feature points and the average optical flow tracing vector between all
successfully tracked feature points in adjacent image frames, which is V in Equation (1).

SCORE =
Hbest

Hi
+

Nbest
Ni

+
Vbest

Vi
(1)

The score in the equation is used to quantify the quality of the feature points, and the
equation consists of three parts, H, N, and V. Each part is based on the metric of the best
feature point in each image frame as the numerator, and the metric of the current feature
point as the denominator, so that the larger the fraction, the better the score. The smaller
Hamming distance indicates a higher likelihood that the two feature points correspond
to the same spatial map point. The smaller ratio implies that the pair of feature points
represents the correspondence between adjacent areas in a more representative manner. The
smaller the absolute value of the angle, the better the tracking between two feature points
in the entire image frame. By evaluating the feature points based on the above criteria, the
best 20 feature points are selected among the successfully tracked optical flow points.

In the process of selecting high-quality feature points, we did not set specific quantita-
tive indicators for the three evaluation indicators but calculated the percentage between all
feature points and the best performing feature points based on the best performing feature
points of each indicator. In this way, the disadvantage of poor adaptability of evaluation
indicators caused by setting fixed quantitative standards was avoided. For example, in
the same dataset, the Hamming distance between the feature points of the first two image
frames is small, but the Hamming distance between the last two frames is large. If the
indicator is set according to the first two frames, too many feature points in the last two
frames will be deleted, which will affect the accuracy of subsequent pose estimation, and if
the indicator is set according to the first two frames, too many feature points in the first
two frames will be regarded as high-quality feature points, which will affect the calculation
speed of subsequent pose estimation.

Using relative indicators instead of absolute indicators can solve the problem of
differences in indicators before and after in the same dataset. The quantitative indicator of
the feature point with the best quality in an image frame was set to 1 (i.e., 100%), and the
indicators of the other feature points were the percentages obtained by dividing them with
the best indicators. The use of the relative percentages to indicate the indicator differences
does not have the problem of non-uniformity of the units of the different indexes; so, there
is no need to add a weight to the three indicators. The three indicators do not have the
order of priority before and after, but according to the actual data obtained in the actual
scene to judge the difference in importance between the indicators, without thinking that
the priority of the indicators is set. Thus, the relative evaluation indicators have a good
adaptability to different scenarios. When we select high-quality feature points, we only
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pay attention to the comprehensive indicator ranking of each feature point and do not pay
attention to the specific performance of a feature point in an indicator.

3.2.3. Local Feature Point Pose Estimate

Local feature point pose estimation was performed with the selected 20 high-quality
feature points, and pose estimation was obtained by minimizing the reprojection error,
which is based on the correspondence between the two-dimensional pixels of the image
and the three-dimensional spatial coordinate points of the selected high-quality feature
points. Since there are only twenty feature points for pose estimation, the calculation
speed of the process is fast. Although the estimated number of feature points is small,
these feature points are screened out after many comparisons; so, we believe that the pose
correspondence between these local feature points can represent the pose correspondence
between two image frames.

3.3. Global Feature Point Method Odometry

If the number of feature points successfully matched by optical flow tracking is too
small, the global feature point odometry module is then established. In this module,
uniform distribution feature point quadtree selection is first performed to achieve a more
uniform distribution of feature points in the image frame. Subsequently, feature point
matching is conducted, and finally, the optimized pose is obtained by applying geometric
constraint relations to complete the global feature point pose estimate.

3.3.1. Quadtree Selection

The distribution of key points in an image is often random, with key points being
typically concentrated in specific areas. Computing key point descriptors for all key points
in a small, dense area can be time-consuming and inefficient. In order to enhance the
computational efficiency of global feature point descriptors, a method is proposed in our
odometry that utilizes an improved quadtree with uniform distribution properties to select
representative feature points in an image.

The process of improved quadtree feature point selection with uniform distribution
properties is depicted in Figure 5. The most representative feature point of the quadtree in
each block is selected, according to the number of pixels of the continuous pass threshold
detection in the 16 pixels near the key point in Section 3.1.1. Our method builds on this
selection criterion and also considers the uniformity of the distribution of the selected key
points in the image frame. Our method builds on this selection criterion and also considers
the uniformity of the distribution of the selected key points in the image frame. In the case
of an equal number of pixels of continuous pass threshold detection, priority is ascribed
to the key points closer to the center of the block. For example, for the two feature points
in the upper left corner of Figure 5, we labeled them as red and green points for easy
differentiation, when the number of pixels of the continuous pass threshold detection of
the two points is equal, the red point is selected as the representative point of the block,
because the red point is closer to the center of the block than the green point.
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As the global feature point odometry method requires computing descriptors for all
feature points in the image frame, it consumes significant computational resources. In our
odometry method, the quadtree feature point selection method is improved to enhance
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the uniform distribution property of the quadtree feature point selection method, which
can greatly reduce the number of key points selected as feature points, reduce the amount
of descriptor computation required, and make the distribution of feature points have
better uniformity.

