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Abstract: Time–frequency analysis of EEG data is a key step in exploring the internal activities of 
the human brain. Studying oscillations is an important part of the analysis, as they are thought to 
provide the underlying mechanism for communication between neural assemblies. Traditional 
methods of analysis, such as Short-Time FFT and Wavelet Transforms, are not ideal for this task due 
to the time–frequency uncertainty principle and their reliance on predefined basis functions. Em-
pirical Mode Decomposition and its variants are more suited to this task as they are able to extract 
the instantaneous frequency and phase information but are too time consuming for practical use. 
Our aim was to design and develop a massively parallel and performance-optimized GPU imple-
mentation of the Improved Complete Ensemble EMD with the Adaptive Noise (CEEMDAN) algo-
rithm that significantly reduces the computational time (from hours to seconds) of such analysis. 
The resulting GPU program, which is publicly available, was validated against a MATLAB reference 
implementation and reached over a 260× speedup for actual EEG measurement data, and provided 
predicted speedups in the range of 3000–8300× for longer measurements when sufficient memory 
was available. The significance of our research is that this implementation can enable researchers to 
perform EMD-based EEG analysis routinely, even for high-density EEG measurements. The pro-
gram is suitable for execution on desktop, cloud, and supercomputer systems and can be the starting 
point for future large-scale multi-GPU implementations. 

Keywords: EEG; GPU; Empirical Mode Decomposition; EEMD; CEEMDAN; time–frequency  
analysis; parallel algorithm; performance 
 

1. Introduction 
Oscillations represent the fundamental mechanism for synchronization and commu-

nication among different neural populations in the human brain [1]. Traditionally, the 
Short-Time Fourier Transform (STFT) has been used to decompose EEG signals into si-
nusoid components of distinct frequencies [2–4]. Unfortunately, the time–frequency un-
certainty principle [5] prohibits us from achieving high spectral and temporal resolution 
at the same time. The Continuous Wavelet Transform using the Morlet wavelet family is 
an improvement over the STFT [6] as—instead of fixed-sized time windows—it uses fre-
quency-dependent window lengths to extract low-frequency components with higher 
spectral but lower temporal resolution, whereas high-frequency components have lower 
frequency but higher temporal resolution [7–9]. Unfortunately, both the Fourier and the 
Morlet Wavelet Transforms require predefined sinusoid basis functions of fixed frequencies 
given by analytic formulae as templates, which is not a suitable approach for natural (non-
linear and nonstationary) signals, such as EEG, where the signal shape, amplitude, and 
frequency can change arbitrarily.  

Empirical Mode Decomposition (EMD) [10] is an alternative frequency decomposi-
tion method that decomposes a signal into oscillatory components (Intrinsic Mode 

Citation: Wang, Z.; Juhasz, Z. GPU 

Implementation of the Improved 

CEEMDAN Algorithm for Fast and 

Efficient EEG Time–Frequency  

Analysis. Sensors 2023, 23, 8654. 

https://doi.org/10.3390/s23208654 

Academic Editor: Hai Dong 

Received: 15 September 2023 

Revised: 9 October 2023 

Accepted: 20 October 2023 

Published: 23 October 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Sensors 2023, 23, 8654 2 of 20 
 

 

Functions, IMFs) without relying on predefined basis functions. Using an iterative 
method, the IMFs are automatically derived from the signal itself in an adaptive, data-
driven way. The extracted IMFs are narrow-band signals carrying instantaneous fre-
quency and phase [11] information as well as amplitude and/or frequency modulation 
information, which is frequently lost in traditional time–frequency decomposition meth-
ods. The original EMD method has some shortcomings, however. The internally used 
spline interpolation can produce unwanted distortions at the beginning and end of the 
single (end effects). A more serious problem is known as mode mixing [12], where one 
IMF contains multiple oscillatory frequencies; i.e., the decomposition into unique fre-
quency components is not accurate. Several new noise-assisted variants, such as Ensemble 
EMD (EEMD) [13], Complete EEMD with Adaptive Noise (CEEMDAN) [14], and Im-
proved CEEMDAN [15], have been proposed recently to alleviate these problems. All 
these methods rely on the so-called ensemble approach in which multiple random noise-
contaminated copies of the signal are processed to reduce the effect of signal noise. Fur-
ther, the properties of these methods are described in the Section 2.  

EMD and its variants have been shown to be superior for certain EEG preprocessing 
tasks and for extracting time–frequency features from EEG data. EMD can be used to re-
move 50/60 Hz power line noise without notch filtering and distorting the spectrum and 
phase of the EEG signal [16] and to selectively clean the blink artifact-independent com-
ponents instead of completely removing them [17,18]. In cognitive experiments, Nguyen 
et al. [19] showed that EMD—unlike Fourier transform-based analysis—could correctly 
detect the carrier and modulating signals from flicker-generated steady-state visual-
evoked potentials (SSVEPs). Tanaka et al. [20] compared wavelet and bivariate EMD ap-
proaches in detecting phase-locking values (PLVs) during a Dynamical Dot Quartet dis-
crimination task and found that EMD was more suitable for detection than the wavelet-
based method. Lee et al. [21] and Sweeney-Reed and Nasuto [22] also used EMD for de-
tecting phase synchronization that can be used for brain connectivity network construc-
tion or cross-frequency coupling computations. For clinical applications of EMD (BCIs, 
clinical diagnosis, rehabilitation, seizure detection, sleep staging, anesthesia monitoring, 
and pain analysis), the reader is referred to the review of Sweeney-Reed et al. [23]. 

