
Citation: Wang, Z.; Juhasz, Z. GPU

Implementation of the Improved

CEEMDAN Algorithm for Fast and

Efficient EEG Time–Frequency

Analysis. Sensors 2023, 23, 8654.

https://doi.org/10.3390/s23208654

Academic Editor: Hai Dong

Received: 15 September 2023

Revised: 9 October 2023

Accepted: 20 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

GPU Implementation of the Improved CEEMDAN Algorithm
for Fast and Efficient EEG Time–Frequency Analysis
Zeyu Wang and Zoltan Juhasz *

Department of Electrical Engineering and Information Systems, University of Pannonia, 8200 Veszprem, Hungary;
zeyu.wang@virt.uni-pannon.hu
* Correspondence: juhasz@virt.uni-pannon.hu

Abstract: Time–frequency analysis of EEG data is a key step in exploring the internal activities of
the human brain. Studying oscillations is an important part of the analysis, as they are thought
to provide the underlying mechanism for communication between neural assemblies. Traditional
methods of analysis, such as Short-Time FFT and Wavelet Transforms, are not ideal for this task
due to the time–frequency uncertainty principle and their reliance on predefined basis functions.
Empirical Mode Decomposition and its variants are more suited to this task as they are able to
extract the instantaneous frequency and phase information but are too time consuming for practical
use. Our aim was to design and develop a massively parallel and performance-optimized GPU
implementation of the Improved Complete Ensemble EMD with the Adaptive Noise (CEEMDAN)
algorithm that significantly reduces the computational time (from hours to seconds) of such analysis.
The resulting GPU program, which is publicly available, was validated against a MATLAB reference
implementation and reached over a 260× speedup for actual EEG measurement data, and provided
predicted speedups in the range of 3000–8300× for longer measurements when sufficient memory
was available. The significance of our research is that this implementation can enable researchers to
perform EMD-based EEG analysis routinely, even for high-density EEG measurements. The program
is suitable for execution on desktop, cloud, and supercomputer systems and can be the starting point
for future large-scale multi-GPU implementations.

Keywords: EEG; GPU; Empirical Mode Decomposition; EEMD; CEEMDAN; time–frequency analysis;
parallel algorithm; performance

1. Introduction

Oscillations represent the fundamental mechanism for synchronization and com-
munication among different neural populations in the human brain [1]. Traditionally,
the Short-Time Fourier Transform (STFT) has been used to decompose EEG signals into
sinusoid components of distinct frequencies [2–4]. Unfortunately, the time–frequency un-
certainty principle [5] prohibits us from achieving high spectral and temporal resolution
at the same time. The Continuous Wavelet Transform using the Morlet wavelet family
is an improvement over the STFT [6] as—instead of fixed-sized time windows—it uses
frequency-dependent window lengths to extract low-frequency components with higher
spectral but lower temporal resolution, whereas high-frequency components have lower
frequency but higher temporal resolution [7–9]. Unfortunately, both the Fourier and the
Morlet Wavelet Transforms require predefined sinusoid basis functions of fixed frequencies
given by analytic formulae as templates, which is not a suitable approach for natural
(nonlinear and nonstationary) signals, such as EEG, where the signal shape, amplitude,
and frequency can change arbitrarily.

Empirical Mode Decomposition (EMD) [10] is an alternative frequency decomposition
method that decomposes a signal into oscillatory components (Intrinsic Mode Functions,
IMFs) without relying on predefined basis functions. Using an iterative method, the IMFs

Sensors 2023, 23, 8654. https://doi.org/10.3390/s23208654 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23208654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0677-8588
https://doi.org/10.3390/s23208654
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23208654?type=check_update&version=2

Sensors 2023, 23, 8654 2 of 19

are automatically derived from the signal itself in an adaptive, data-driven way. The
extracted IMFs are narrow-band signals carrying instantaneous frequency and phase [11]
information as well as amplitude and/or frequency modulation information, which is
frequently lost in traditional time–frequency decomposition methods. The original EMD
method has some shortcomings, however. The internally used spline interpolation can
produce unwanted distortions at the beginning and end of the single (end effects). A
more serious problem is known as mode mixing [12], where one IMF contains multiple
oscillatory frequencies; i.e., the decomposition into unique frequency components is not
accurate. Several new noise-assisted variants, such as Ensemble EMD (EEMD) [13], Com-
plete EEMD with Adaptive Noise (CEEMDAN) [14], and Improved CEEMDAN [15], have
been proposed recently to alleviate these problems. All these methods rely on the so-called
ensemble approach in which multiple random noise-contaminated copies of the signal are
processed to reduce the effect of signal noise. Further, the properties of these methods are
described in the Section 2.

EMD and its variants have been shown to be superior for certain EEG preprocessing
tasks and for extracting time–frequency features from EEG data. EMD can be used to
remove 50/60 Hz power line noise without notch filtering and distorting the spectrum and
phase of the EEG signal [16] and to selectively clean the blink artifact-independent com-
ponents instead of completely removing them [17,18]. In cognitive experiments, Nguyen
et al. [19] showed that EMD—unlike Fourier transform-based analysis—could correctly
detect the carrier and modulating signals from flicker-generated steady-state visual-evoked
potentials (SSVEPs). Tanaka et al. [20] compared wavelet and bivariate EMD approaches
in detecting phase-locking values (PLVs) during a Dynamical Dot Quartet discrimina-
tion task and found that EMD was more suitable for detection than the wavelet-based
method. Lee et al. [21] and Sweeney-Reed and Nasuto [22] also used EMD for detecting
phase synchronization that can be used for brain connectivity network construction or
cross-frequency coupling computations. For clinical applications of EMD (BCIs, clinical
diagnosis, rehabilitation, seizure detection, sleep staging, anesthesia monitoring, and pain
analysis), the reader is referred to the review of Sweeney-Reed et al. [23].

The introduction of multiple noisy copies in EEMD and CEEMDAN results in radical
execution time increases. The EEG research community relies heavily on MATLAB as its
runtime platform using various EEG toolboxes, e.g., the EEGLAB [24] and Fieldtrip [25],
for the analyses with various third-party functions and toolboxes as extensions. The run-
time of the EEMD or CEEMDAN methods on a high-density (128 or more channels) and
high-sampling rate (fs over 1 kHz) EEG data file using common MATLAB implementa-
tions (Flandrin et al. [26] and EMDLAB by Al-Subari et al. [27]) is measured in hours
or days, depending on the sampling frequency and the length of the EEG measurement
data. This has a detrimental effect on EEG research, identified as one of the major obsta-
cles to adopting EMD [23], reducing productivity, prohibiting studies with large subject
populations, and raising obstacles in research into new data analysis methods. Parallel
computing can help in reducing the execution time significantly, especially with graphics
processors (GPU) that showed unprecedented performance improvements over the past
decade. Unfortunately, achieving highly efficient GPU implementations is a challenging
task. Naïve approaches based on common sequential or low-granularity parallel algorithm
design techniques often result in disappointing performance, which is an especially se-
rious problem in GPU-accelerated supercomputers that provide only a fraction of their
computational performance.