3.3.2. Feature Point Matching

The feature point matching in the global feature point odometry method involves
computing descriptors for the feature points selected through quadtree selection and
establishing the matching relationship between feature points in adjacent image frames
based on the Hamming distance between their descriptors. In our odometry, the nearest
neighbor matching method [23] of the improved k-d tree is used to perform the global
feature point odometry method. Figure 6 illustrates the comparison of the traditional
k-d tree-building process and the improved k-d tree-building process in our odometry.
Three bifurcations are represented by red, blue, and green segments. As it can be seen
from Figure 6, the traditional k-d tree takes the average of the horizontal and ordinate
coordinates of the image frame as the division basis, while our method takes the average
of the horizontal and vertical coordinates of all key points in the image frame as the
division basis.
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In the feature point nearest-neighbor matching algorithm, feature points only need to
match feature points in the same location area and adjacent area in the next image frame,
but do not need to match all feature points in the next image frame. Using our method
for region division, feature points in the image frame can be divided as evenly as possible,
thereby improving the efficiency of feature point matching. Too many or too few feature
points in a certain area can be avoided, too many feature points in one area lead to too
much matching calculation, and too few feature points in one area lead to an insufficient
matching accuracy.

3.3.3. Global Feature Point Pose Estimate

The global feature point pose estimation follows a similar principle to local feature
point pose estimation, which involves minimizing the reprojection error. However, there
are differences between the two methods. In the global feature point pose estimation, the
number of feature points considered is much larger than in the local feature point method,
resulting in a longer computation time for the pose estimation process. It is important to
note that the majority of the pose estimation work in this odometry system is accomplished
through the local feature point method. The global feature point method is utilized only
when optical flow tracking is not effective enough. Consequently, the global feature point
method has a limited impact on the velocity of the system. However, it plays a crucial
role in enhancing the robustness of the odometry system, despite its potential drawback of
slower computation speed.
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4. Experiments

The proposed robust and integrated visual odometry framework exploiting the optical
flow and feature point method was implemented in C++ under Linux. Performance testing
experiments were conducted on our proposed contribution using the MH05 (Machine Hall
05) sequence from the publicly available EUROC dataset. This dataset provides ground-
truth location data obtained from the Leicra Total Station. The EuRoC dataset consists
of video sequences captured using an AscTec FireFly UAV and flown repeatedly in an
industrial environment, using a forward-looking camera [24].

The performance evaluation of our method involved conducting experiments to gener-
ate trajectories and assess the error between these trajectories and the ground truth values.
TUM’s data format was applied, and trajectory evaluation was performed using EVO, a
tool commonly used in the SLAM field for error evaluation. In order to achieve a fair and
rational comparison, the speed, accuracy, and robustness of our robust visual odometry
method, a comparison was made between our method and the front-end odometry part
of the ORB_SLAM3 open-source framework. By conducting this comparison, the effec-
tiveness of our method can be assessed, while ensuring fairness in the evaluation process,
considering that our system primarily focuses on odometry.

Table 1 shows the Absolute Pose Error (APE) and Relative Pose Error (RPE) of the
front-end visual odometry of ORB_SLAM3 and our proposed method. The absolute pose
error refers to the root-mean-square error of each pose Lie algebra, as shown in Equation
(2), to express the pose error between the actual measured trajectory and the truth trajectory.

APE =

√√√√ 1
N

N

∑
i=1

∥∥∥∥log
(

T−1
gt,iTesti,i

)∨∥∥∥∥2

2
(2)

Table 1. Comparison of absolute and relative pose errors of the front-end visual odometry of
ORB_SLAM3 and our proposed odometry.

ORB_SLAM3 Our Work Improvements

APE RPE APE RPE APE RPE
max 0.2405 3.1440 0.1379 3.9988 42.66% −27.19%

mean 0.0874 0.4951 0.0589 0.8369 32.61% −69.04%
median 0.0799 0.3449 0.0531 0.7093 33.54% −105.65%

min 0.0044 0.0052 0.0055 0.0129 −25.00% −148.08%
rmse 0.0991 0.6436 0.0659 1.0038 33.50% −55.97%
sse 2.0701 86.9772 0.5388 123.9393 73.97% −42.50%
std 0.0465 0.4111 0.0296 0.5542 36.34% −34.81%

The relative pose error refers to each root-mean-square error that takes into account 1
to 2 moments, as shown in Equation (3). It also indicates the pose error method between
the actual measurement trajectory and the real trajectory.