The introduction of multiple noisy copies in EEMD and CEEMDAN results in radical 
execution time increases. The EEG research community relies heavily on MATLAB as its 
runtime platform using various EEG toolboxes, e.g., the EEGLAB [24] and Fieldtrip [25], 
for the analyses with various third-party functions and toolboxes as extensions. The 
runtime of the EEMD or CEEMDAN methods on a high-density (128 or more channels) 
and high-sampling rate (fs over 1 kHz) EEG data file using common MATLAB implemen-
tations (Flandrin et al. [26] and EMDLAB by Al-Subari et al. [27]) is measured in hours or 
days, depending on the sampling frequency and the length of the EEG measurement data. 
This has a detrimental effect on EEG research, identified as one of the major obstacles to 
adopting EMD [23], reducing productivity, prohibiting studies with large subject popula-
tions, and raising obstacles in research into new data analysis methods. Parallel compu-
ting can help in reducing the execution time significantly, especially with graphics pro-
cessors (GPU) that showed unprecedented performance improvements over the past dec-
ade. Unfortunately, achieving highly efficient GPU implementations is a challenging task. 
Naïve approaches based on common sequential or low-granularity parallel algorithm de-
sign techniques often result in disappointing performance, which is an especially serious 
problem in GPU-accelerated supercomputers that provide only a fraction of their compu-
tational performance.  

This paper describes a high-performance GPU implementation of the Improved 
CEEMDAN algorithm that is designed with performance as a top priority. We minimized 
expensive data movement and synchronization operations and maximally exploited GPU 
architecture features that enable efficient execution. The significance of our work is as fol-
lows: We achieved over a 260× speedup over MATLAB implementation that reduced the 
execution time from hours to seconds, and we predicted speedup values in the range of 
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1000–10,000× for longer measurements. To our knowledge, this is the first GPU implemen-
tation of the Improved CEEMDAN algorithm. In addition, we have made the source code 
of the implementation and sample data files publicly available at https://github.com/EE-
GLab-Pannon (accessed on 20 October 2023) along with our GPU code for the original 
EMD and EEMD algorithms as well. We hope that this work will enable the EEG commu-
nity to routinely use EEMD-based decomposition methods and spectral analyses in its 
future research. Our implementations also allow users to run large-scale EEG studies on 
GPU-accelerated cloud systems and supercomputers. 

2. Materials and Methods 
2.1. Overview of the Empirical Mode Decomposition Algorithm 

Before describing the parallel implementation of the CEEMDAN algorithm, we 
briefly introduce the basis and the fundamental steps of the original Empirical Mode De-
composition method. The algorithm (described in detail in Algorithm 1) is an iterative 
method. The input signal is first checked for its extrema points onto which we fit two 
envelopes (lower envelope on minima, upper envelope on maxima) by cubic spline inter-
polation. The two envelopes are averaged, and this average envelope is subtracted from 
the input signal creating a new signal. If this signal satisfies the conditions that make it an 
IMF, the signal is the new input to the next iteration of the process and the IMF is stored. 
Once no IMF can be extracted (there is not oscillation in the signal), the process stops.  

Extracting the IMF is performed in the so-called sifting process, which is laid out in 
details in Lines 5–11 of Algorithm 1. The envelopes are generated for each time sample in 
every iteration, hence the average and candidate IMF generation is a vector addition and 
subtraction operation, which can be trivially parallelized. Fitting the envelope requires 
cubic spline interpolation that, in turn, results in solving a tridiagonal system of equations 
in each iteration. The innermost while loop of Algorithm 1 controls the sifting process that 
terminates when a predefined stop criterion has been met [10]. This loop cannot be exe-
cuted in parallel due to the obvious dependencies between iterations. The outer loop is 
responsible for controlling the IMF extraction. This process will stop when no further os-
cillation can be detected in the signal. This loop must also be executed sequentially.  

Algorithm 1. EMD: Empirical Mode Decomposition [10] 
Input: x(k)—single-channel time series 
Output: IMF(k)—N extracted Intrinsic Mode Function time series 
1. set configuration parameters  
2. i = 0 
3. while (IMF stopping criterion is not met) 
4. create a working copy of the input signal: x’(k) = x(k) 
5. while (sifting stopping criterion is not met) 
6. find extrema locations of x’(k) 
7. perform cubic spline interpolation on the extrema to obtain the upper and lower 
envelope of the working copy of the signal 
8. compute the mean of the upper and lower envelopes: m(k) = (upper(k) + 
lower(k))/2 
9. subtract the mean envelope from the working copy: s(k) = x’(k) − m(k) 
10. x’(k) = s(k) 
11. end 
12. IMF[i](k) = s(k) 
13. x(k) = x(k) − IMF[i] (k) 
14. i = i + 1 
15. end 
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Several parallel implementations have been developed for the EMD algorithm (For 
the sake of completeness, we could also include PyEMD in the comparisons, but the Py-
EMD implementation is fully sequential and significantly slower than libeemd. In addi-
tion, Python is less frequently used in the EEG community than MATLAB). The library 
libeemd [28] is written in the C programming language and provides sequential and 
OpenMP-based parallel CPU implementations for the EMD, EEMD, and CEEMDAN al-
gorithms. The implementation achieves around a 10× speedup compared to MATLAB 
ones. The rapid rise of GPU technology in High-Performance Computing gave rise to sev-
eral parallel GPU-accelerated EMD implementations, too. Waskito et al. reported the first 
single-precision CUDA EMD implementation for audio signal processing achieving 29× 
and 29.9× speedups compared to sequential C versions on C1060 and C2050 NVIDIA Tesla 
cards, respectively [29,30]. Xie et al. created a CUDA EMD version for seismic data pro-
cessing that achieved a 4× speedup on a GT240 GPU card [31]. Huang et al. [32] reported 
a 33.7× speedup on a C2050 GPU using overlapped piecewise cubic spline interpolation 
technique. 