This paper describes a high-performance GPU implementation of the Improved CEEM-
DAN algorithm that is designed with performance as a top priority. We minimized expen-
sive data movement and synchronization operations and maximally exploited GPU architec-
ture features that enable efficient execution. The significance of our work is as follows: We
achieved over a 260× speedup over MATLAB implementation that reduced the execution
time from hours to seconds, and we predicted speedup values in the range of 1000–10,000×
for longer measurements. To our knowledge, this is the first GPU implementation of the

Sensors 2023, 23, 8654 3 of 19

Improved CEEMDAN algorithm. In addition, we have made the source code of the imple-
mentation and sample data files publicly available at https://github.com/EEGLab-Pannon
(accessed on 19 October 2023) along with our GPU code for the original EMD and EEMD
algorithms as well. We hope that this work will enable the EEG community to routinely
use EEMD-based decomposition methods and spectral analyses in its future research. Our
implementations also allow users to run large-scale EEG studies on GPU-accelerated cloud
systems and supercomputers.

2. Materials and Methods
2.1. Overview of the Empirical Mode Decomposition Algorithm

Before describing the parallel implementation of the CEEMDAN algorithm, we briefly
introduce the basis and the fundamental steps of the original Empirical Mode Decompo-
sition method. The algorithm (described in detail in Algorithm 1) is an iterative method.
The input signal is first checked for its extrema points onto which we fit two envelopes
(lower envelope on minima, upper envelope on maxima) by cubic spline interpolation. The
two envelopes are averaged, and this average envelope is subtracted from the input signal
creating a new signal. If this signal satisfies the conditions that make it an IMF, the signal is
the new input to the next iteration of the process and the IMF is stored. Once no IMF can
be extracted (there is not oscillation in the signal), the process stops.

Extracting the IMF is performed in the so-called sifting process, which is laid out in
details in Lines 5–11 of Algorithm 1. The envelopes are generated for each time sample in
every iteration, hence the average and candidate IMF generation is a vector addition and
subtraction operation, which can be trivially parallelized. Fitting the envelope requires
cubic spline interpolation that, in turn, results in solving a tridiagonal system of equations
in each iteration. The innermost while loop of Algorithm 1 controls the sifting process
that terminates when a predefined stop criterion has been met [10]. This loop cannot be
executed in parallel due to the obvious dependencies between iterations. The outer loop
is responsible for controlling the IMF extraction. This process will stop when no further
oscillation can be detected in the signal. This loop must also be executed sequentially.

Algorithm 1. EMD: Empirical Mode Decomposition [10]

Input: x(k)—single-channel time series
Output: IMF(k)—N extracted Intrinsic Mode Function time series

1. set configuration parameters
2. i = 0
3. while (IMF stopping criterion is not met)
4. create a working copy of the input signal: x’(k) = x(k)
5. while (sifting stopping criterion is not met)
6. find extrema locations of x’(k)
7. perform cubic spline interpolation on the extrema to obtain the upper and lower envelope of

the working copy of the signal
8. compute the mean of the upper and lower envelopes: m(k) = (upper(k) + lower(k))/2
9. subtract the mean envelope from the working copy: s(k) = x’(k) −m(k)
10. x’(k) = s(k)
11. end
12. IMF[i](k) = s(k)
13. x(k) = x(k) − IMF[i] (k)
14. i = i + 1
15. end

Several parallel implementations have been developed for the EMD algorithm (For
the sake of completeness, we could also include PyEMD in the comparisons, but the
PyEMD implementation is fully sequential and significantly slower than libeemd. In
addition, Python is less frequently used in the EEG community than MATLAB). The
library libeemd [28] is written in the C programming language and provides sequential

https://github.com/EEGLab-Pannon

Sensors 2023, 23, 8654 4 of 19

and OpenMP-based parallel CPU implementations for the EMD, EEMD, and CEEMDAN
algorithms. The implementation achieves around a 10× speedup compared to MATLAB
ones. The rapid rise of GPU technology in High-Performance Computing gave rise to
several parallel GPU-accelerated EMD implementations, too. Waskito et al. reported the
first single-precision CUDA EMD implementation for audio signal processing achieving
29× and 29.9× speedups compared to sequential C versions on C1060 and C2050 NVIDIA
Tesla cards, respectively [29,30]. Xie et al. created a CUDA EMD version for seismic data
processing that achieved a 4× speedup on a GT240 GPU card [31]. Huang et al. [32]
reported a 33.7× speedup on a C2050 GPU using overlapped piecewise cubic spline
interpolation technique.

2.2. Ensemble EMD Algorithms

To solve the EMD mode mixing problem, Wu et al. [13] proposed a noise-assisted signal
decomposition method called the Ensemble Empirical Mode Decomposition (EEMD). This
algorithm uses multiple copies (called realizations) of the input signal created by adding
random Gaussian noise to the signal before the decomposition process. As a result, the
distribution of extreme points of the signal will be more uniform in the statistical sense
and become less sensitive to intermittent noise. The number of realizations in EEMD is
a problem-dependent configuration parameter but, in general, it is in the order of a few
hundreds. Compared to EMD, an additional loop is required for the realizations where
each iteration starts with replicating the signal by adding to it some random white noise.
Then, these signals will be decomposed individually and independently from one another
using the original EMD algorithm. Once the IMFs of each noisy copy are extracted, they are
averaged to generate the final IMF set. One deficiency of the EEMD method is that it does
not produce a complete decomposition, meaning that it is not invertible; the exact original
signal cannot be rebuilt from the extracted IMFs as some residual noise will appear in the
reconstructed signal. A further complication is that different signal plus noise combinations
may result in different number of IMFs, making their averaging process problematic.

Because the Ensemble EMD has a significantly higher computation cost then EMD due
to the large number of noise-assisted copies of the original signal, parallelism in this case is
mandatory to achieve acceptable execution times. The implementation by Wang et al. was
developed for offline spectrum discrimination of hyperspectral remote sensing images and
achieved a 60.62× speedup over a sequential C implementation running on an NVIDIA
C1060 Tesla GPU card [33]. In a follow-up paper, they compared serial MATLAB, sequential
and multicore C, and their CUDA implementation (C1060 GPU) and found that sequential
C is 5 times faster than MATLAB, a quad-core C version is 15 times faster, and the CUDA
version is 60 times faster than the MATLAB implementation [34]. Chen et al. developed
a real-time CUDA EEMD implementation [35] for anesthesia monitoring purposes. They
showed that it is possible to achieve a real-time processing speed with a GTX295 GPU card
(31.3× speedup, dual GPU card).

The reviewed GPU implementations have the following characteristics in common:
(i) they use early generation, by now outdated GPU processors and early versions of the
CUDA programming language; (ii) the achieved speedup values are relatively modest; and
(iii) the source code is not publicly available.

2.3. The Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Algorithm

The Improved CEEMDAN algorithm (referred to as ICEEMDAN in the rest of the
paper) was developed by Colominas et al. [15]. This algorithm solves the mode-mixing
problem, provides an invertible decomposition, and eliminates early noise IMF components
from the IMF set. Unlike in EEMD, where the IMFs are extracted for the different signal plus
noise realizations independently and averaged at the end, in ICEEMDAN, the extracted
IMFs are averaged during the iterative process, and the average is used to compute the
input signal for the next iteration. In addition, noise is added to the signal differently, to
control the signal-to-noise ratio and match the frequency spectrum of the noise and the

Sensors 2023, 23, 8654 5 of 19

new input signals. For this, the EMD algorithm is executed on the white Gaussian noise
with zero mean and unit variance to extract noise IMFs, which will be added to the signal
as the IMF extraction proceeds.