RPE =

√√√√ 1
N − ∆t

N−∆t

∑
i=1

∥∥∥∥∥log
((

T−1
gt,iTgt,i+∆t

)−1(
T−1

esti,iTesti,i+∆t

))∨∥∥∥∥∥
2

2

(3)

From the table data, it can be observed that our proposed method achieves superior
performance in multiple metrics for APE, except for the minimum value, where our method
(0.0055) is slightly inferior to ORB_SLAM3. In terms of mean, median, min, root-mean-
square error (RMSE), and standard deviation (STD), our method outperforms ORB_SLAM3.
Even the sum of squared errors (SSE) and ORB_SLAM3 improved by 73.97%. This is
because our method utilizes optical flow for initial filtering and uses multiple indicators
to comprehensively screen feature points in the selection of high-quality feature points,
resulting in higher quality local feature points compared to global feature points, thereby
yielding better statistical performance in terms of matching error. Regarding RPE, our
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proposed method generally performs worse than ORB_SLAM3. STD and max are slightly
below ORB_SLAM3; error scales are 100% worse than ORB_SLAM3 for min and median;
and mean, RMSE, and SSE are approximately 50% worse. This is because RPE compares
the performance differences between different instances of odometry. Our method uses
a smaller number of feature points for matching, which introduces greater fluctuations
in matching accuracy compared to global feature point matching, leading to a decreased
stability in odometry.

Table 2 shows a comparison of the computational time between the two methods,
which is also the main advantage of our proposed method. It can be observed that, in
terms of computation time, both the median time and mean time of our method are only
about one-third of those of ORB_SLAM3. This improvement is significant and crucial
for SLAM systems that require real-time performance. Also, since the absolute values
between the different times are not consistent enough, we used the front-end odometry
of the reference object ORB_SLAM3 as the unit one in Figure 7 and using the relative
percentages to compare the times between the two methods is more convincing and makes
the comparison more obvious.

Table 2. Comparison of the pose optimization speed of the front-end visual odometry of ORB_SLAM3
and our proposed odometry.

(Seconds) ORB_SLAM3 Our Work Improvements

Median time 0.0573 0.0225 60.07%
Mean time 0.0667 0.0265 60.27%
Max time 0.2011 0.0721 64.15%
Min time 0.0166 0.0055 66.87%
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Figure 7. Comparison of the pose optimization speed of the front-end visual odometry of
ORB_SLAM3 and our proposed odometry.

In order to provide a more visual and intuitive comparison, the authors processed the
data using the EVO tool, which allows for a better visualization of the numerical results,
as shown in Figure 8. The dotted line represents the ground truth trajectory, and the solid
line represents the trajectory of proposed method. As it can be seen from the subplot (a) of
Figure 8, the trajectory of the robust and integrated visual odometry framework exploiting
optical flow and feature point methods and the true value trajectory have a high degree
of coincidence, indicating that the system has a good accuracy and robustness. It can be
seen from subplot (b) of Figure 8 that the trajectory of the proposed method has a high
consistency with the ground truth, and in the three-dimensional directions of space, except
for the z-axis direction fluctuating at a few moments, the trajectory is more consistent in
the x-axis and y-axis directions.



Sensors 2023, 23, 8655 13 of 19

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20 
 

 

percentages to compare the times between the two methods is more convincing and 

makes the comparison more obvious. 

Table 2. Comparison of the pose optimization speed of the front-end visual odometry of 

ORB_SLAM3 and our proposed odometry. 

(Seconds) ORB_SLAM3 Our Work Improvements 

Median time 0.0573 0.0225 60.07% 

Mean time 0.0667 0.0265 60.27% 

Max time 0.2011 0.0721 64.15% 

Min time 0.0166 0.0055 66.87% 

 

Figure 7. Comparison of the pose optimization speed of the front-end visual odometry of 

ORB_SLAM3 and our proposed odometry. 

In order to provide a more visual and intuitive comparison, the authors processed 

the data using the EVO tool, which allows for a better visualization of the numerical re-

sults, as shown in Figure 8. The dotted line represents the ground truth trajectory, and the 

solid line represents the trajectory of proposed method. As it can be seen from the subplot 

(a) of Figure 8, the trajectory of the robust and integrated visual odometry framework 

exploiting optical flow and feature point methods and the true value trajectory have a 

high degree of coincidence, indicating that the system has a good accuracy and robust-

ness. It can be seen from subplot (b) of Figure 8 that the trajectory of the proposed method 

has a high consistency with the ground truth, and in the three-dimensional directions of 

space, except for the z-axis direction fluctuating at a few moments, the trajectory is more 

consistent in the x-axis and y-axis directions. 