2.2. Ensemble EMD Algorithms 
To solve the EMD mode mixing problem, Wu et al. [13] proposed a noise-assisted 

signal decomposition method called the Ensemble Empirical Mode Decomposition 
(EEMD). This algorithm uses multiple copies (called realizations) of the input signal cre-
ated by adding random Gaussian noise to the signal before the decomposition process. As 
a result, the distribution of extreme points of the signal will be more uniform in the statis-
tical sense and become less sensitive to intermittent noise. The number of realizations in 
EEMD is a problem-dependent configuration parameter but, in general, it is in the order 
of a few hundreds. Compared to EMD, an additional loop is required for the realizations 
where each iteration starts with replicating the signal by adding to it some random white 
noise. Then, these signals will be decomposed individually and independently from one 
another using the original EMD algorithm. Once the IMFs of each noisy copy are ex-
tracted, they are averaged to generate the final IMF set. One deficiency of the EEMD 
method is that it does not produce a complete decomposition, meaning that it is not invert-
ible; the exact original signal cannot be rebuilt from the extracted IMFs as some residual 
noise will appear in the reconstructed signal. A further complication is that different signal 
plus noise combinations may result in different number of IMFs, making their averaging 
process problematic.  

Because the Ensemble EMD has a significantly higher computation cost then EMD 
due to the large number of noise-assisted copies of the original signal, parallelism in this 
case is mandatory to achieve acceptable execution times. The implementation by Wang et 
al. was developed for offline spectrum discrimination of hyperspectral remote sensing im-
ages and achieved a 60.62× speedup over a sequential C implementation running on an 
NVIDIA C1060 Tesla GPU card [33]. In a follow-up paper, they compared serial MATLAB, 
sequential and multicore C, and their CUDA implementation (C1060 GPU) and found that 
sequential C is 5 times faster than MATLAB, a quad-core C version is 15 times faster, and 
the CUDA version is 60 times faster than the MATLAB implementation [34]. Chen et al. 
developed a real-time CUDA EEMD implementation [35] for anesthesia monitoring pur-
poses. They showed that it is possible to achieve a real-time processing speed with a 
GTX295 GPU card (31.3× speedup, dual GPU card).  

The reviewed GPU implementations have the following characteristics in common: 
(i) they use early generation, by now outdated GPU processors and early versions of the 
CUDA programming language; (ii) the achieved speedup values are relatively modest; 
and (iii) the source code is not publicly available.  
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2.3. The Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
Algorithm 

The Improved CEEMDAN algorithm (referred to as ICEEMDAN in the rest of the 
paper) was developed by Colominas et al. [15]. This algorithm solves the mode-mixing 
problem, provides an invertible decomposition, and eliminates early noise IMF compo-
nents from the IMF set. Unlike in EEMD, where the IMFs are extracted for the different 
signal plus noise realizations independently and averaged at the end, in ICEEMDAN, the 
extracted IMFs are averaged during the iterative process, and the average is used to com-
pute the input signal for the next iteration. In addition, noise is added to the signal differ-
ently, to control the signal-to-noise ratio and match the frequency spectrum of the noise 
and the new input signals. For this, the EMD algorithm is executed on the white Gaussian 
noise with zero mean and unit variance to extract noise IMFs, which will be added to the 
signal as the IMF extraction proceeds.  

The algorithm, described formally, is as follows: Let Ek(·) represent the operator that 
returns the kth IMF (mode) using the EMD algorithm of its input signal. Let M(·) be the 
operator that returns the local mean of the upper and lower envelopes of the signal it is 
applied to and let 〈∙〉 be the action of averaging across all realizations. With these opera-
tors the ICEEMDAN algorithm executes the following steps [15]: 
• Calculate by using EMD the local means of K realizations 𝑥𝑥(𝑖𝑖)  =  𝑥𝑥 +  𝛽𝛽0𝐸𝐸1(𝑤𝑤(𝑖𝑖)) to 

obtain the first residue 𝑟𝑟1  =  1
𝐾𝐾
∑ 𝑀𝑀�𝑥𝑥 +  𝛽𝛽0𝐸𝐸1(𝑤𝑤(𝑖𝑖))�𝐾𝐾
𝑘𝑘=1 = 〈𝑀𝑀(𝑥𝑥(𝑖𝑖))〉. 

• At the first stage (k = 1), calculate the first mode: 𝑑𝑑1  =  𝑥𝑥 −  𝑟𝑟1. 
• Estimate the second residue as the average of local means of the realizations 𝑟𝑟1 +

 𝛽𝛽1𝐸𝐸2(𝑤𝑤(𝑖𝑖)) and define the second mode: 𝑑𝑑2 = 𝑟𝑟1 − 𝑟𝑟2 = 𝑟𝑟1  −  〈𝑀𝑀(𝑟𝑟1 + 𝛽𝛽1𝐸𝐸2(𝑤𝑤(𝑖𝑖)))〉. 
• For k = 3, …, K calculate the kth residue 𝑟𝑟𝑘𝑘 = 〈𝑀𝑀(𝑟𝑟𝑘𝑘−1 + 𝛽𝛽𝑘𝑘−1𝐸𝐸𝑘𝑘(𝑤𝑤(𝑖𝑖)))〉. 
• Compute the kth mode 𝑑𝑑𝑘𝑘 = 𝑟𝑟𝑘𝑘−1 − 𝑟𝑟𝑘𝑘. 
• Go to step 4 for next k. 

Notice that when creating the signal plus noise realizations, we add 𝛽𝛽𝑘𝑘−1𝐸𝐸𝑘𝑘(𝑤𝑤(𝑖𝑖)), 
i.e., the kth IMF of the Gaussian white noise to the signal instead of just white noise, such 
as 𝛽𝛽𝑘𝑘−1𝑤𝑤(𝑖𝑖). Also, the amplitude 𝛽𝛽𝑘𝑘 of the noise mode changes from one iteration to the 
next as given by 𝛽𝛽𝑘𝑘 = 𝜀𝜀0𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟𝑘𝑘), where 𝑠𝑠𝑠𝑠𝑠𝑠() is the standard deviation of the signal.  

