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Abstract: Clinical rating scales for tremors have significant limitations due to low resolution, high
rater dependency, and lack of applicability in outpatient settings. Reliable, quantitative approaches
for assessing tremor severity are warranted, especially evaluating treatment effects, e.g., of deep
brain stimulation (DBS). We aimed to investigate how different accelerometry metrics can objectively
classify tremor amplitude of Essential Tremor (ET) and tremor in Parkinson’s Disease (PD). We
assessed 860 resting and postural tremor trials in 16 patients with ET and 25 patients with PD under
different DBS settings. Clinical ratings were compared to different metrics, based on either spectral
components in the tremorband or pure acceleration, derived from simultaneous triaxial accelerometry
captured at the index finger and wrist. Nonlinear regression was applied to a training dataset to
determine the relationship between accelerometry and clinical ratings, which was then evaluated
in a holdout dataset. All of the investigated accelerometry metrics could predict clinical tremor
ratings with a high concordance (>70%) and substantial interrater reliability (Cohen’s weighted
Kappa > 0.7) in out-of-sample data. Finger-worn accelerometry performed slightly better than wrist-
worn accelerometry. We conclude that triaxial accelerometry reliably quantifies resting and postural
tremor amplitude in ET and PD patients. A full release of our dataset and software allows for
implementation, development, training, and validation of novel methods.

Keywords: tremor; accelerometry; Parkinson’s Disease; essential tremor; wearables

1. Introduction

Tremor is the main symptom of Essential Tremor (ET) and is also present in most pa-
tients with Parkinson’s Disease (PD). Rating scales such as the Fahn–Tolosa–Marin Tremor
Rating Scale (FTM-TRS) [1], the Essential Tremor Rating Assessment Scale (TETRAS) [2],
and the MDS-UPDRS [3] are used for diagnostic purposes and to assess the treatment
effects of therapies like deep brain stimulation (DBS) in clinical settings as well as in the
context of clinical studies. An ordinal scale (0–4 points) is applied to assess tremor severity
in different tasks–resting, postural and kinetic tremor. While these scales are broadly used
and useful for assessing tremor, several limitations exist [4]. Firstly, ordinal rating scales
have a low resolution [5], so there are difficulties depicting small differences in tremor
severity. This can be particularly relevant in the context of complex tremor therapies such
as deep brain stimulation (DBS), where discrete changes in tremor amplitude achieved by
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optimizing stimulation parameters can be highly relevant for patients in their daily lives.
Additionally, following Weber’s law of psychophysics, the smallest discernible change in
tremor tends to depend on the initial tremor amplitude in clinical rating scales [5], and
there are relevant ceiling effects [4]. Furthermore, moderate interrater reliability [3,6–9],
differences due to rater experience [8] and within-subject reliability [10] limit the use of
clinical rating scales in patient care, especially in monitoring patients over a longer period
of time with multiple clinicians involved.

Accelerometry might be a feasible and reliable technique to accurately and objectively
measure tremor severity and overcome some limitations [11–14]. Accelerometry results can
be correlated with clinical ratings using rating scales based on a nonlinear relationship [4,5].
In a previous study comparing intraoperative clinical PD tremor ratings and accelerometry-
predicted ratings, a substantial agreement was found for resting and postural tremors
according to Cohen’s weighted Kappa [15].

Accelerometry has been applied in several clinical studies to assess the treatment
effects of medication [16], DBS [17] or for intraoperative evaluation of tremor severity
during thalamotomy surgery [18]. Recently, wearable accelerometers [12,19] and other
portable devices such as smartwatches [20] and smartphones [21,22] have been used to
detect and evaluate tremors with high precision [23]. Certain devices and solutions have
even gained regulatory approval to monitor tremor in PD patients continuously [20].