The algorithm, described formally, is as follows: Let Ek(·) represent the operator that
returns the kth IMF (mode) using the EMD algorithm of its input signal. Let M(·) be the
operator that returns the local mean of the upper and lower envelopes of the signal it is
applied to and let 〈·〉 be the action of averaging across all realizations. With these operators
the ICEEMDAN algorithm executes the following steps [15]:

• Calculate by using EMD the local means of K realizations x(i) = x + β0E1(w(i)) to

obtain the first residue r1 = 1
K ∑K

k=1 M
(

x + β0E1(w(i))
)
=
〈

M(x(i))
〉

.

• At the first stage (k = 1), calculate the first mode: d1 = x− r1.
• Estimate the second residue as the average of local means of the realizations r1 +

β1E2(w(i)) and define the second mode: d2 = r1 − r2 = r1 −
〈

M(r1 + β1E2(w(i)))
〉

.

• For k = 3, . . ., K calculate the kth residue rk =
〈

M(rk−1 + βk−1Ek(w(i)))
〉

.

• Compute the kth mode dk = rk−1 − rk.
• Go to step 4 for next k.

Notice that when creating the signal plus noise realizations, we add βk−1Ek(w(i)), i.e.,
the kth IMF of the Gaussian white noise to the signal instead of just white noise, such as
βk−1w(i). Also, the amplitude βk of the noise mode changes from one iteration to the next
as given by βk = ε0std(rk), where std() is the standard deviation of the signal.

The overall structure of the algorithm is depicted in Figure 1, whereas the flowchart of
the sifting process for generating the noise IMFs is shown in Figure 2.

2.4. Parallel Design

As shown in Figure 1, the ICEEMDAN algorithm has more internal dependencies
than EEMD. EEMD for a multichannel EEG dataset can be trivially parallel as the following
pseudo-code illustrates: All channels and all realizations can be processed simultaneously
as they are independent entities, and only a final reduction step is required to average the
IMFs across the realizations for each channel. The degree of parallelism in the double-nested
loop is in the order of 104 (Algorithm 2).

Algorithm 2. Parallel EEMD Algorithm

for all channels perform in parallel

for all realizations of the current channel perform in parallel
compute IMFs

end for
average IMFs across realizations in parallel

end for

On traditional CPU-based parallel systems, this provides enough parallelism so that
the IMF computation (EMD) is sufficient to be executed in a serial manner. On GPUs,
however, where the number of cores is very close to 104 and the number of parallel threads
must be at least two orders of magnitude higher than the core count, the IMF computation
should be performed in parallel, too.

Sensors 2023, 23, 8654 6 of 19

Figure 1. The execution flowchart of the ICEEMDAN algorithm. ‘Sifting’ is the basic processing step
of the implementation, and the noise inputs are the decomposition results (IMFs) from the Gaussian
noise realizations.

Figure 2. The flowchart of the EMD decomposition of the Gaussian noise. The resulting noise IMFs,
Noise 1—Noise n are used as added noise in the algorithm as shown in Figure 1.

Sensors 2023, 23, 8654 7 of 19

The ICEEMDAN algorithm requires synchronization among realizations after each
IMF extraction to compute the IMF means to add new random noise and to calculate the
input signal for the next iteration. Hence, the high-level structure of the parallel algorithm
changes to the following one (Algorithm 3):

Algorithm 3. Parallel ICEEMDAN Algorithm

for all channels perform in parallel

generate noise signal w(i) and its IMFs Ek(w(i)) by EMD
for all realizations perform in parallel

add noise IMF Ek(w(i)) to signal x to obtain the current realization
compute the local means M(x(i))

end for
residue r1 by averaging M(x(i)) across realizations in parallel
compute first mode d1 as d1 = x− r1
while no more IMFs can be extracted perform {for k = 2 and up}

for all realizations perform in parallel
compute the local means M(x(i))

end for
residue rk by averaging M(x(i)) across realizations in parallel
compute the mode dk as dk = rk−1 − rk

end while

end for

We assume the reader is familiar with GPU architectures and programming, and
especially with the CUDA programming model. Here, we summarize the terminology we
use in the rest of the paper. We kindly refer those with no experience in GPU programming
to the CUDA programming literature [36–38]. The kernel is a function executing on the
GPU device using multiple threads in a single-instruction-multiple-stream fashion. Each
thread has a unique index in order to map a thread to a data element in memory. Kernels
are launched on the host (CPU program) to be executed on the GPU with threads organized
into blocks, and blocks into grids. One-, two- and three-dimensional indexing can be used
to map threads onto 1D, 2D, and 3D data structures. NVIDIA GPUs contain a large number
of compute (integer, FP32, FP64, and tensor) cores; the internal thread schedulers will assign
instructions from threads to different cores based on the operand type for parallel execution.

2.5. The Parallel Sifting Process

The core step of the ICEEMDAN algorithm is the parallel GPU implementation of
the sifting algorithm that extracts one mode (IMF) from the input signal. This is used in
extracting both the noise and signal IMFs. The main steps of the sifting process are: extrema
detection, envelope generation with cubic spline interpolation, local mean computation, and
signal residue calculation. These steps are implemented by custom kernel functions and in
some cases using highly optimized CUDA library functions. The functions used in our
sifting process implementation are listed in Table 1.

Table 1. The major steps of the sifting process and their corresponding GPU kernel/library function.

Sifting Operation Kernel/Library Function

Find local signal maxima select_extrema_max()
Find local signal minima select_extrema_min()

Solve the tridiagonal system cusparseSgtsv2_nopivot()
Collect coefficients for interpolation spline_coefficient()

Cubic spline interpolation interpolate()
Compute mean envelope averageUpperLower()

Signal update for next iteration averageUpdateSignal()

Sensors 2023, 23, 8654 8 of 19

Each of these steps is executed in a massively parallel fashion. In the extrema detection
step, one thread is launched for each signal/noise sample that compares the sample with
the left and right neighbors to detect minima and maxima values and their locations. The
extrema are used in the next step to generate the upper and lower envelopes of the signal.
This is performed by cubic spline interpolation based on the extrema values, which requires
the solution of many tridiagonal systems of equations. The Parallel Cyclic Reduction solver
implementation /cusparseSgtsv2_nopivot()/ provided in the cuSPARSE library is used for
this step. The solver provides us with a set of spline coefficients that we compute in function
spline_coefficient(). These are input to the interpolation kernel interpolate() that returns the
interpolated values of the upper and lower envelops. The means of these two envelopes
are calculated in parallel in function averageUpperLower() as sample wise means.

Once the sifting process completes, we obtain a new first mode for each realization.
These modes are subtracted from their corresponding realizations, and the results are
averaged across the realizations to produce the new residue rk+1. These steps are executed
by kernel functions produceResidue() and averageUpdateSignal().

2.6. Data Structures and Initialization

The ICEEMDAN algorithm is executed for C signal channels, each containing N
samples. During the decomposition of the signal, we used I signal plus noise realizations
and extracted up to K modes (IMFs). In the following, we describe the most important
data structures and their layouts for processing a single channel. The complete list of data
structures and their sizes and functions in which they are used are listed in Table S1 in the
Supplementary Materials.

The input signal x is stored in an N element FP32 vector. The K modes of the Gaus-
sian noise realizations w(i) are extracted at the beginning of the program and stored in a
K × I × N element three-dimensional FP32 data matrix. Modes from this matrix will be
added to the input signal during the iterative process of IMF extraction. Before executing
the sifting process, the noisy realizations are generated and stored in an I × N FP32 matrix.
The output of the sifting step is I residue signals and I modes, both stored in I × N FP32 ma-
trices. To minimize memory usage, the data structures of the input signal, the residues and
IMFs of the realizations are reused and overwritten in each iteration of the IMF extraction
loop. As the final result, the extracted averaged IMFs are stored in a K × N FP32 matrix.