The overall structure of the algorithm is depicted in Figure 1, whereas the flowchart 
of the sifting process for generating the noise IMFs is shown in Figure 2. 
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Figure 1. The execution flowchart of the ICEEMDAN algorithm. ‘Sifting’ is the basic processing 
step of the implementation, and the noise inputs are the decomposition results (IMFs) from the 
Gaussian noise realizations. 
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Figure 2. The flowchart of the EMD decomposition of the Gaussian noise. The resulting noise 
IMFs, Noise 1—Noise n are used as added noise in the algorithm as shown in Figure 1. 
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 while no more IMFs can be extracted perform {for k = 2 and up} 
  for all realizations perform in parallel 
   compute the local means 𝑀𝑀(𝑥𝑥(𝑖𝑖)) 
  end for 
  residue 𝑟𝑟𝑘𝑘 by averaging 𝑀𝑀(𝑥𝑥(𝑖𝑖)) across realizations in parallel 
  compute the mode 𝑑𝑑𝑘𝑘 as 𝑑𝑑𝑘𝑘  =  𝑟𝑟𝑘𝑘−1  −  𝑟𝑟𝑘𝑘 
 end while 
end for 

We assume the reader is familiar with GPU architectures and programming, and es-
pecially with the CUDA programming model. Here, we summarize the terminology we 
use in the rest of the paper. We kindly refer those with no experience in GPU program-
ming to the CUDA programming literature [36–38]. The kernel is a function executing on 
the GPU device using multiple threads in a single-instruction-multiple-stream fashion. 
Each thread has a unique index in order to map a thread to a data element in memory. 
Kernels are launched on the host (CPU program) to be executed on the GPU with threads 
organized into blocks, and blocks into grids. One-, two- and three-dimensional indexing 
can be used to map threads onto 1D, 2D, and 3D data structures. NVIDIA GPUs contain 
a large number of compute (integer, FP32, FP64, and tensor) cores; the internal thread 
schedulers will assign instructions from threads to different cores based on the operand 
type for parallel execution.  

2.5. The Parallel Sifting Process 
The core step of the ICEEMDAN algorithm is the parallel GPU implementation of 

the sifting algorithm that extracts one mode (IMF) from the input signal. This is used in 
extracting both the noise and signal IMFs. The main steps of the sifting process are: extrema 
detection, envelope generation with cubic spline interpolation, local mean computation, and 
signal residue calculation. These steps are implemented by custom kernel functions and in 
some cases using highly optimized CUDA library functions. The functions used in our 
sifting process implementation are listed in Table 1. 

Table 1. The major steps of the sifting process and their corresponding GPU kernel/library function. 

Sifting Operation Kernel/Library Function 
Find local signal maxima  select_extrema_max() 
Find local signal minima select_extrema_min() 

Solve the tridiagonal system cusparseSgtsv2_nopivot() 
Collect coefficients for interpolation spline_coefficient() 

Cubic spline interpolation interpolate() 
Compute mean envelope averageUpperLower() 

Signal update for next iteration averageUpdateSignal() 

Each of these steps is executed in a massively parallel fashion. In the extrema detec-
tion step, one thread is launched for each signal/noise sample that compares the sample 
with the left and right neighbors to detect minima and maxima values and their locations. 
The extrema are used in the next step to generate the upper and lower envelopes of the 
signal. This is performed by cubic spline interpolation based on the extrema values, which 
requires the solution of many tridiagonal systems of equations. The Parallel Cyclic Reduc-
tion solver implementation /cusparseSgtsv2_nopivot()/ provided in the cuSPARSE library 
is used for this step. The solver provides us with a set of spline coefficients that we com-
pute in function spline_coefficient(). These are input to the interpolation kernel interpo-
late() that returns the interpolated values of the upper and lower envelops. The means of 
these two envelopes are calculated in parallel in function averageUpperLower() as sample 
wise means.  
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Once the sifting process completes, we obtain a new first mode for each realization. 
These modes are subtracted from their corresponding realizations, and the results are av-
eraged across the realizations to produce the new residue 𝑟𝑟𝑘𝑘+1. These steps are executed 
by kernel functions produceResidue() and averageUpdateSignal().  

2.6. Data Structures and Initialization 
The ICEEMDAN algorithm is executed for C signal channels, each containing N sam-

ples. During the decomposition of the signal, we used I signal plus noise realizations and 
extracted up to K modes (IMFs). In the following, we describe the most important data 
structures and their layouts for processing a single channel. The complete list of data 
structures and their sizes and functions in which they are used are listed in Table S1 in the 
Supplementary Materials. 

The input signal x is stored in an N element FP32 vector. The K modes of the Gaussian 
noise realizations 𝑤𝑤(𝑖𝑖) are extracted at the beginning of the program and stored in a K × I 
× N element three-dimensional FP32 data matrix. Modes from this matrix will be added 
to the input signal during the iterative process of IMF extraction. Before executing the 
sifting process, the noisy realizations are generated and stored in an I × N FP32 matrix. 
The output of the sifting step is I residue signals and I modes, both stored in I × N FP32 
matrices. To minimize memory usage, the data structures of the input signal, the residues 
and IMFs of the realizations are reused and overwritten in each iteration of the IMF ex-
traction loop. As the final result, the extracted averaged IMFs are stored in a K × N FP32 
matrix.  

Only the original input signal and the final IMFs are stored in the host (CPU) 
memory. All other data structures are allocated to the global GPU memory. The input 
signal is copied to the GPU memory before the algorithm starts, and the final IMFs are 
copied back to the host at the end. There are no host–device memory copy operations 
during the execution of the GPU code. The zero mean and unit variance noise is generated 
by using the curandGenerateNormal() function in the cuRAND CUDA library. 