However, the applied methods vary among the published approaches analyzing
tremors, especially regarding preprocessing steps such as filtering or algorithms esti-
mating spectral density and regarding the different parameters depicting tremor sever-
ity [11,12,15,16,24]. Most approaches focus on spectral metrics such as peak or total power
of acceleration [12] or the area under the power spectral density curve [15], while others
take tremor frequency into account [11,12,18]. Further, scripts and pipelines are often
not publicly available or generally applicable due to differences in, e.g., measurement
characteristics [12,15]. Furthermore, in most studies proposing accelerometry-based algo-
rithms for tremor analysis, sample sizes were small, and algorithms were not validated in
out-of-sample data [12,25].

The aim of this study was to investigate how accelerometry measurements can best
quantify tremor amplitude of ET and Parkinsonian tremor. In a large dataset, we aimed
to compare different accelerometry parameters collected at the wrist and fingers concern-
ing their ability to predict clinical tremor severity in out-of-sample data. We aimed to
investigate accelerometry’s accuracy in classifying tremors and its comparability to the
accuracy of clinical rating scales. We curate and release our full dataset and methodology
for the explicit purpose that other groups can build on our solutions and use this dataset to
validate their own approaches externally.

2. Materials and Methods
2.1. Dataset

We conducted tremor analysis in 41 patients treated with DBS for ET (n = 16) or
PD (n = 25) at University Hospital Cologne (13 female/28 male), mean age 60.1 (±9.9)
years. All but one patient were examined without tremor suppressing or dopaminergic
medication. Patients were then investigated in the DBS OFF state, and upper limbs were
only further investigated when they had clinically significant baseline tremor (for PD
resting tremor ≥ 2/4 MDS-UPDRS Item 3.17, for ET postural or intention tremor ≥ 2/4
FTM-TRS Item 5 or 6) in the medication OFF and stimulation OFF state. Patients were then
repeatedly examined under different DBS parameter settings, varying contact selection
and stimulation amplitude as part of an ongoing clinical trial, resulting in up to 17 tremor
assessments per upper limb. After excluding missing data, the dataset included 860 trials
in 54 upper limbs (ET n = 27; PD n = 27) for both postural and resting tremor. We randomly
split this dataset into training data with data from n = 15 upper limbs each for ET and PD
(479 trials) and validation data (n = 12 upper limbs each, 381 trials). This analysis is part
of an ongoing trial registered with the German Clinical Trials Register (DRKS00026596).
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The trial was approved by the local ethical review board (vote: 21-1441) and conducted
under the Declaration of Helsinki and the guidelines for good clinical practice. Data were
collected at the Department of Neurology of the University Hospital Cologne. All patients
provided written informed consent prior to study participation.

2.2. Tremor Tasks

In each trial, we assessed resting tremor and postural tremor following the instructions
of MDS-UPDRS III Items 3.15 and 3.17 [3]. If necessary, the position of the hand or arm was
slightly modified to provoke the largest tremor amplitude possible. Patients were given
standardized video-based instructions for each trial. Each position was maintained for
20 s, with each trial’s start and end point indicated by an acoustic signal. Corresponding
timestamps were recorded using the PsychToolbox Version 3.0.19 [26,27] extension in
MATLAB.

2.3. Clinical Rating

Tremor was rated by a movement disorders clinician (C.v.d.L.) experienced in assessing
tremor according to tremor amplitude cutoffs provided by MDS-UPDRS Items 3.15–3.17 (0
(normal)—no tremor; 1 (slight)—tremor is present but tremor amplitude < 1 cm; 2 (mild)—
tremor amplitude 1–3 cm; 3 (moderate)—tremor amplitude 3–10 cm; 4 (severe)—tremor
amplitude > 10 cm) [3]. If the tremor amplitude fluctuated, the maximum amplitude seen
during the trial was rated as suggested by the MDS-UPDRS instructions. For each task,
only the 20 s trial duration was considered, and tremor occurring outside this period was
ignored. Additionally, 100 trials (n = 47 StimOFF and n = 53 randomly selected stimulation
settings) were rated from video recordings by a second experienced movement disorders
clinician (G.B.) for validation. Both raters were unaware of the accelerometry results and
the other rater’s assessment during clinical rating.

