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Abstract: Distributed acoustic sensing (DAS) has emerged as a transformational technology for seis-
mic data acquisition. However, noise remains a major impediment, necessitating advanced denoising
techniques. This study pioneers the application of diffusion models, a type of generative model,
for DAS vertical seismic profile (VSP) data denoising. The diffusion network is trained on a new
generated synthetic dataset that accommodates variations in the acquisition parameters. The trained
model is applied to suppress noise in synthetic and field DAS-VSP data. The results demonstrate the
model’s effectiveness in removing various noise types with minimal signal leakage, outperforming
conventional methods. This research signifies diffusion models’ potential for DAS processing.

Keywords: distributed acoustic sensing (DAS); vertical seismic profiling (VSP); denoising; diffusion
model

1. Introduction

Distributed acoustic sensing (DAS) has seen widespread adoption as an emerging
technology for seismic signal recording, presenting notable advantages over conventional
geophones [1]. Factors such as reduced costs, a wider detection range, and enhanced spatial
resolution render DAS an attractive choice in modern seismic studies [2,3]. Despite these
benefits, the implementation of DAS, and in particular, vertical seismic profile data (VSP),
introduces its own set of unique challenges that require careful navigation.

One of the predominant challenges encountered in DAS-VSP data processing is the
presence of noise from a diverse range of sources. Environmental noise, horizontal and
fading noise, poor coupling, and flow interference constitute significant impediments that
can severely impact the accuracy and efficacy of subsequent imaging, interpretation, and
analysis of seismic data [1,4]. The mitigation of these noise types and the improvement
of the signal-to-noise ratio (SNR) have thus become critical aspects of DAS-VSP data pro-
cessing. Here, we focus on the elimination of “zigzag” noise [5] typical for DAS data
and mainly attributed to coupling (Figure 1). Consequently, the development and appli-
cation of efficient denoising methods represents a crucial research area in contemporary
seismic studies.

Various denoising methods have been deployed for traditional seismic data processing.
Techniques such as wavelet transform [6], band-pass filtering [7], and f-x deconvolution [8]
have demonstrated considerable potential in enhancing the SNR in the presence of random
noise. For high-amplitude erratic noises such as swell noises, robust singular spectrum
analysis [9] and its adaptive version [10] recover signals from the low-rank components
of the transformed data while removing erratic noise components via soft-thresholding.
Horizontal noises in DAS data are typically addressed by stacking all or a significant portion
of the DAS record and subtracting this estimate from each trace in the DAS record [5,11,12].
However, the efficacy of these conventional methods varies considerably with different
types of noise. In particular, they have shown limited success in dealing with noise types
such as fading noise and poor coupling [4,5,13]. Poor coupling in DAS data is known to
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lead to zigzag noise in correlated data [5]; we focus our attention on eliminating this type
of noise (Figure 1).
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Figure 1. Denoising seismic data task. Noisy seismic (input) is mapped to clean seismic shot
gather (label).

The limitations of these conventional methods necessitate the exploration of alterna-
tive, more advanced strategies. The rise of deep learning has presented new opportunities
in this context, with convolutional neural networks (CNNs) showing remarkable potential
in seismic denoising applications [14,15]. CNN-based denoising methods leverage the
power of machine learning, utilizing complex architectures and training algorithms to
tackle the intricacies of seismic noise. The convolutional neural network (CNN) has been
explored for seismic data denoising [14,16]. More recent work [17] in combining physics
surrogate constraint with a CNN type of architect has demonstrated its effectiveness in
suppression of severe coherent noises such as ground roll. The CNN-based denoising
methods have shown the power to deal with complex noise in DAS data [18,19].

However, CNN-based methods are not without their limitations. Most ML-based
methods rely on supervised learning algorithms which means ground truth is needed for
training (Figure 1). It is hard to simulate the specific noise types in DAS-VSP data. One
way to obtain noise data is extracting it from field data prior to first signal arrivals. But
it is inevitable to introduce seismic signals with noise extraction if the noise is not easily
separated from the signal in space and time. Moreover, when denoised field data derived
from conventional methods serve as training datasets, the CNN models may inherit the
limitations of these methods, making it difficult for the model to exceed the performance of
the techniques used to create the training data.