3. Results 
In this section, we demonstrate the numerical accuracy, the achieved speedup, and 

the implementation efficiency of our ICEEMDAN implementation. First, we provide de-
tails of the hardware used during the validation and performance measurements. This is 
followed by numerical validation results and computational performance measures. Fi-
nally, we discuss the various performance optimization steps we used to improve execu-
tion efficiency and device utilization.  

3.1. Test Hardware 
Tests and measurements were conducted on three NVIDIA GPUs including gaming 

and compute-only cards. Each GPU represented different GPU architecture families. De-
tails of the GPUs used in our study are provided in Table 2. Specifically, Titan Xp (Pascal) 
and RTX 3070 (Ampere) gaming cards were used during development and testing, and a 
Tesla V100 (Volta) accelerator card was used for additional performance measurements. 
Because these GPUs have different internal architecture, CUDA core counts, and theoret-
ical peak performance, they enabled us to explore performance differences attributable to 
varying hardware parameters. For CPU tests, we used an Intel i7-9700K 8-core CPU-based 
computer with a Windows 10 operating system and MATLAB 2019a.  

Table 2. Architecture parameters of the GPU platforms used for measurements. 

 Titan Xp Tesla V100 RTX 3070 Mobile 
Architecture Pascal Volta Ampere 
CUDA cores 3840 5120 5120 

Clock frequency (GHz) 1.48 1.46 1.62 



Sensors 2023, 23, 8654 10 of 20 
 

 

Memory (GB) 12 16 8 
Peak FP32 performance (TFlop/s) 11.36 14.03 16.59 

CUDA version 10.2 11.3 11.4 

3.2. Numerical Validation 
The numerical correctness of our implementation was validated with a synthetic sig-

nal [15] and a real EEG dataset provided as a sample data file in the EEGLAB [24] software 
distribution. Our GPU implementation was compared with a MATLAB implementation 
considered as the golden standard [26]. To quantify the accuracy of the decomposition 
results obtained with different implementations, we introduced the Similarity Index met-
ric  𝜌𝜌 given as 

𝜌𝜌𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡),𝑦𝑦𝑖𝑖(𝑡𝑡)) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖(𝑡𝑡),𝑦𝑦𝑖𝑖(𝑡𝑡))

�𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑖𝑖(𝑡𝑡))�𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑖𝑖(𝑡𝑡))
 (1) 

where 𝑐𝑐𝑐𝑐𝑐𝑐() represents the covariance of the two input IMF signals 𝑥𝑥𝑖𝑖(𝑡𝑡) and 𝑦𝑦𝑖𝑖(𝑡𝑡) pro-
duced by the GPU and MATLAB implementations, respectively and 𝑣𝑣𝑣𝑣𝑣𝑣() represents the 
variance of the input signal. The index 𝜌𝜌 varies between 0 and 1, 𝜌𝜌 = 1 representing that 
𝑥𝑥𝑖𝑖(𝑡𝑡) and 𝑦𝑦𝑖𝑖(𝑡𝑡) are identical.  

The synthetic signal contains two frequency components and features intermittent 
noise. The length of the entire signal is 1000 samples, and one component 𝑠𝑠1 is a sinusoid 
signal with nonzero values from sample 500 to 750 with a frequency of 255 Hz. The other 
component 𝑠𝑠2 is also a sinusoidal signal but spans the entire signal duration, from sample 
0 to 1000 with a frequency of 65 Hz. The composite signal 𝑠𝑠 = 𝑠𝑠1 + 𝑠𝑠2, is expressed as 
follows: 

𝑠𝑠1 = �
0                                                    𝑖𝑖𝑖𝑖 1 ≤ 𝑛𝑛 ≤ 500       
sin�2𝜋𝜋0.255(𝑛𝑛 − 501)�         𝑖𝑖𝑖𝑖 501 ≤ 𝑛𝑛 ≤ 750  
0                                                    𝑖𝑖𝑖𝑖 751 ≤ 𝑛𝑛 ≤ 1000

 

𝑠𝑠2 = sin (2𝜋𝜋0.065(𝑛𝑛 − 1)) 

(2) 

The synthetic signal s and its two constituent components 𝑠𝑠1 and 𝑠𝑠2 are shown in 
Figure 3a. The interval from sample 501 to 750 in signal 𝑠𝑠 is a period of intermittent noise, 
which makes the signal well suited for testing mode mixing.  

Figure 3b,c show the decomposition results of this dual-frequency synthetic signal 
performed with the reference MATLAB and our CUDA implementations. The Similarity 
Index in this case was computed between one constituent component of signal s (the 
ground truth) and the IMF produced by either implementation; i.e., we measured how 
accurately the IMF reproduced the original components of the raw synthetic signal. The 
MATLAB implementation gives similarity index values of 𝜌𝜌𝑠𝑠1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 99.63%  and 
𝜌𝜌𝑠𝑠2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 99.95%. The CUDA implementation produced nearly identical results as the 
MATLAB one, 𝜌𝜌𝑠𝑠1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 99.62% and 𝜌𝜌𝑠𝑠2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 99.91%.  
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(a) 

 

(b) 

(c) 

Figure 3. The synthetic dual-frequency signal (a) and the decomposition results from the MATLAB 
(b) and CUDA (c) implementations. 

Next, we show the decomposition results obtained from a real EEG dataset. The se-
lected signal is Channel 4 of the sample data file “eeglab_data.set” distributed with the 
EEGLAB Toolbox containing 30,504 data samples (sampling frequency is 512 Hz, signal 
length: 1 min). Figure 4 shows the extracted IMFs and the resulting Similarity Index val-
ues. Because we did not have the ground truth in this case, or in the case of any real EEG 
measurements, the Similarity Index was computed from the MATLAB and CUDA imple-
mentation results, treating the MATLAB result as the ‘ground truth’.  