2.4. Accelerometry

All trials were simultaneously recorded using two different accelerometry devices
(Supplementary Figure S1). We attached a BrainProducts (BrainProducts GmbH, Gilching,
Germany) triaxial accelerometer to the proximal dorsum of the index finger (FingerACC;
Sampling rate 2500 Hz; ±2 g acceleration sensing range; <0.001 g resolution). Further-
more, patients wore a wristwatch accelerometer (GENEActiv© Original, ActivinsightsTM,
Kimbolton, UK) with previous applications for tremor evaluation in ET [12] and PD [28]
(WristACC; sampling rate 100 Hz; ±8 g acceleration sensing range; 0.004 g resolution).
Data from both devices were converted from their respective data formats to MATLAB-
compatible data using in-house scripts.

2.5. Preprocessing

Both FingerACC and WristACC data were segmented into trials according to the
timestamps provided by our task. The first 2 s of each trial were discarded to remove
any voluntary movement at the beginning of the task. While WristACC data from the
GENEActiv device were already provided in [g], FingerACC data from the BrainProducts
device were converted from [µV] to [g] according to the device specifications. We then
renamed the axes of both datasets to a common system regarding the center of the extended
hand, in which the X-axis pointed towards the thumb, the Y-axis pointed towards the
fingertips, and the Z-axis pointed upwards from the back of the hand. We applied a 6th-
order Butterworth bandpass filter from 1 Hz to 40 Hz, as described by Zach et al. [16], to
exclude slow signal shifts or fast oscillations unlikely to be associated with the tremors.

2.6. Spectral Metrics of Tremor

Accelerometry data filtered from 1 to 40 Hz were used for further spectral analyses.
For each trial, we calculated Welch’s power spectral density (PSD) estimate with a window
width of 1 s and a 50% window overlap for frequencies in steps of 0.5 Hz (MATLAB:
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pwelch()). We calculated two different parameters for tremor amplitude from the resulting
power spectrum.

Peak Power. First, as in other publications [12,16], we calculated the amplitude of
the largest peak (Peak Power, [g2/Hz]) within the power spectral density between 3 Hz
and 12 Hz as this covers the typical frequency range of resting and postural tremor in ET
(4–12 Hz) [29] and PD (3–7 Hz) [11,30]. If there was no peak, the peak amplitude was set to
zero. If there was more than one peak, the peak with the larger amplitude was chosen.

AUC Power. Second, as described in Smid et al. [15], we calculated the area under the
power spectral density curve (AUC Power, [g2/Hz2]) between 3 Hz and 12 Hz, covering
the frequency range of both ET and PD tremor.

2.7. Acceleration Metrics of Tremor

Besides the spectral analyses, we performed analyses of the acceleration data. Since
we were only interested in tremor-related acceleration, data for these analyses were filtered
using a 6th-order Butterworth filter with a bandpass from 3 to 12 Hz.

Mean Envelope. We calculated the Mean Envelope by identifying local maxima
and minima within the filtered acceleration data and then using a spline interpolation to
calculate the envelope (MATLAB: envelope(‘peak’)). The total envelope was calculated by
summating all envelope values and then averaged by dividing by the number of samples
(duration × sampling rate). Consecutively, the Mean Envelope in [g] is independent of
both sampling rate and trial duration.

Mean Acceleration. As the simplest metric, Mean Acceleration was calculated by
summating all absolute acceleration values within the filtered acceleration data. The result-
ing sum was then divided by the number of samples to obtain the Mean Acceleration in [g],
which again is independent of the accelerometry device’s trial duration and sampling rate.