Only the original input signal and the final IMFs are stored in the host (CPU) memory.
All other data structures are allocated to the global GPU memory. The input signal is
copied to the GPU memory before the algorithm starts, and the final IMFs are copied
back to the host at the end. There are no host–device memory copy operations during the
execution of the GPU code. The zero mean and unit variance noise is generated by using
the curandGenerateNormal() function in the cuRAND CUDA library.

3. Results

In this section, we demonstrate the numerical accuracy, the achieved speedup, and the
implementation efficiency of our ICEEMDAN implementation. First, we provide details of
the hardware used during the validation and performance measurements. This is followed
by numerical validation results and computational performance measures. Finally, we
discuss the various performance optimization steps we used to improve execution efficiency
and device utilization.

3.1. Test Hardware

Tests and measurements were conducted on three NVIDIA GPUs including gaming
and compute-only cards. Each GPU represented different GPU architecture families. Details
of the GPUs used in our study are provided in Table 2. Specifically, Titan Xp (Pascal) and
RTX 3070 (Ampere) gaming cards were used during development and testing, and a Tesla
V100 (Volta) accelerator card was used for additional performance measurements. Because
these GPUs have different internal architecture, CUDA core counts, and theoretical peak

Sensors 2023, 23, 8654 9 of 19

performance, they enabled us to explore performance differences attributable to varying
hardware parameters. For CPU tests, we used an Intel i7-9700K 8-core CPU-based computer
with a Windows 10 operating system and MATLAB 2019a.

Table 2. Architecture parameters of the GPU platforms used for measurements.

Titan Xp Tesla V100 RTX 3070 Mobile

Architecture Pascal Volta Ampere
CUDA cores 3840 5120 5120

Clock frequency (GHz) 1.48 1.46 1.62
Memory (GB) 12 16 8

Peak FP32 performance (TFlop/s) 11.36 14.03 16.59
CUDA version 10.2 11.3 11.4

3.2. Numerical Validation

The numerical correctness of our implementation was validated with a synthetic sig-
nal [15] and a real EEG dataset provided as a sample data file in the EEGLAB [24] software
distribution. Our GPU implementation was compared with a MATLAB implementation
considered as the golden standard [26]. To quantify the accuracy of the decomposition
results obtained with different implementations, we introduced the Similarity Index metric
ρ given as

ρi(xi(t), yi(t)) =
cov(xi(t), yi(t))√

var(xi(t))
√

var(yi(t))
(1)

where cov() represents the covariance of the two input IMF signals xi(t) and yi(t) produced
by the GPU and MATLAB implementations, respectively and var() represents the variance
of the input signal. The index ρ varies between 0 and 1, ρ = 1 representing that xi(t) and
yi(t) are identical.

The synthetic signal contains two frequency components and features intermittent
noise. The length of the entire signal is 1000 samples, and one component s1 is a sinusoid
signal with nonzero values from sample 500 to 750 with a frequency of 255 Hz. The other
component s2 is also a sinusoidal signal but spans the entire signal duration, from sample 0
to 1000 with a frequency of 65 Hz. The composite signal s = s1 + s2, is expressed as follows:

s1 =

0 i f 1 ≤ n ≤ 500
sin(2π0.255(n− 501)) i f 501 ≤ n ≤ 750
0 i f 751 ≤ n ≤ 1000

s2 = sin(2π0.065(n− 1))

(2)

The synthetic signal s and its two constituent components s1 and s2 are shown in
Figure 3a. The interval from sample 501 to 750 in signal s is a period of intermittent noise,
which makes the signal well suited for testing mode mixing.

Figure 3b,c show the decomposition results of this dual-frequency synthetic signal
performed with the reference MATLAB and our CUDA implementations. The Simi-
larity Index in this case was computed between one constituent component of signal
s (the ground truth) and the IMF produced by either implementation; i.e., we measured
how accurately the IMF reproduced the original components of the raw synthetic signal.
The MATLAB implementation gives similarity index values of ρMATLAB

s1 = 99.63% and
ρMATLAB

s2 = 99.95%. The CUDA implementation produced nearly identical results as the
MATLAB one, ρCUDA

s1 = 99.62% and ρCUDA
s2 = 99.91%.

Sensors 2023, 23, 8654 10 of 19

Figure 3. The synthetic dual-frequency signal (a) and the decomposition results from the MATLAB (b)
and CUDA (c) implementations.

Next, we show the decomposition results obtained from a real EEG dataset. The
selected signal is Channel 4 of the sample data file “eeglab_data.set” distributed with the
EEGLAB Toolbox containing 30,504 data samples (sampling frequency is 512 Hz, signal
length: 1 min). Figure 4 shows the extracted IMFs and the resulting Similarity Index
values. Because we did not have the ground truth in this case, or in the case of any real
EEG measurements, the Similarity Index was computed from the MATLAB and CUDA
implementation results, treating the MATLAB result as the ‘ground truth’.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20

(a)

(b)

(c)

Figure 3. The synthetic dual-frequency signal (a) and the decomposition results from the MATLAB
(b) and CUDA (c) implementations.

Next, we show the decomposition results obtained from a real EEG dataset. The
selected signal is Channel 4 of the sample data file “eeglab_data.set” distributed with the
EEGLAB Toolbox containing 30,504 data samples (sampling frequency is 512 Hz, signal
length: 1 min). Figure 4 shows the extracted IMFs and the resulting Similarity Index
values. Because we did not have the ground truth in this case, or in the case of any real
EEG measurements, the Similarity Index was computed from the MATLAB and CUDA
implementation results, treating the MATLAB result as the ‘ground truth’.

Higher-frequency IMFs show very good agreement of the two implementations.
Lower-frequency IMFs show a somewhat reduced level of similarity, which is likely to be
caused by the different random number generator in the two implementations and
different boundary conditions during extrema detection and spline interpolation.

Figure 4. The decomposition results (only IMFs 1–12 are shown, top-down) of Channel 4 from the
EEGLAB sample dataset produced by the MATLAB (a) and CUDA (b) implementations with the
corresponding Similarity Index values computed from the corresponding MATLAB and CUDA
IMFs.

Figure 4. The decomposition results (only IMFs 1–12 are shown, top-down) of Channel 4 from the
EEGLAB sample dataset produced by the MATLAB (a) and CUDA (b) implementations with the
corresponding Similarity Index values computed from the corresponding MATLAB and CUDA IMFs.

Higher-frequency IMFs show very good agreement of the two implementations.
Lower-frequency IMFs show a somewhat reduced level of similarity, which is likely to be
caused by the different random number generator in the two implementations and different
boundary conditions during extrema detection and spline interpolation.

3.3. Computational Performance and Optimization

We start the performance results section by showing the execution times of the baseline
MATLAB and libeemd Improved CEEMDAN implementations (Figure 5). Three input

Sensors 2023, 23, 8654 11 of 19

parameters (signal length N, number of iterations in the sifting process S, and number of
realizations I) were varied during the tests. It should be noted that because the implemen-
tation provided by libeemd uses a completely different iteration stop criterion, we used
a fixed number of iterations for a fair comparison. For the sample size N = 102,401 that
represents 50 s of data at fs = 2048 Hz or 6.6 min at fs = 256 Hz, the MATLAB execution time
varied between 6 and 53 min depending on the number of realizations (I = 100, 200, . . ., 500)
and sifting iterations (S = 10, 20, 50). Execution times from the libeemd implementations
for the same input parameters varied between 10 s and 4 min.