Higher-frequency IMFs show very good agreement of the two implementations. 
Lower-frequency IMFs show a somewhat reduced level of similarity, which is likely to be 
caused by the different random number generator in the two implementations and differ-
ent boundary conditions during extrema detection and spline interpolation.  

 
Figure 4. The decomposition results (only IMFs 1–12 are shown, top-down) of Channel 4 from the 
EEGLAB sample dataset produced by the MATLAB (a) and CUDA (b) implementations with the 
corresponding Similarity Index values computed from the corresponding MATLAB and CUDA 
IMFs. 
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3.3. Computational Performance and Optimization  
We start the performance results section by showing the execution times of the base-

line MATLAB and libeemd Improved CEEMDAN implementations (Figure 5). Three in-
put parameters (signal length N, number of iterations in the sifting process S, and number 
of realizations I) were varied during the tests. It should be noted that because the imple-
mentation provided by libeemd uses a completely different iteration stop criterion, we 
used a fixed number of iterations for a fair comparison. For the sample size N = 102,401 
that represents 50 s of data at fs = 2048 Hz or 6.6 min at fs = 256 Hz, the MATLAB execution 
time varied between 6 and 53 min depending on the number of realizations (I = 100, 200, 
…, 500) and sifting iterations (S = 10, 20, 50). Execution times from the libeemd implemen-
tations for the same input parameters varied between 10 s and 4 min. 

  
(a) (b) 

Figure 5. Execution time of the MATLAB (a) and libeemd (b) versions of the Improved CEEMDAN 
algorithm in function of signal length N and varying number of realizations I. The number of sifting 
operations is fixed, S = 10. 

Before showing the execution time of our final GPU implementation, we illustrate an 
important performance optimization strategy. The execution profiling of the first imple-
mentation of our algorithm revealed that the cuSPARSE tridiagonal solver executes many 
small kernels, which—due to the large number of signal realizations—results in a signifi-
cant performance overhead. Figure 6 shows the execution timeline of the tridiagonal 
solver on many realizations. It can be seen that the GPU is not fully utilized during the 
execution of kernels; there are idle time gaps between the kernels. 

 
Figure 6. The execution timeline of the kernel functions used by the tridiagonal solver. 

Fortunately, the CUDA programming model provides an elegant solution to the 
problem of launching many small kernels—the CUDA Graph execution model. With 
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CUDA graphs, one can create a Directed Acyclic Graph from a set of kernels, and later the 
complete graph can be launched with a single launch call. Graphs can be created program-
matically or captured at runtime during program execution. In our version, the latter ap-
proach was used. The first execution of the graph was performed by launching the kernels 
individually to capture the graph. From the second execution, only the captured graph 
was launched. Figure 7 shows the result of the optimization achieved with CUDA graphs. 
The same tridiagonal solver was executed as before, but the kernels were now executed 
much more compactly, without large gaps reducing the execution time from 2.472 ms to 
0.646 ms. 

 
Figure 7. The execution timeline of the kernel functions of the tridiagonal solver using the CUDA 
graph optimization. 

The execution times of our optimized GPU implementation are shown in Figure 8. 
The runtime is in the range of 1–10 s for the N = 102,401 sample size. We measured the 
execution time up to N = 358,401 samples (representing about 3 min of measurements at 
fs = 2048 Hz). From these values, we calculated the speedup values compared to MATLAB, 
which is shown for a different number of sifting iterations in Figure 9. It is important to 
note that the speedup increases with sample size and in a superlinear fashion. That is, the 
more samples we processed, the faster the GPU version became compared to the MATLAB 
version. The exact speedup values for the full set of realization values are given in Table 
S2 of the Supplementary Materials. The highest speedup was attained at N = 102,401, S = 
10, and I = 500. 

 
Figure 8. Execution time of the GPU ICEEMDAN algorithm (measured on a V100 GPU) in function 
of signal length N and varying number of realizations I. The number of sifting operations is fixed, S 
= 10. 

1 2 3 4 5 6 7 8 9 10 11

Signal length (samples) 10
4

1

2

3

4

5

6

7

8

9

10

11

Ex
ec

ut
io

n 
tim

e 
(s

)

I=500

I=400

I=300

I=200

I=100



Sensors 2023, 23, 8654 14 of 20 
 

 

 
Figure 9. Speedup of the GPU implementation (executed on V100) over the MATLAB version in 
function of signal length N and varying number of sifting iterations S. The number of realizations is 
fixed, I = 500. 

Next, we show the efficiency of our implementation by analyzing the program exe-
cution time and profiling the arithmetic efficiency of kernel functions. Table 3 shows the 
relative weight of the GPU kernels during the execution of the ICEEMDAN algorithm in 
function of signal length on the RTX 3070 mobile card. The number of iterations in the 
decomposition process was fixed at 10, and the number of realizations was 500. Each col-
umn indicates the relative contribution of each kernel to the overall execution time. The 
green color marks kernels provided by NVIDIA libraries, while the blue color marks ker-
nels we developed ourselves. The last two rows of the table show the total contribution of 
the CUDA library functions and our customized kernels to the overall execution time.  

The profiling shows a trend that with increasing signal length, our custom kernels 
accounts for an increasing proportion of the overall execution time with the kernel func-
tion interpolate() becoming the dominating factor. The NVIDIA library functions are lim-
iting performance for smaller input data sizes (72% vs. 28%), but as the data size increases, 
their effect becomes smaller (52% vs. 48%). 