2.8. Relationship to Clinical Ratings

It is well known that the relationship between tremor amplitude and clinical rating
scales of tremor amplitude is nonlinear [5]. Two major relationships have been previously
proposed. The first is a logarithmic relationship according to the Weber–Fechner law [5,31],
illustrated in Equation (1):

TR = a × ln(T) + b (1)

wherein T is the tremor amplitude, TR is the amplitude rating on a clinical scale, a is the
slope, and b is the intercept of the linear relationship between the natural logarithm of T and
TR. Alternatively, a relationship according to Steven’s power law has been proposed [5],
illustrated in Equation (2):

TR = a × Tc + b (2)

wherein c is the exponent of a power relationship between T and TR. Note that both
equations (contrary to their original formulation) also contain an intercept term b, as Elble
et al. proposed [5].

We performed separate nonlinear regression analyses for both relationships, and each
of the different tremor analysis approaches explained above using the fitnlm function in
MATLAB. Nonlinear regression analysis was performed with all data in the training dataset
to determine the optimal model parameters for a, b, and c. The resulting optimal models
were then applied to our validation dataset to predict the clinical tremor rating.

2.9. Statistical Analysis

To assess the accuracy of the respective models in predicting the clinical tremor rating
from accelerometry measurements, we provide the root mean standard error (RMSE). While
the predictions generated by our nonlinear models were continuous, we also generated
predicted 0–4-point ratings by rounding model predictions to the next integer. These were
then compared to the clinical ratings via weighted Cohen’s Kappa and the percentage
Concordance of predicted and clinical ratings. We also report how often predicted ratings
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differed from clinical ratings by 1 point and how often they differed by > 1 point. For an
overview of the study methodology, please see Figure 1.
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2.10. Post hoc Comparison of ET and PD

In a post hoc analysis, we additionally investigated whether model accuracy was the
same for both diseases by applying our models, which were trained on all subjects of the
training dataset, separately on the subjects with ET or PD in our validation dataset. We also
investigated whether predictions improved when training the models only on the subjects
with the respective disease in our training dataset.

2.11. Technical Realization and Data Availability

All analyses were performed with MATLAB (R2022a, The MathWorks, Natick, MA,
USA). The Open Science Framework (OSF) provides the full analysis pipeline. Additionally,
we provide annotated scripts that can be used to calculate tremor metrics in new data,
and all accelerometry data and clinical ratings are provided in an annotated dataset so
that they may be used for validation purposes in other current or future approaches. All
scripts and data are available under the creative commons license CC BY-SA 4.0 and can
be found at: https://dx.doi.org/10.17605/OSF.IO/MP5HA (accessed on 17 September
2023). We include .csv files of all the data, MATLAB scripts to reproduce our analyses, and
a tremor calculator script that allows us to calculate all the above-mentioned metrics and
the respective model tremor scores for new data provided by the user.

https://dx.doi.org/10.17605/OSF.IO/MP5HA
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3. Results
3.1. Training Data

Our training dataset consisted of n = 478 trials of resting tremor and postural tremor
(n = 477 for WristACC). Tremor parameters were calculated, and nonlinear models were
fitted for resting and postural tremor, WristACC and FingerACC, and log and power
relationships, respectively.

3.2. Validation Data

Our validation dataset consisted of n = 380 trials of resting and postural tremor
(n = 379 for FingerACC). Fitted models from our training dataset were applied to our
validation dataset to predict tremor scores. Root mean squared errors (RMSE) when
applying the trained models to our validation dataset typically lay around 0.5 points.
Model parameters and accuracy of predicted scores versus clinical ratings are summarized
in Table 1 for logarithmic relationships (Equation (1)) and Table 2 for Steven’s power
relationships (Equation (2)).