Figure 5. Execution time of the MATLAB (a) and libeemd (b) versions of the Improved CEEMDAN
algorithm in function of signal length N and varying number of realizations I. The number of sifting
operations is fixed, S = 10.

Before showing the execution time of our final GPU implementation, we illustrate
an important performance optimization strategy. The execution profiling of the first im-
plementation of our algorithm revealed that the cuSPARSE tridiagonal solver executes
many small kernels, which—due to the large number of signal realizations—results in a
significant performance overhead. Figure 6 shows the execution timeline of the tridiagonal
solver on many realizations. It can be seen that the GPU is not fully utilized during the
execution of kernels; there are idle time gaps between the kernels.

Figure 6. The execution timeline of the kernel functions used by the tridiagonal solver.

Fortunately, the CUDA programming model provides an elegant solution to the
problem of launching many small kernels—the CUDA Graph execution model. With
CUDA graphs, one can create a Directed Acyclic Graph from a set of kernels, and later
the complete graph can be launched with a single launch call. Graphs can be created
programmatically or captured at runtime during program execution. In our version, the
latter approach was used. The first execution of the graph was performed by launching the

Sensors 2023, 23, 8654 12 of 19

kernels individually to capture the graph. From the second execution, only the captured
graph was launched. Figure 7 shows the result of the optimization achieved with CUDA
graphs. The same tridiagonal solver was executed as before, but the kernels were now
executed much more compactly, without large gaps reducing the execution time from
2.472 ms to 0.646 ms.

Figure 7. The execution timeline of the kernel functions of the tridiagonal solver using the CUDA
graph optimization.

The execution times of our optimized GPU implementation are shown in Figure 8.
The runtime is in the range of 1–10 s for the N = 102,401 sample size. We measured the
execution time up to N = 358,401 samples (representing about 3 min of measurements at
fs = 2048 Hz). From these values, we calculated the speedup values compared to MATLAB,
which is shown for a different number of sifting iterations in Figure 9. It is important to
note that the speedup increases with sample size and in a superlinear fashion. That is, the
more samples we processed, the faster the GPU version became compared to the MATLAB
version. The exact speedup values for the full set of realization values are given in Table S2
of the Supplementary Materials. The highest speedup was attained at N = 102,401, S = 10,
and I = 500.

Figure 8. Execution time of the GPU ICEEMDAN algorithm (measured on a V100 GPU) in function
of signal length N and varying number of realizations I. The number of sifting operations is fixed,
S = 10.

Sensors 2023, 23, 8654 13 of 19

Figure 9. Speedup of the GPU implementation (executed on V100) over the MATLAB version in
function of signal length N and varying number of sifting iterations S. The number of realizations is
fixed, I = 500.

Next, we show the efficiency of our implementation by analyzing the program exe-
cution time and profiling the arithmetic efficiency of kernel functions. Figure 10 shows
the relative weight of the GPU kernels during the execution of the ICEEMDAN algorithm
in function of signal length on the RTX 3070 mobile card. The number of iterations in
the decomposition process was fixed at 10, and the number of realizations was 500. Each
column indicates the relative contribution of each kernel to the overall execution time.
The green color marks kernels provided by NVIDIA libraries, while the blue color marks
kernels we developed ourselves. The last two rows of the table show the total contribution
of the CUDA library functions and our customized kernels to the overall execution time.

The profiling shows a trend that with increasing signal length, our custom kernels
accounts for an increasing proportion of the overall execution time with the kernel function
interpolate() becoming the dominating factor. The NVIDIA library functions are limiting
performance for smaller input data sizes (72% vs. 28%), but as the data size increases, their
effect becomes smaller (52% vs. 48%).

We also performed a Roofline performance analysis [39] of the performance-critical
kernels of our implementation at two different signal lengths (4 k, 100 k). As can be seen
in Figure 11, all kernel functions are memory-bound based on their Arithmetic Intensity
(arithmetic operations per number of bytes transferred to/from memory); that is, the
performance is limited by the memory bandwidth not by the computational performance of
the GPU. The green boxes represent internal kernels of the NVIDIA library, while blue dots
represent the kernels we developed. The closer the dots are to the performance boundary,
the more efficient the kernels are. Kernels significantly below the line vertically indicate
performance problems, typically latency issues. The results indicate that the kernels we
developed are closer to the theoretical performance limit (performance attainable at a given
arithmetic intensity value) than the NVIDIA kernels. The arrows in the figure indicate the
performance change of the kernels when increasing the signal length from 4 k to 100 k.
The subsequent change in the kernels’ position in the Roofline diagram suggests that our
implementation becomes more efficient as signal size increases.

Sensors 2023, 23, 8654 14 of 19Sensors 2023, 23, x FOR PEER REVIEW 15 of 20

Figure 10. The relative contribution of individual kernels to the overall execution time in function
of signal length. Color bars depict the relative weight of the kernels in a given column (green:
NVIDIA internal library kernels of the tridiagonal solver, blue: our custom kernels as well as to-
tals).

Figure 11. The Roofline performance results of the kernels executed on the RTX 3070 mobile GPU
showing the performance positions of the main kernels of the implementation. Arrows indicate per-
formance change as signal length is increased from 4 k to 100 k samples.

kernels 4,097 8,193 16,385 32,769 43,009 79,873 102,401
crGlobalForlterations_multiple 10.20% 10.20% 15.50% 18.80% 17.40% 18.00% 16.5%
crGlobalBottomKernel_multiple 9.70% 8.10% 14.00% 16.40% 14.60% 14.80% 14.8%
crCopyMemoryGlobal_multiple 5.10% 4.30% 3.70% 2.90% 2.60% 1.90% 1.9%
pcrGlobalMemKernel_oneRhs 19.90% 25.50% 14.50% 11.20% 15.00% 11.20% 10.6%
pcrSharedMemKernelLoop_LastStage_oneRhs 25.70% 22.10% 19.30% 14.80% 12.60% 9.40% 8.8%
pcrGlobalMemKernelFirstPass_manyRhs 8.70% 7.50% 6.30% 4.80% 4.30% 3.20% 3.1%
interpolate 1% 1.90% 2.80% 4.50% 5.60% 7.80% 11.4%
DeviceScanKernel 10.60% 9.30% 2.20% 8.00% 7.30% 7.40% 6.7%
preSetTridiagonalMatrix 0.90% 1.20% 2.20% 3.40% 3.90% 5.40% 4.3%
tridiagonal_setup 0.50% 0.80% 0.90% 1.10% 1.30% 1.70% 2.8%
select_extrema_min 0.20% 0.70% 1.10% 1.40% 1.60% 2.20% 2.5%
select_extrema_max 0.20% 0.70% 1.10% 1.40% 1.60% 2.20% 2.5%
spline_coefficients 0.50% 0.60% 0.70% 0.90% 1.00% 1.30% 2.4%
mean 0.30% 0.40% 0.70% 1.10% 1.20% 1.60% 1.8%
averageUpperLower 0.30% 0.50% 1.00% 1.40% 1.60% 2.10% 1.6%
updateRealizations 0.30% 0.60% 0.90% 1.20% 1.50% 2.00% 1.6%
produceSX 0.20% 0.50% 0.90% 1.40% 1.60% 2.20% 1.6%
DeviceScanInitKernel 4.30% 3.60% 3.10% 2.40% 2.10% 1.60% 1.5%
find_extrema_shfl_max 0.20% 0.30% 0.60% 0.80% 0.90% 1.20% 1.2%
find_extrema_shfl_min 0.20% 0.30% 0.60% 0.80% 0.90% 1.20% 1.2%
thresholdJudge 0.20% 0.20% 0.60% 0.90% 1.10% 1.50% 1.1%