  
(a) (b) 

0

0.2

0.4

0.6

0.8

1

1.2

Median Mean Max Min

ORB_SLAM3 Our Work

Figure 8. Comparison of the trajectory estimation and true value of our proposed odometry. (a) Com-
parison by actual three-dimensional motion trajectories. (b) Comparison of the x-axis, y-axis, and
z-axis components of the motion trajectory separately.

Figure 9 shows the absolute pose error of the front-end visual odometry of ORB_SLAM3
at each moment and Figure 10 shows the absolute pose error of our proposed odometry at
each moment. Subplot (a) shows the error trend at each moment by the y-axis value and it
be can seen that the error of the ORB_SLAM3 approximately ranges from 0 to 0.25, while
the error of our proposed odometry approximately ranges from 0 to 0.14. Subplot (b) more
intuitively expresses the different errors at each moment through the colors in the motion
trajectory. The closer the color of the trajectory to zero, the greater the error, and the closer
the color of the trajectory, the smaller the error. It should be noted here that the color is
determined according to the proportion of its own error, and the same color in different
figures does not mean that the error is the same but needs to be analyzed according to the
color column on the right side of the figure.
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Figure 9. Absolute pose error of the front-end visual odometry of ORB_SLAM3. (a) Absolute
pose error of the ORB_SLAM3 front-end visual odometry at each moment. (b) Absolute pose error
of the ORB_SLAM3 front-end visual odometry represented by the color of the three-dimensional
motion trajectory.
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Figure 10. Absolute pose error of our proposed odometry. (a) Absolute pose error of our proposed
odometry at each moment. (b) Absolute pose error of our proposed odometry represented by the
color of the three-dimensional motion trajectory.

Some visualizations are used in Figure 11 to compare the absolute pose error of the
ORB_SLAM3 and odometry. In the subplot (a) of Figure 11, it is not appropriate to compare
the absolute values of different indicators (especially the max and min) because they vary
greatly; if placed on the same coordinate system, the contrast differences in ‘min’ will not
be well demonstrated. Therefore, we used the indicator of the ORB_SLAM3 as unit 1 and
compared our methods in the form of relative values, which allows for a more intuitive
and clearer view of the differences between the two methods. From the subplot, it can
be visualized that our odometry outperforms ORB_SLAM3 on most error indicators. The
subplot (b) of Figure 11 shows that the mean and variance of the absolute errors for our
odometry is smaller than those for ORB_SLAM3, the diamond symbols above the box
shapes in subplot (c) of Figure 11 indicate outliers, so it can be seen that both methods
have fewer outliers, and the subplot (d) of Figure 11 shows that our odometry has a more
concentrated distribution than ORB_SLAM3. This is due to the fact that our odometry uses
high-quality feature point selection that eliminates most of the critical points; fewer feature
points are selected but their metrics perform better, and thus our odometry has smaller
absolute error means and variances and a more concentrated distribution of feature points.

Figure 12 shows the relative pose error of the front-end visual odometry of ORB_SLAM3
at each moment and Figure 13 shows the relative pose error of our proposed odometry at
each moment. Subplot (a) expresses the trend of error at each moment on the y-axis and it
can be seen that the error of the ORB_SLAM3 approximately ranges from 0 to 3.2, while the
error of our proposed odometry approximately ranges from 0 to 4.0. We considered this
performance difference to be acceptable and within the same order of magnitude. Subplot
(b) is more intuitive to express the different errors at each moment through the color in the
motion trajectory.