Given these constraints, researchers have begun exploring alternative deep learning
strategies, particularly generative models such as diffusion models [20]. Diffusion models
present several advantages over other generative models, like generative adversarial net-
works (GANs). They are simpler to train and do not suffer from issues like mode collapse or
the generation of low-quality outputs, which are common in GANs [21,22]. Durall et al. [23]
demonstrated the capability of diffusion models for seismic processing from demultiple to
interpolation. However, despite their potential, diffusion models remain underexplored in
the context of DAS-VSP processing.

This study introduces the use of diffusion models for DAS-VSP noise suppression,
presenting a pioneering approach in this domain. First, we generate a volume of synthetic
DAS-VSP training data using forward modeling. We manipulate various parameters in
this process, such as source location and the main frequency of the wavelet, creating a rich,
diverse dataset for training the diffusion model.

Subsequently, we apply the trained diffusion model to denoise specific types of noise
present in DAS-VSP data. The experimental results from both the synthetic and field
experiments show that our proposed workflow effectively suppresses various types of
noise with minimal impact on the effective DAS signals. Furthermore, the diffusion model
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exhibits a greater tolerance to the variety in noise types, demonstrating its robustness
and versatility.

This study positions diffusion models as a promising architecture for future research in
DAS-VSP noise suppression. By overcoming the limitations of conventional methods and
the restrictions of existing CNN-based techniques, the use of diffusion models represents a
significant step forward in seismic data processing. As we continue to refine this method
and expand its applications, we expect to see a substantial improvement in the quality of
DAS-VSP data, contributing significantly to the broader field of seismic studies.

2. Methods

This study proposes a denoising workflow for DAS-VSP data leveraging the power
of diffusion models [20], more specifically, the denoising diffusion probabilistic models
(DDPMs) [24]. Diffusion models use a Markov chain, which progressively transmutes one
distribution into another, an idea employed in non-equilibrium statistical physics [25] and
sequential Monte Carlo [26].

In this context, a DDPM is a parameterized Markov chain, trained through variational
inference, to generate samples which, after a finite time, match the data. The transitions
of this chain are designed to reverse a diffusion process—a Markov chain adding noise to
the data in small increments until the original signal is completely masked. The process
of transitioning to conditional Gaussians when the diffusion consists of small amounts of
Gaussian noise allows for a notably straightforward neural network parameterization.

The process is illustrated in Figure 2 and can be divided into two parts: the forward
process and the reverse process. We further extend this by including a section on the
conditional diffusion models.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. Workflow of proposed diffusion model for DAS-VSP data denoising. The forward process 
is untrainable (adding noise only), and the reverse process contains learnable parameters. 

2.1. Forward Process 
In the forward process, devoid of learnable parameters, the concluding distribution 

morphs into an isotropic-independent Gaussian distribution as time increases. It stipu-
lates the real data distribution, 𝑥 ~𝑞(𝑥 ), and introduces minor Gaussian noise cumula-
tively over T steps. This process results in a sequence of samples 𝑥 , 𝑥 , … , 𝑥 , each per-
turbed with additional noise. The noise’s mean and variance are governed by a factor, 𝛽, 
within [0, 1], and follows an ascending sequence, 𝛽 𝛽 ⋯ 𝛽 , indicating an incre-
ment in the noise added over time. The forward process 𝑞(𝑥 |𝑥 ) is defined by: 𝑞(𝑥 |𝑥 ) = 𝑁(𝑥 ; 1 − 𝛽 𝑥 , 𝛽 𝐼), (1)

where 𝑁 denotes normal distribution, 𝐼 represents the unit matrix. Following the Mar-
kov chain principle, the joint probability distribution of 𝑥 :  given 𝑥  is: 𝑞(𝑥 : |𝑥 ) =  ∏ 𝑞(𝑥 |𝑥 ). (2)

2.2. Reverse Process 
The reverse process of the diffusion model is essentially the denoising process. In this 

process, we aim to recover the original distribution of 𝑥  from the standard Gaussian dis-
tribution𝑥 ~𝑁(0, 𝐼). If 𝑞(𝑥 |𝑥 ) can be gradually obtained, it would still be a Gaussian 
distribution, assuming 𝑞(𝑥 |𝑥 )  follows a Gaussian distribution and 𝛽   is small 
enough [27]. Every step of the reverse process 𝑝 (𝑥 |𝑥 ) can be defined by: 𝑝 (𝑥 |𝑥 ) = 𝑁(𝑥 ; 𝜇 (𝑥 , 𝑡), Σ (𝑥 , 𝑡)), (3)

where 𝜃 represents the parameters learned by the neural network. The reverse process is 
defined by: 

Figure 2. Workflow of proposed diffusion model for DAS-VSP data denoising. The forward process
is untrainable (adding noise only), and the reverse process contains learnable parameters.