Table 1. Model parameters and prediction accuracies for logarithmic relationships models. The best
tremor metric for each tremor type and accelerometry location is highlighted in grey.
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Overall, there was a high concordance and substantial interrater reliability between

accelerometry-predicted and clinical ratings (see Tables 1 and 2 and Figure 2). Modeling
based on Steven’s power relationship provided slightly more accurate results than the
models based on logarithmic relationships. The acceleration-based metrics performed
slightly better than the frequency-based metrics, with Mean Acceleration demonstrating
the highest weighted Kappa values for resting tremor (FingerACC κw = 0.795, WristACC
κw = 0.771) and postural tremor and FingerACC (κw = 0.774). For postural tremor and
WristACC, the Mean Envelope metric performed best with κw = 0.714 (only results from
Steven’s power relationships are reported here, for logarithmic relationships, see Table 1
and Supplementary Table S1).
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Table 2. Model parameters and prediction accuracies for Steven’s power relationships models. The
best tremor metric for each tremor type and accelerometry location is highlighted in grey.
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Figure 2. Weighted Kappa values for logarithmic relationships (A) and Steven’s power relationships
(B) for both resting and postural tremor and finger and wrist accelerometry. Mean Acceleration was
the tremor metric with the highest weighted kappa values for every setting except for postural tremor
assessed by WristACC, assuming a Steven’s power relationship.

Weighted Kappa and concordance values were slightly but consistently lower for Wris-
tACC than FingerACC. In case predicted scores and clinical ratings differed, they typically
deviated by 1 point, with more than 1 point deviations occurring in less than 1% of the
conditions for most metrics (Tables 1 and 2, Figures 3 and 4). Steven’s power relationship
modeling performed consistently better than logarithmic relationship modeling for resting
tremor data, while differences for postural tremor were less consistent. Logarithmic regres-
sion particularly struggled with correctly predicting higher tremor scores (Supplementary
Figures S2 and S3).
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Figure 3. Comparison of accelerometry metrics and clinical scores for resting tremor. Data on finger
and wrist accelerometry are shown in the two upper and lower rows, respectively. Boxplots and
black data points depict the validation data and Steven’s power model trained on the training data
(in red). Square plots depict deviations between the predicted tremor score and clinical tremor rating
of more than 1 point in red (2 points deviation in light red, 3 and 4 points deviation in dark red).
High agreement (no deviation) is highlighted in dark green, deviation of only 1 point in light green.

3.3. Second Rater Data

Additionally, n = 100 trials of each resting and postural tremor were rated by a second
rater. Weighted Kappa between raters was κw = 0.869 for resting tremor and κw = 0.719 for
postural tremor. Accelerometry predictions of the second rater’s ratings performed slightly
worse than for our validation data, but once again, acceleration-based metrics slightly
outperformed frequency-based metrics. Mean Acceleration performed best for Resting
Tremor and FingerACC (κw = 0.738) and Postural Tremor and WristACC (κw = 0.704).
Mean Envelope performed best for Resting Tremor and WristACC (κw = 0.692) and Postu-
ral Tremor and FingerACC (κw = 0.725). Full results for the second rater can be found in
Supplementary Tables S1 and S2.
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Figure 4. Comparison of accelerometry metrics and clinical scores for postural tremor. Data on finger
and wrist accelerometry are shown in the two upper and lower rows, respectively. Boxplots depict
the validation data and Steven’s power model trained on the training data (in red). Square plots and
black data points depict deviations between the predicted tremor score and clinical tremor rating of
more than 1 point in red (2 points deviation in light red, 3 and 4 points deviation in dark red). High
agreement (no deviation) is highlighted in dark green, deviation of only 1 point in light green.

3.4. Comparison between ET and PD

To compare predictions of ET and PD tremor, we first used our models, which were
trained on the full training dataset to predict only subjects with ET or PD in our valida-
tion dataset (Figure 5). Notably, weighted Kappa values were lower when predicting ET,
especially for resting tremor predictions. Concordance between predictions and rater,
however, was similar or even higher for ET. This discrepancy can be mainly attributed
to very unbalanced data for the ET group, especially for resting tremor, where no scores
higher than two were observed in the validation group of ET subjects. Secondly, we trained
our models once more, this time only taking into account subjects with ET or PD from the
training dataset to predict the data from the respective subjects with the same disorder in the
validation dataset. As highlighted in Figure 5, this only impacted prediction results to a very
minor degree, demonstrating that pooling accelerometry data from ET and PD subjects are
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feasible. Importantly, Mean Acceleration also proved to be the best metric in these post
hoc analyses.
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Figure 5. Comparison of predictions for all validation data (lines), only data from PD subjects (circles),
and only data from ET subjects (triangles). Weighted Kappa coefficients are shown in (A,B), while
concordance between predictions and rater is shown in C and D. On the left (A,C), results are shown
for models trained on the full training dataset. On the right (B,D), results are shown when only
subjects with the same disease were used for training the models.