Some visualizations are used in Figure 14 to compare the relative pose errors of
ORB_SLAM3 and our odometry. The subplot (a) of Figure 14 visually shows that the error
metrics of our odometry is slightly inferior to that of ORB_SLAM3, but roughly in the same
order of magnitude, the subplot (b) of Figure 14 shows that the mean and variance of the
absolute errors of our odometry is larger than those of ORB_SLAM3, the diamond symbols
above the box shapes in subplot (c) of Figure 14 indicate outliers, so it can be seen that both
methods have fewer outliers and ORB_SLAM3 has more outliers, and the subplot (d) of
Figure 14 shows that the distribution of our odometry is larger than ORB _SLAM3, which
is more sparse.
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Figure 11. Comparison of the absolute pose error of the front-end visual odometry of ORB_SLAM3
and our proposed odometry. (a) The error comparison of ORB_SLAM3 and our odometry by
histogram. (b) The error comparison of ORB_SLAM3 and our odometry by probability density plot.
(c) The error comparison between ORB_SLAM3 and our odometry by box-line plot. (d) The error
comparison between ORB_SLAM3 and our odometry by violin plot.
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Figure 12. Relative pose error of the front-end visual odometry of ORB_SLAM3. (a) Relative pose error of
the ORB_SLAM3 front-end visual odometry at each moment. (b) Relative pose error of the ORB_SLAM3
front-end visual odometry represented by the color of the three-dimensional motion trajectory.
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Figure 13. Relative pose error of our proposed odometry. (a) Relative pose error of our proposed
odometry at each moment. (b) Relative pose error of our proposed odometry represented by the
color of the three-dimensional motion trajectory.
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Figure 14. Comparison of the relative pose error of front-end visual odometry of ORB_SLAM3 and
our proposed odometry. (a) The error comparison of ORB_SLAM3 and our odometry by histogram.
(b) The error comparison of ORB_SLAM3 and our odometry by probability density plot. (c) The error
comparison between ORB_SLAM3 and our odometry by box-line plot. (d) The error comparison
between ORB_SLAM3 and our odometry by violin plot.
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From the above table and figure, it can be concluded that the robust and integrated
visual odometry framework using the optical flow and feature point method is more than
twice as fast than the front-end visual odometry of ORB_SLAM3 in terms of speediness.
ORB_SLAM3’s front-end visual odometry has a median time of 0.0573, a mean time of
0.0667, a max time of 0.2011, and a min time of 0.0166; our odometry has a median time of
0.0225, a mean time of 0.0265, a max time of 0.0721, and a min time of 0.0055. In terms of
accuracy, the absolute pose error of our method outperforms the front-end visual odometry
of ORB_SLAM3, while the relative pose error is slightly inferior to that of ORB_SLAM3.
This is because most of the image frames are estimated by local feature point odometry
for posing estimation, and the process only needs to compute some local high-quality
feature points instead of all of them; so, the position optimization of our odometry is
significantly faster than that of the front-end visual odometry of ORB_SLAM3. The main
role of the global feature point method odometry module is to ensure the robustness of the
whole odometry.

We also conducted robustness experiments on our odometry, through which we found
that, if we do not include the global feature point method odometry module in the odometry,
the robustness of this odometry becomes poorer in optical flow tracking. The robustness
of the odometry is significantly improved by adding the global feature point odometry
module to the odometry, and tracking failure almost never occurs. The reason for this is
that, in some special scenes, such as the low-light scene in Figure 15, Subplot (c) in Figure 15
shows that the green dots indicate feature points that were successfully tracked by the
optical flow, and the green line indicates the optical flow tracked by the feature points. it can
be observed that the successfully tracked feature points are sparse, the consistency of the
tracking direction of the feature points is very poor, and the direction of most feature point
tracking trajectories differs significantly from the direction that can be judged by the naked
eye. Although it is not common to have this kind of low-light situation, this problem is fatal
for odometry, which emphasizes real-time performance. Therefore, this experiment fully
demonstrates that the global feature point method odometry module plays a crucial role in
the robustness of the overall odometry, which is one of the more important advantages of
our odometry. Future work will focus on more diverse open-source datasets to validate the
generalizability of this method and conduct testing on practical hardware systems.
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5. Conclusions

In our study, the acceleration of the feature point matching process in visual odometry
was achieved by optical flow tracking, which improves the calculation speed of robust and
integrated visual odometry framework exploiting optical flow and feature point methods
and retains the traditional global odometry to ensure the robustness of our odometry. We
experimentally evaluated the rapidity, accuracy, and robustness of the front-end visual
odometry of ORB_SLAM3 and the robust and integrated visual odometry framework
exploiting optical flow and feature point method. Our odometry achieved a balance
between speed, accuracy, and robustness for the following four reasons: (i) Since the core of
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the scheme is still the feature point-based method, the system can guarantee the accuracy.
(ii) The scheme uses global feature point method of visual odometry when the number
of optical flow tracking is not sufficient, and therefore improves the robustness of the
whole system. (iii) The scheme performs the optical flow tracking of feature points in the
image before the pose estimate by the local feature point method of visual odometry. It is
equivalent to the initial pose estimation before the odometry pose estimate, which provides
a good initial value for the subsequent local feature point method pose estimate and
improves the computational efficiency of the pose estimate. (iv) This scheme uses optical
flow tracking to accelerate the odometry process and does not require the computation of
descriptors for all the feature points in the image frame as in the traditional feature point
method of visual odometry, resulting in a significant increase in computational speed.
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