We also performed a Roofline performance analysis [39] of the performance-critical 
kernels of our implementation at two different signal lengths (4 k, 100 k). As can be seen 
in Figure 10, all kernel functions are memory-bound based on their Arithmetic Intensity 
(arithmetic operations per number of bytes transferred to/from memory); that is, the per-
formance is limited by the memory bandwidth not by the computational performance of 
the GPU. The green boxes represent internal kernels of the NVIDIA library, while blue 
dots represent the kernels we developed. The closer the dots are to the performance 
boundary, the more efficient the kernels are. Kernels significantly below the line vertically 
indicate performance problems, typically latency issues. The results indicate that the ker-
nels we developed are closer to the theoretical performance limit (performance attainable 
at a given arithmetic intensity value) than the NVIDIA kernels. The arrows in the figure 
indicate the performance change of the kernels when increasing the signal length from 4 
k to 100 k. The subsequent change in the kernels’ position in the Roofline diagram suggests 
that our implementation becomes more efficient as signal size increases. 
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Table 3. The relative contribution of individual kernels to the overall execution time in function of 
signal length. Color bars depict the relative weight of the kernels in a given column (green: NVIDIA 
internal library kernels of the tridiagonal solver, blue: our custom kernels as well as totals).  

 Sample Size 
kernels 4097  8193  16,385  32,769  43,009  79,873  102,401  
crGlobalForlterations_multiple 10.20% 10.20% 15.50% 18.80% 17.40% 18.00% 16.5% 
crGlobalBottomKernel_multiple 9.70% 8.10% 14.00% 16.40% 14.60% 14.80% 14.8% 
crCopyMemoryGlobal_multiple 5.10% 4.30% 3.70% 2.90% 2.60% 1.90% 1.9% 
pcrGlobalMemKernel_oneRhs 19.90% 25.50% 14.50% 11.20% 15.00% 11.20% 10.6% 
pcrSharedMemKernelLoop_LastStage_on-
eRhs 25.70% 22.10% 19.30% 14.80% 12.60% 9.40% 8.8% 

pcrGlobalMemKernelFirstPass_manyRhs 8.70% 7.50% 6.30% 4.80% 4.30% 3.20% 3.1% 
interpolate 1% 1.90% 2.80% 4.50% 5.60% 7.80% 11.4% 
DeviceScanKernel 10.60% 9.30% 2.20% 8.00% 7.30% 7.40% 6.7% 
preSetTridiagonalMatrix 0.90% 1.20% 2.20% 3.40% 3.90% 5.40% 4.3% 
tridiagonal_setup 0.50% 0.80% 0.90% 1.10% 1.30% 1.70% 2.8% 
select_extrema_min 0.20% 0.70% 1.10% 1.40% 1.60% 2.20% 2.5% 
select_extrema_max 0.20% 0.70% 1.10% 1.40% 1.60% 2.20% 2.5% 
spline_coefficients 0.50% 0.60% 0.70% 0.90% 1.00% 1.30% 2.4% 
mean 0.30% 0.40% 0.70% 1.10% 1.20% 1.60% 1.8% 
averageUpperLower 0.30% 0.50% 1.00% 1.40% 1.60% 2.10% 1.6% 
updateRealizations 0.30% 0.60% 0.90% 1.20% 1.50% 2.00% 1.6% 
produceSX 0.20% 0.50% 0.90% 1.40% 1.60% 2.20% 1.6% 
DeviceScanInitKernel 4.30% 3.60% 3.10% 2.40% 2.10% 1.60% 1.5% 
find_extrema_shfl_max 0.20% 0.30% 0.60% 0.80% 0.90% 1.20% 1.2% 
find_extrema_shfl_min 0.20% 0.30% 0.60% 0.80% 0.90% 1.20% 1.2% 
thresholdJudge 0.20% 0.20% 0.60% 0.90% 1.10% 1.50% 1.1% 
tridiagonal solver kernels 79.3% 77.7% 73.3% 68.9% 66.5% 58.5% 55.7% 
custom kernels 19.9% 21.6% 19.4% 30.7% 33.2% 41.4% 44.2% 

 

Figure 10. The Roofline performance results of the kernels executed on the RTX 3070 mobile GPU 
showing the performance positions of the main kernels of the implementation. Arrows indicate per-
formance change as signal length is increased from 4 k to 100 k samples. 
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In order to explore the effect of GPU hardware architecture on the execution perfor-
mance of our implementation, we measured and compared the execution times on three 
different GPUs (see Table 2 for details). Figure 11 shows the execution time values we 
obtained on the different GPUs (S = 100, I = 200). The effect of hardware evolution and the 
introduction of new architectural features is evident. The best results were obtained with 
an Ampere GPU, followed by Volta. The oldest architecture, Pascal (Titan Xp), produced 
the longest execution times.  

 
Figure 11. The execution time of the GPU algorithm on three different GPU architectures. The results 
demonstrate that each newer architecture generation (Pascal -> Volta -> Ampere) provides increased 
performance for the same program. 

4. Discussion 
Oscillations play a key role in understanding how the human brain is coordinated 

during task execution as oscillations are thought to be the means of communication and 
information transfer between neural assemblies. Delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), and beta (13–35 Hz) band oscillations have different but distinct roles in coordi-
nating actions, and their deviation from patterns found in healthy populations may indi-
cate neural degeneration (e.g., Mild Cognitive Decline, stroke, and Parkinson’s disease) 
and may be used as a means for early diagnostics.  