4. Discussion

This study highlights the value of utilizing accelerometry to assess tremor amplitude
for both resting and postural tremors in PD and ET employing finger- and wrist-mounted
devices. We demonstrate that different tremor metrics allow a reliable prediction of tremor
severity in out-of-sample data. Simple metrics based on acceleration within the band of
possible tremor frequencies (3 to 12 Hz) seem to provide optimal results for most scenarios.
The mean error of predicting tremor ratings was far below the rating scale resolution, and
predicted tremor ratings based on the proposed models only very rarely deviated by more
than one point from clinical ratings. Interrater reliability between accelerometry-based
tremor assessments and clinical ratings was within the range that is usually observed
between clinical raters, both in this trial and in other studies [6,8]. For resting tremor,
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wrist-worn accelerometry provides comparable results to finger-mounted accelerometry.
For postural tremor, however, measuring at more distal locations seems slightly more
accurate than on the wrist.

While accelerometry allows for a reliable approximation of clinical ratings of tremor
amplitude, it is not hampered by the many limitations of clinical ratings and clinical rating
scales. As in our study, clinical ratings are often employed as a fictitious “gold standard”
against which accelerometry is validated. For such validation purposes, reducing gradual
tremor measurements to arbitrarily defined 5-point ordinal scales is necessary. When
using accelerometry in clinical or scientific applications, however, it is, of course, much
more meaningful to use gradual metrics of tremor, which allow an accurate assessment of
tremor severity. Furthermore, accelerometry has the advantage of being rater-independent,
technically reliable, and usually free of technical artifacts. Additionally, it can be used
for continuous monitoring with minimum interference with daily living, especially when
worn on the wrist. We thus see many potential uses of accelerometry. First of all, we think
that accelerometry should be used in most, if not all, scientific research of tremor since it
provides objective, fine-grained, and gradual outcomes, which are much more suitable
for statistical analyses than nominal or ordinal scales. Second, we think that including
such metrics in the clinical workflow is meaningful, especially when different clinicians are
involved in a tremor patient’s treatment over the course of a disease, to address the problem
of interrater reliability of clinical scales. Third, task-based accelerometry for tremor may be
helpful in telemedicine settings and for at-home monitoring of tremor symptoms when no
experienced rater is present. Lastly, we see the special importance of accelerometry in DBS
care since DBS allows subtle modulation of tremor severity not detectable by conventional
clinical scales.

Several previous studies investigated accelerometry to assess tremors, employing
various approaches and metrics. Unfortunately, many of these trials were limited to small
datasets [12,15,16,32,33], and only very few studies investigated their approaches in an
independent validation dataset [20]. The dataset we provide with this study provides
accelerometric data with various tremor intensities and includes expert clinical rating,
which offers the possibility to re-evaluate, validate, and possibly improve already estab-
lished approaches. Furthermore, we propose standardizing measurement units and axes to
facilitate the generalization of approaches to different devices and recordings.