tridiagonal solver kernels 79.3% 77.7% 73.3% 68.9% 66.5% 58.5% 55.7%
custom kernels 19.9% 21.6% 19.4% 30.7% 33.2% 41.4% 44.2%

sample size

averageUppperLower

interpolate

tridiagonal_setup

spline_coefficients

pcrGlobalMemKernel_oneRhs

pcrSharedMemKernelLoop_LastStage_oneRhs

performance boundary

memory-bound region

compute-
bound
region

1

10

100

1,000

10,000

100,000

0.1 1 10 100

At
ta

in
ab

le
 P

er
fo

rm
an

ce
 (G

Fl
op

/s
)

Arithmetic Intensity (flop/byte)

signal length change

custom kernels

library kernels

Figure 10. The relative contribution of individual kernels to the overall execution time in function of
signal length. Color bars depict the relative weight of the kernels in a given column (green: NVIDIA
internal library kernels of the tridiagonal solver, blue: our custom kernels as well as totals).

Figure 11. The Roofline performance results of the kernels executed on the RTX 3070 mobile GPU
showing the performance positions of the main kernels of the implementation. Arrows indicate
performance change as signal length is increased from 4 k to 100 k samples.

Sensors 2023, 23, 8654 15 of 19

In order to explore the effect of GPU hardware architecture on the execution perfor-
mance of our implementation, we measured and compared the execution times on three
different GPUs (see Table 2 for details). Figure 12 shows the execution time values we
obtained on the different GPUs (S = 100, I = 200). The effect of hardware evolution and the
introduction of new architectural features is evident. The best results were obtained with
an Ampere GPU, followed by Volta. The oldest architecture, Pascal (Titan Xp), produced
the longest execution times.

Figure 12. The execution time of the GPU algorithm on three different GPU architectures. The results
demonstrate that each newer architecture generation (Pascal -> Volta -> Ampere) provides increased
performance for the same program.

4. Discussion

Oscillations play a key role in understanding how the human brain is coordinated
during task execution as oscillations are thought to be the means of communication and
information transfer between neural assemblies. Delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
and beta (13–35 Hz) band oscillations have different but distinct roles in coordinating
actions, and their deviation from patterns found in healthy populations may indicate
neural degeneration (e.g., Mild Cognitive Decline, stroke, and Parkinson’s disease) and
may be used as a means for early diagnostics.

Detecting oscillation in natural, nonperiodic, and nonstationary signals is a challenge.
Traditional methods, such as the Short-Time Fourier Transform or the Continuous Wavelet
Transform, can only provide an approximate and crude result, as the exact localization of
time and frequency is not possible with these methods. Empirical Mode Decomposition
enables us to extract instantaneous frequency and phase information from the EEG signal
and hence provides the means for following amplitude, frequency, and phase changes at
a very high temporal resolution. The importance of this cannot be underestimated as a
new tool that helps uncover the electrophysiological processes of the brain. Phase syn-
chronization information is the basis of computing brain functional connectivity networks
that describe the cooperation of different cortical areas in either resting state or during task
execution. Traditional methods only allow for the generation of static networks, which
is a major disadvantage because the construction and study of dynamic connectivity net-
works are crucial for understanding how our brain works [40–43]. Sweeney-Reed [22] and
independently our group showed that EMD is suitable for extracting instantaneous phase
information and consequently creating dynamic functional networks [44].

Due to mode mixing and mode splitting, variants of EMD have been developed
among which the most promising algorithm is the Improved CEEMDAN. Unfortunately,
the computational complexity so far has prohibited the widespread use of this method in

Sensors 2023, 23, 8654 16 of 19

research. The GPU implementation that we presented in this paper achieved exceptional
efficiency and showed over a 260× speedup compared to the MATLAB implementation.
The exact speedup values vary with the algorithm’s input parameters (number of sifting
iterations, number of realizations, and signal length) but for common settings vary between
65× and 265×. The accuracy of the implementation was validated against the MATLAB
version [26]. The results show very high agreement (average Similarity Index > 89.0%)
with the MATLAB results. The small difference is due to the different random number
generators and seeds used in the two implementations and differences in CPU and GPU
floating point arithmetic.

Based on the MATLAB and V100 execution times of two large datasets (N1 = 500 k and
N2 = 1000 k samples, I = 100, S = 10, MATLAB: 2 h 42 min and 13 h 13 min and V100: 4.7 s
and 7.7 s), we extrapolated the execution times for the remaining 200 to 500 realizations
and used these to calculate the predicted speedup values. Figure 13 shows the predicted
speedup for S = 10 sifting iterations. For the different number of realizations, we obtained
>2000× and >6000× speedups for the signal lengths N1 and N2, reaching a peak value
of 8310× for length N2 and 500 realizations. Based on these predictions and the effect of
architecture on performance, we can safely assume that the most recent GPU generations
(Tesla A100, H100) with an increased amount of memory will outperform these results.

Figure 13. Predicted speedup values for the V100 GPU as a function of signal length based on
predicted MATLAB (CPU) execution times (S = 10). Increasing the signal length has a significant
positive effect on the achievable speedup.

There are known limitations of our implementation. Firstly, our algorithm performs
the ICEEMDAN algorithm on a single channel. Multiple channels can be handled by
repeated execution of the program for the channels either in a serial fashion using a single
GPU or multiple GPUs. If multiple GPUs are available, each GPU may process a single or a
set of channels in parallel, in the latter case, one channel after the other. Secondly, the IMFs
of the noise signal realizations were generated in advance at the beginning of the program,
which requires sufficient GPU memory to hold K × I × N samples. For large sample sizes
and a large number of realizations, the GPU memory can easily become a bottleneck. By
moving the noise IMF computation into the main signal IMF extraction loop, the required
memory space can be reduced and longer signals or more realizations can be processed. In
addition, by using the CUDA Unified Memory, the largest data structures can be stored
in the host’s memory and loaded to the GPU in an on-demand fashion. However, both of
these methods are expected to reduce the achieved performance.

When we compared the GPU execution time to the libeemd times, the difference
is not as significant as for the MATLAB implementation. The highest speedup over the

Sensors 2023, 23, 8654 17 of 19

libeemd implementation is 6.3×. This is due to the fact that most GPU kernels are memory-
bound and the memory bandwidth severely limits the attainable performance. As seen
in Figure 11, most kernels achieve up to or below 100 GFlop/s performance. Those that
perform near 1 TFlop/s represent a small fraction of the full implementation. This indicates
that (i) future systems with higher memory subsystems will perform better and (ii) more
work is needed to improve the Arithmetic Intensity of the kernels (e.g., by using kernel
fusion) to push the performance higher, toward the compute-bound region.