Detecting oscillation in natural, nonperiodic, and nonstationary signals is a chal-
lenge. Traditional methods, such as the Short-Time Fourier Transform or the Continuous 
Wavelet Transform, can only provide an approximate and crude result, as the exact local-
ization of time and frequency is not possible with these methods. Empirical Mode Decom-
position enables us to extract instantaneous frequency and phase information from the 
EEG signal and hence provides the means for following amplitude, frequency, and phase 
changes at a very high temporal resolution. The importance of this cannot be underesti-
mated as a new tool that helps uncover the electrophysiological processes of the brain. 
Phase synchronization information is the basis of computing brain functional connectivity 
networks that describe the cooperation of different cortical areas in either resting state or 
during task execution. Traditional methods only allow for the generation of static net-
works, which is a major disadvantage because the construction and study of dynamic 
connectivity networks are crucial for understanding how our brain works [40–43]. 
Sweeney-Reed [22] and independently our group showed that EMD is suitable for extract-
ing instantaneous phase information and consequently creating dynamic functional net-
works [44]. 
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Due to mode mixing and mode splitting, variants of EMD have been developed 
among which the most promising algorithm is the Improved CEEMDAN. Unfortunately, 
the computational complexity so far has prohibited the widespread use of this method in 
research. The GPU implementation that we presented in this paper achieved exceptional 
efficiency and showed over a 260× speedup compared to the MATLAB implementation. 
The exact speedup values vary with the algorithm’s input parameters (number of sifting 
iterations, number of realizations, and signal length) but for common settings vary be-
tween 65× and 265×. The accuracy of the implementation was validated against the 
MATLAB version [26]. The results show very high agreement (average Similarity Index > 
89.0%) with the MATLAB results. The small difference is due to the different random 
number generators and seeds used in the two implementations and differences in CPU 
and GPU floating point arithmetic.  

Based on the MATLAB and V100 execution times of two large datasets (N1 = 500 k 
and N2 = 1000 k samples, I = 100, S = 10, MATLAB: 2 h 42 min and 13 h 13 min and V100: 
4.7 s and 7.7 s), we extrapolated the execution times for the remaining 200 to 500 realiza-
tions and used these to calculate the predicted speedup values. Figure 12 shows the pre-
dicted speedup for S = 10 sifting iterations. For the different number of realizations, we 
obtained >2000× and >6000× speedups for the signal lengths N1 and N2, reaching a peak 
value of 8310× for length N2 and 500 realizations. Based on these predictions and the effect 
of architecture on performance, we can safely assume that the most recent GPU genera-
tions (Tesla A100, H100) with an increased amount of memory will outperform these re-
sults.  

 
Figure 12. Predicted speedup values for the V100 GPU as a function of signal length based on pre-
dicted MATLAB (CPU) execution times (S = 10). Increasing the signal length has a significant posi-
tive effect on the achievable speedup. 

There are known limitations of our implementation. Firstly, our algorithm performs 
the ICEEMDAN algorithm on a single channel. Multiple channels can be handled by re-
peated execution of the program for the channels either in a serial fashion using a single 
GPU or multiple GPUs. If multiple GPUs are available, each GPU may process a single or 
a set of channels in parallel, in the latter case, one channel after the other. Secondly, the 
IMFs of the noise signal realizations were generated in advance at the beginning of the 
program, which requires sufficient GPU memory to hold K × I × N samples. For large sam-
ple sizes and a large number of realizations, the GPU memory can easily become a bottle-
neck. By moving the noise IMF computation into the main signal IMF extraction loop, the 
required memory space can be reduced and longer signals or more realizations can be 
processed. In addition, by using the CUDA Unified Memory, the largest data structures 
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can be stored in the host’s memory and loaded to the GPU in an on-demand fashion. 
However, both of these methods are expected to reduce the achieved performance. 

When we compared the GPU execution time to the libeemd times, the difference is 
not as significant as for the MATLAB implementation. The highest speedup over the 
libeemd implementation is 6.3×. This is due to the fact that most GPU kernels are memory-
bound and the memory bandwidth severely limits the attainable performance. As seen in 
Figure 10, most kernels achieve up to or below 100 GFlop/s performance. Those that per-
form near 1 TFlop/s represent a small fraction of the full implementation. This indicates 
that (i) future systems with higher memory subsystems will perform better and (ii) more 
work is needed to improve the Arithmetic Intensity of the kernels (e.g., by using kernel 
fusion) to push the performance higher, toward the compute-bound region.  

5. Conclusions 
This paper describes a massively parallel GPU implementation of the Improved 

CEEMDAN algorithm. The ICEEMDAN method is a crucial tool for the precise time–fre-
quency analysis of nonstationary EEG signals. It can be used in various stages of EEG 
processing, from preprocessing through time–frequency to connectivity analysis, and to 
calculate instantaneous frequency, power, and phase information in a very short amount 
of time, enabling researchers to uncover the dynamic properties of brain processes under-
lying perception and task execution.  

Despite some known limitations, to our knowledge, this is the first GPU implemen-
tation of the Improved CEEMDAN algorithm. Here, we present evidence of the efficiency 
of our implementation reaching potentially a four-orders-of-magnitude increase in com-
puting speed over the most frequently used MATLAB implementation. The source code 
of the implementation is publicly available under the MIT License at the Github page 
https://github.com/EEGLab-Pannon/CEEMDAN-GPU (accessed on 20 October 2023) of 
our group. Our implementation allows users and researchers to perform the decomposi-
tion of nonstationary natural signals into oscillatory components almost instantly, open-
ing up new opportunities in research and in applications.  

Future work will include the adaptation of our algorithm for supercomputer execu-
tion where hundreds to thousands of GPU cards are available. These systems not only 
would allow many channels to be executed simultaneously but also enable the datasets of 
multiple subjects to be performed at the same time, reducing the execution time of oscil-
lation analysis of potentially large groups to seconds.  

Supplementary Materials: The following supporting information can be downloaded at 
https://www.mdpi.com/article/10.3390/s23208654/s1: Table S1: Device variables used in the GPU im-
plementation, their size and the kernels in which they are referenced; Table S2: Speedup values for 
different test configurations. 
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