Our study has several limitations. First, the model has been established based on
ratings from one rater. Still, we demonstrated substantial interrater reliability when as-
sessing a subset of our data by a second rater. Future investigations may clarify whether
a more heterogeneous training dataset, assessed by a larger number of raters, can lead
to superior prediction models. Second, our dataset was not balanced regarding tremor
severity, and, as in other studies, there were fewer trials with severe tremor than with no
or less severe tremor [15,20]. This might have influenced the training of the logarithmic
relationship models, which often misclassified severe, four-point-rating tremors. While
severe tremor is less common, it needs to be discussed whether training of approaches
would be more meaningful in more balanced datasets. Third, we only investigated a few
simple metrics to analyze our accelerometry data. While these metrics performed well
compared to previous studies [12,15,20,33], more complex metrics or models combining
multiple parameters might further improve results. We welcome anyone to investigate
such approaches within our released dataset. We deliberately chose to limit our devices to
triaxial accelerometry since accelerometry is widely available and also present in a variety
of consumer electronics. We utilized accelerometry devices with previous applications for
tremor evaluation. However, other accelerometry devices might be even more accurate [34],
and other technical solutions like, e.g., gyroscopes, might be equally or possibly even
better suited to classify tremor. Lastly, it is important to highlight that this study used
task-based tremor assessments in a clinical setting and thus did not investigate tremor
severity in real life and during activities of daily living. While others have used such
approaches—and even gained some regulatory approval—to continuously assess tremor in



Sensors 2023, 23, 8621 12 of 14

ambulatory settings [20], we would argue that such implementations should be rigorously
scrutinized [35]. Real-life usage of wearable accelerometry is different from task-based
usage so that real-life usage requires additional validation, e.g., by detailed movement
diaries or, even better, objective in-person or video monitoring.

5. Conclusions

With a large-scale dataset, we demonstrated that automatic assessments of upper
limb tremor severity with accelerometry at the finger or wrist are feasible for both ET
and PD tremors—and that even simple computational models offer reliable and precise
approximations of established tremor scales. Accelerometry offers multiple advantages
over clinical rating scales, but the results need to be validated using out-of-sample data.
Furthermore, the detailed release of accelerometry data, model parameters, algorithms, and
software—as undertaken in this study—is warranted to allow for external cross-validation
and improvement of existing methods. We hope our analyses and data will help to further
promote the application of accelerometry in the research and clinical care of tremor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23208621/s1, Figure S1: Schematic overview of the employed
devices, the recording locations, and the coordinate system used in this study. Figure S2: Comparison
of accelerometry metrics and clinical scores for resting tremor for logarithmic relationship; Figure
S3: Comparison of accelerometry metrics and clinical scores for postural tremor for logarithmic
relationship; Table S1: Model parameters and prediction accuracies for logarithmic relationship
models, rated by a second rater; Table S2: Model parameters and prediction accuracies for Steven’s
power relationships models, rated by a second rater.

Author Contributions: Conceptualization, C.v.d.L., J.N.S., M.T.B., J.N.P.-S. and T.A.D.; Data curation,
C.v.d.L. and T.A.D.; Formal analysis, C.v.d.L. and T.A.D.; Funding acquisition, J.N.P.-S.; Investigation,
C.v.d.L., T.B., H.J., J.C.B. and J.N.P.-S.; Methodology, J.N.P.-S. and T.A.D.; Project administration,
C.v.d.L.; Resources, V.V.-V., G.R.F., J.N.P.-S. and M.T.B.; Software, J.N.S. and T.A.D.; Supervision,
J.N.P.-S. and T.A.D.; Validation, G.A.B.; Visualization, T.A.D.; Writing, original draft, C.v.d.L. and
T.A.D.; Writing, review and editing, T.B., G.A.B., J.N.S., H.J., J.C.B., V.V.-V., G.R.F., M.T.B. and J.N.P.-S.
All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by the German Research Foundation (Deutsche Forschungsgemein-
schaft, DFG, Project Number 502436811). T.B. was supported by the Koeln Fortune Program/Faculty
of Medicine, University of Cologne. J.N.P-S. and T.A.D. were supported by the Cologne Clinician Sci-
entist Program (CCSP)/Faculty of Medicine/University of Cologne, funded by the German Research
Foundation (DFG, FI 773/15-1).