5. Conclusions

This paper describes a massively parallel GPU implementation of the Improved
CEEMDAN algorithm. The ICEEMDAN method is a crucial tool for the precise time–
frequency analysis of nonstationary EEG signals. It can be used in various stages of EEG
processing, from preprocessing through time–frequency to connectivity analysis, and to
calculate instantaneous frequency, power, and phase information in a very short amount of
time, enabling researchers to uncover the dynamic properties of brain processes underlying
perception and task execution.

Despite some known limitations, to our knowledge, this is the first GPU implementa-
tion of the Improved CEEMDAN algorithm. Here, we present evidence of the efficiency
of our implementation reaching potentially a four-orders-of-magnitude increase in com-
puting speed over the most frequently used MATLAB implementation. The source code
of the implementation is publicly available under the MIT License at the Github page
https://github.com/EEGLab-Pannon/CEEMDAN-GPU (accessed on 19 October 2023) of
our group. Our implementation allows users and researchers to perform the decomposition
of nonstationary natural signals into oscillatory components almost instantly, opening up
new opportunities in research and in applications.

Future work will include the adaptation of our algorithm for supercomputer execution
where hundreds to thousands of GPU cards are available. These systems not only would
allow many channels to be executed simultaneously but also enable the datasets of multiple
subjects to be performed at the same time, reducing the execution time of oscillation
analysis of potentially large groups to seconds.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s23208654/s1: Table S1: Device variables used in the GPU
implementation, their size and the kernels in which they are referenced; Table S2: Speedup values for
different test configurations.

Author Contributions: Conceptualization, Z.W. and Z.J.; methodology, Z.J.; software, Z.W.; valida-
tion, Z.W.; investigation, Z.W. and Z.J.; resources, Z.J.; data curation, Z.W. and Z.J.; writing—original
draft preparation, Z.W.; writing—review and editing, Z.W. and Z.J.; visualization, Z.W. and Z.J.;
supervision, Z.J.; project administration, Z.J.; funding acquisition, Z.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received funding from the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund (NKFIH), grant number “2019-2.1.11-
TÉT-2019-00069” and the SLICES-SC project funded by the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 101008468.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors would like to thank Roland Bagoly for his contribution to the devel-
opment of early versions of the EMD implementation and the IMEC GPULab team (Ghent, Belgium)
for their GPU resources (HGX-2-V100) and technical support. The support of the NVIDIA GPU Grant
Program for the Titan Xp card used in the development and testing is gratefully acknowledged.

https://github.com/EEGLab-Pannon/CEEMDAN-GPU
https://www.mdpi.com/article/10.3390/s23208654/s1
https://www.mdpi.com/article/10.3390/s23208654/s1

Sensors 2023, 23, 8654 18 of 19

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Buzsaki, G.; Draguhn, A. Neuronal Oscillations in Cortical Networks. Science 2004, 304, 1926–1929. [CrossRef]
2. Wacker, M.; Witte, H. Time-frequency techniques in biomedical signal analysis: A tutorial review of similarities and differences.

Methods Inf. Med. 2013, 52, 279–296. [CrossRef]
3. Cohen, M.X. Rigor and replication in time-frequency analyses of cognitive electrophysiology data. Int. J. Psychophysiol. 2017, 111,

80–87. [CrossRef]
4. Portnoff, M. Time-frequency representation of digital signals and systems based on short-time Fourier analysis. IEEE Trans.

Acoust. 1980, 28, 55–69. [CrossRef]
5. Flandrin, P. Time-Frequency/Time-Scale Analysis; Academic Press: Cambridge, MA, USA, 1998; ISBN 9780122598708.
6. Kiymik, M.K.; Güler, I.; Dizibüyük, A.; Akın, M. Comparison of STFT and wavelet transform methods in determining epileptic

seizure activity in EEG signals for real-time application. Comput. Biol. Med. 2005, 35, 603–616. [CrossRef] [PubMed]
7. Philiastides, M.G.; Heekeren, H.R. Spatiotemporal characteristics of perceptual decision making in the human brain. Handb.

Reward Decis. Mak. 2009, 185–212. [CrossRef]
8. Mørup, M.; Hansen, L.K.; Herrmann, C.S.; Parnas, J.; Arnfred, S.M. Parallel Factor Analysis as an exploratory tool for wavelet

transformed event-related EEG. Neuroimage 2006, 29, 938–947. [CrossRef]
9. Roach, B.J.; Mathalon, D.H. Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma

band phase locking in schizophrenia. Schizophr. Bull. 2008, 34, 907–926. [CrossRef]
10. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Snin, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode

decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng.
Sci. 1998, 454, 903–995. [CrossRef]

11. Wang, G.; Chen, X.Y.; Qiao, F.L.; Wu, Z.; Huang, N.E. On intrinsic mode function. Adv. Adapt. Data Anal. 2010, 2, 277–293.
[CrossRef]

12. Tang, B.; Dong, S.; Song, T. Method for eliminating mode mixing of empirical mode decomposition based on the revised blind
source separation. Signal Process. 2012, 92, 248–258. [CrossRef]

13. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal.
2009, 1, 1–41. [CrossRef]

14. Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive
noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague,
Czech Republic, 22–27 May 2011; pp. 4144–4147.

15. Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal
processing. Biomed. Signal Process. Control 2014, 14, 19–29. [CrossRef]

16. Zhang, Y.; Xu, P.; Li, P.; Duan, K.; Wen, Y.; Yang, Q.; Zhang, T.; Yao, D. Noise-assisted multivariate empirical mode decomposition
for multichannel EMG signals. Biomed. Eng. Online 2017, 16, 107. [CrossRef] [PubMed]

17. Wang, G.; Teng, C.; Li, K.; Zhang, Z.; Yan, X. The Removal of EOG Artifacts from EEG Signals Using Independent Component
Analysis and Multivariate Empirical Mode Decomposition. IEEE J. Biomed. Health Inform. 2016, 20, 1301–1308. [CrossRef]
[PubMed]

18. Gallego-Jutglà, E.; Rutkowski, T.M.; Cichocki, A.; Solé-Casals, J. EEG signal analysis via a cleaning procedure based on multivariate
empirical mode decomposition. In Proceedings of the 4th International Joint Conference on Computational Intelligence, Barcelona,
Spain, 5–7 October 2012; pp. 670–676. [CrossRef]

19. Nguyen, K.T.; Liang, W.K.; Lee, V.; Chang, W.S.; Muggleton, N.G.; Yeh, J.R.; Huang, N.E.; Juan, C.H. Unraveling nonlinear
electrophysiologic processes in the human visual system with full dimension spectral analysis. Sci. Rep. 2019, 9, 16919. [CrossRef]

20. Tanaka, K.; Mizuno, Y.; Tanaka, T.; Kitajo, K. Detection of phase synchronization in EEG with Bivariate Empirical Mode
Decomposition. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 973–976. [CrossRef]

21. Lee, K.B.; Kim, K.K.; Song, J.; Ryu, J.; Kim, Y.; Park, C. Estimation of brain connectivity during motor imagery tasks using
noise-assisted multivariate empirical mode decomposition. J. Electr. Eng. Technol. 2016, 11, 1812–1824. [CrossRef]

22. Sweeney-Reed, C.M.; Nasuto, S.J. A novel approach to the detection of synchronisation in EEG based on empirical mode
decomposition. J. Comput. Neurosci. 2007, 23, 79–111. [CrossRef]

23. Sweeney-Reed, C.M.; Nasuto, S.J.; Vieira, M.F.; Andrade, A.O. Empirical Mode Decomposition and its Extensions Applied to EEG
Analysis: A Review. Adv. Data Sci. Adapt. Anal. 2018, 10, 1840001. [CrossRef]

24. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent
component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef] [PubMed]

25. Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and
Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 2011, 156869. [CrossRef]

https://doi.org/10.1126/science.1099745
https://doi.org/10.3414/ME12-01-0083
https://doi.org/10.1016/j.ijpsycho.2016.02.001
https://doi.org/10.1109/TASSP.1980.1163359
https://doi.org/10.1016/j.compbiomed.2004.05.001
https://www.ncbi.nlm.nih.gov/pubmed/15809098
https://doi.org/10.1016/B978-0-12-374620-7.00008-X
https://doi.org/10.1016/j.neuroimage.2005.08.005
https://doi.org/10.1093/schbul/sbn093
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1142/S1793536910000549
https://doi.org/10.1016/j.sigpro.2011.07.013
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.1186/s12938-017-0397-9
https://www.ncbi.nlm.nih.gov/pubmed/28835251
https://doi.org/10.1109/JBHI.2015.2450196
https://www.ncbi.nlm.nih.gov/pubmed/26126290
https://doi.org/10.5220/0004182206700676
https://doi.org/10.1038/s41598-019-53286-z
https://doi.org/10.1109/EMBC.2013.6609665
https://doi.org/10.5370/JEET.2016.11.6.1812
https://doi.org/10.1007/s10827-007-0020-3
https://doi.org/10.1142/S2424922X18400016
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1155/2011/156869

Sensors 2023, 23, 8654 19 of 19

26. Flandrin, P. Empirical Mode Decomposition MATLAB Implementations. Available online: https://perso.ens-lyon.fr/patrick.
flandrin/emd.html (accessed on 6 February 2023).

27. Al-Subari, K.; Al-Baddai, S.; Tomé, A.M.; Goldhacker, M.; Faltermeier, R.; Lang, E.W. EMDLAB: A toolbox for analysis of
single-trial EEG dynamics using empirical mode decomposition. J. Neurosci. Methods 2015, 253, 193–205. [CrossRef] [PubMed]

28. Luukko, P.J.J.; Helske, J.; Räsänen, E. Introducing libeemd: A program package for performing the ensemble empirical mode
decomposition. Comput. Stat. 2016, 31, 545–557. [CrossRef]

29. Waskito, P.; Miwa, S.; Mitsukura, Y.; Nakajo, H. Parallelizing Hilbert-Huang transform on a GPU. In Proceedings of the 2010 First
International Conference on Networking and Computing, Higashi, Japan, 17–19 November 2010; pp. 184–190. [CrossRef]

30. Waskito, P.; Miwa, S.; Mitsukura, Y.; Nakajo, H. Evaluation of GPU-based empirical mode decomposition for off-line analysis.
IEICE Trans. Inf. Syst. 2011, E94-D, 2328–2337. [CrossRef]

31. Bonita, J.D.; Ambolode, L.C.C.; Rosenberg, B.M.; Cellucci, C.J.; Watanabe, T.A.A.; Rapp, P.E.; Albano, A.M. Time domain measures
of inter-channel EEG correlations: A comparison of linear, nonparametric and nonlinear measures. Cogn. Neurodyn. 2014, 8, 1–15.
[CrossRef]

32. Huang, K.P.Y.; Wen, C.H.P.; Chiueh, H. Flexible parallelized empirical mode decomposition in CUDA for hilbert huang transform.
In Proceedings of the 2014 IEEE Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on
Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), Paris, France,
20–22 August 2014; pp. 1125–1133. [CrossRef]

33. Wang, Y.; Ren, H.; Huang, M.; Chang, Y. GPU-based ensemble empirical mode decomposition approach to spectrum discrimina-
tion. In Proceedings of the 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), Shanghai, China, 4–7 June 2012; pp. 3–6.

34. Ren, H.; Wang, Y.L.; Huang, M.Y.; Chang, Y.L.; Kao, H.M. Ensemble empirical mode decomposition parameters optimization for
spectral distance measurement in hyperspectral remote sensing data. Remote Sens. 2014, 6, 2069–2083. [CrossRef]

35. Chen, D.; Li, D.; Xiong, M.; Bao, H.; Li, X. GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during
anesthesia. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1417–1427. [CrossRef] [PubMed]

36. NVIDIA CUDA C Programming Guide. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.
html (accessed on 19 October 2023).

37. Cheng, J.; Grossman, M.; McKercher, T. Professional CUDA C Programming; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 53,
ISBN 978-1-118-73932-7.

38. Cook, S. CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs; Newnes: Oxford, UK, 2012; ISBN 9780124159334.
39. Williams, S.; Waterman, A.; Patterson, D. Roofline: An insightful visual performance model for multicore architectures. Commun.

ACM 2009, 52, 65. [CrossRef]
40. Ioannides, A.A. Dynamic functional connectivity. Curr. Opin. Neurobiol. 2007, 17, 161–170. [CrossRef]
41. O’Neill, G.C.; Tewarie, P.; Vidaurre, D.; Liuzzi, L.; Woolrich, M.W.; Brookes, M.J. Dynamics of large-scale electrophysiological

networks: A technical review. Neuroimage 2018, 180, 559–576. [CrossRef]
42. Desowska, A.; Turner, D.L. Dynamics of brain connectivity after stroke. Rev. Neurosci. 2019, 30, 605–623. [CrossRef] [PubMed]
43. Arnsten, A.F.T.; Paspalas, C.D.; Gamo, N.J.; Yang, Y.; Wang, M. Dynamic network connectivity: A new form of neuroplasticity.

Trends Cogn. Sci. 2010, 14, 365–375. [CrossRef] [PubMed]
44. Issa, M.F.; Kozmann, G.; Juhasz, Z. Increasing the Temporal Resolution of Dynamic Functional Connectivity with Ensemble

Empirical Mode Decomposition. In Proceedings of the 8th European Medical and Biological Engineering Conference, Portorož,
Slovenia, 29 November–3 December 2020; Volume 80, pp. 664–672.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://perso.ens-lyon.fr/patrick.flandrin/emd.html
https://perso.ens-lyon.fr/patrick.flandrin/emd.html
https://doi.org/10.1016/j.jneumeth.2015.06.020
https://www.ncbi.nlm.nih.gov/pubmed/26162614
https://doi.org/10.1007/s00180-015-0603-9
https://doi.org/10.1109/IC-NC.2010.44
https://doi.org/10.1587/transinf.E94.D.2328
https://doi.org/10.1007/s11571-013-9267-8
https://doi.org/10.1109/HPCC.2014.166
https://doi.org/10.3390/rs6032069
https://doi.org/10.1109/TITB.2010.2072963
https://www.ncbi.nlm.nih.gov/pubmed/20813649
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1016/j.conb.2007.03.008
https://doi.org/10.1016/j.neuroimage.2017.10.003
https://doi.org/10.1515/revneuro-2018-0082
https://www.ncbi.nlm.nih.gov/pubmed/30768425
https://doi.org/10.1016/j.tics.2010.05.003
https://www.ncbi.nlm.nih.gov/pubmed/20554470

	Introduction
	Materials and Methods
	Overview of the Empirical Mode Decomposition Algorithm
	Ensemble EMD Algorithms
	The Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Algorithm
	Parallel Design
	The Parallel Sifting Process
	Data Structures and Initialization

	Results
	Test Hardware
	Numerical Validation
	Computational Performance and Optimization

	Discussion
	Conclusions
	References