Institutional Review Board Statement: This analysis is part of an ongoing trial registered with the
German Clinical Trials Register (DRKS00026596). The study was conducted in accordance with the
Declaration of Helsinki and approved by the Ethics Committee of the University of Cologne (vote:
21-1441, date of approval: 20 December 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: All scripts and data are available under the creative commons license
CC BY-SA 4.0 and can be found at https://dx.doi.org/10.17605/OSF.IO/MP5HA (accessed on 17
September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fahn, S.; Tolosa, E.; Marin, C. Clinical Rating Scale for Tremor. In Parkinson’s Disease and Movement Disorders; Williams and

Wilkins: Baltimore, MD, USA, 1993; pp. 271–280.
2. Elble, R.J. The Essential Tremor Rating Assessment Scale. J. Neurol. 2016, 1, 34–38.
3. Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel,

R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale
Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/s23208621/s1
https://www.mdpi.com/article/10.3390/s23208621/s1
https://dx.doi.org/10.17605/OSF.IO/MP5HA
https://doi.org/10.1002/mds.22340
https://www.ncbi.nlm.nih.gov/pubmed/19025984


Sensors 2023, 23, 8621 13 of 14

4. Elble, R.J.; Ondo, W. Tremor Rating Scales and Laboratory Tools for Assessing Tremor. J. Neurol. Sci. 2022, 435, 120202. [CrossRef]
[PubMed]

5. Elble, R.J.; Pullman, S.L.; Matsumoto, J.Y.; Raethjen, J.; Deuschl, G.; Tintner, R. Tremor Amplitude Is Logarithmically Related to 4-
and 5-Point Tremor Rating Scales. Brain 2006, 129, 2660–2666. [CrossRef]

6. Stacy, M.A.; Elble, R.J.; Ondo, W.G.; Wu, S.-C.; Hulihan, J.; Group, T.S. Assessment of interrater and intrarater reliability of the
Fahn–Tolosa–Marin Tremor Rating Scale in essential tremor. Mov. Disord. 2007, 22, 833–838. [CrossRef]

7. Richards, M.; Marder, K.; Cote, L.; Mayeux, R. Interrater Reliability of the Unified Parkinson’s Disease Rating Scale Motor
Examination. Mov. Disord. 1994, 9, 89–91. [CrossRef]

8. Post, B.; Merkus, M.P.; de Bie, R.M.A.; de Haan, R.J.; Speelman, J.D. Unified Parkinson’s Disease Rating Scale Motor Examination:
Are Ratings of Nurses, Residents in Neurology, and Movement Disorders Specialists Interchangeable? Mov. Disord. 2005, 20,
1577–1584. [CrossRef]

9. Bain, P.G.; Findley, L.J.; Atchison, P.; Behari, M.; Vidailhet, M.; Gresty, M.; Rothwell, J.C.; Thompson, P.D.; Marsden, C.D. Assessing
Tremor Severity. J. Neurol. Neurosurg. Psychiatry 1993, 56, 868–873. [CrossRef]

10. Evers, L.J.W.; Krijthe, J.H.; Meinders, M.J.; Bloem, B.R.; Heskes, T.M. Measuring Parkinson’s Disease over Time: The Real-World
within-Subject Reliability of the MDS-UPDRS. Mov. Disord. 2019, 34, 1480–1487. [CrossRef]

11. Grimaldi, G.; Manto, M. Neurological Tremor: Sensors, Signal Processing and Emerging Applications. Sensors 2010, 10, 1399–1422.
[CrossRef]

12. Gauthier-Lafreniere, E.; Aljassar, M.; Rymar, V.V.; Milton, J.; Sadikot, A.F. A Standardized Accelerometry Method for Characteriz-
ing Tremor: Application and Validation in an Ageing Population with Postural and Action Tremor. Front. Neuroinform. 2022, 16,
878279. [CrossRef]

13. Elble, R.J.; McNames, J. Using Portable Transducers to Measure Tremor Severity. Tremor Hyperkinetic Mov. 2016, 6, 375. [CrossRef]
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