Sensors 2023, 23, 8619 4 of 15

2.1. Forward Process

In the forward process, devoid of learnable parameters, the concluding distribution
morphs into an isotropic-independent Gaussian distribution as time increases. It stipulates
the real data distribution, x0 ∼ q(x0), and introduces minor Gaussian noise cumulatively
over T steps. This process results in a sequence of samples x1, x2, . . . , xT , each perturbed
with additional noise. The noise’s mean and variance are governed by a factor, β, within [0,
1], and follows an ascending sequence, β1 < β2 < . . . < βT , indicating an increment in the
noise added over time. The forward process q(xt|xt−1) is defined by:

q(xt|xt−1) = N
(

xt;
√

1− βtxt−1, βt I
)

, (1)

where N denotes normal distribution, I represents the unit matrix. Following the Markov
chain principle, the joint probability distribution of x1:T given x0 is:

q(x1:T |x0) = ∏T
t=1 q(xt|xt−1). (2)

2.2. Reverse Process

The reverse process of the diffusion model is essentially the denoising process. In
this process, we aim to recover the original distribution of x0 from the standard Gaussian
distribution xT ∼ N(0, I). If q(xt−1|xt) can be gradually obtained, it would still be a
Gaussian distribution, assuming q(xt|xt−1) follows a Gaussian distribution and βt is small
enough [27]. Every step of the reverse process pθ(xt−1|xt) can be defined by:

pθ(xt−1|xt) = N(xt−1; µθ(xt, t), Σθ(xt, t)), (3)

where θ represents the parameters learned by the neural network. The reverse process is
defined by:

pθ(x0:T) = p(xT)∏T
t=1 pθ(xt−1|xt). (4)

The neural network used in the reverse process to simulate the distribution pθ(xt−1|xt)
is the U-Net [28]—a classic choice for image processing without changing the image
shape that combines convolutional layers of a standard autoencoder architecture with skip
connections to regularize the outputs. The U-Net is enhanced by adding Resblocks [29]
introducing the differentiation capability directly into the network—thus allowing the focus
on noise and attention layers [30] spreading the receptive field of the network. Adding
Resblocks and attention mechanisms to the U-Net leads to improved performance by
allowing the training of deeper models, improving feature learning, and enhancing focus
on the most relevant parts of the input [23,24,28].

2.3. Conditional Diffusion Models

As a significant extension of the DDPM, conditional diffusion models [31,32] have
been introduced to guide the diffusion process in a specific way, informed by the certain
conditioning variable, y. The forward process now depends on these variables and is
given by:

q(xt|xt−1, y) = N
(

xt;
√

1− βtxt−1, βt I
)

. (5)

Similarly, the reverse process now also takes these conditioning variables into account:

pθ(xt−1|xt, y) = N(xt−1; µθ(xt, y, t), Σθ(xt, y, t)). (6)

2.4. Training and Loss Function

Training the diffusion models and obtaining the corresponding parameter θ is per-
formed by optimizing the negative log-likelihood:

L = Eq(x0)[−logpθ(x0)]. (7)
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After applying the variational lower bound (VLB) [33,34] and the reparameterization
trick [34], the loss function simplifies to:

Lt = Et,x0, θ

[∥∥∥ε− εθ

(√
αtx0 +

√
1− αtε, t

)∥∥∥2
]

, (8)

where εθ derives from the network, ε represents the Gaussian noise, αt = 1− βt, and
αt = ∏t

i=1 αi.
Training the conditional diffusion model focuses on the condition variables y, with the

loss function now being:

Lt = Et,x0,y, θ

[∥∥∥ε− εθ

(√
αtx0 +

√
1− αtε, t, y

)∥∥∥2
]

(9)

This approach enables the model to generate samples that closely match a specific
data distribution dictated by the conditioning variables. The complexity added by the
conditioning variables necessitates more nuanced training, making the process challenging
yet yielding more precise results. The hyperparameters of the model were largely adopted
from [23,24] and empirically fine-tuned for best performance. We observed that larger
patch sizes substantially improved performance, yet to balance the GPU loads and dataset
size we stopped at 512 × 512 patches. The final hyperparameters are listed in Table 1. The
model was trained using 3 Nvidia A100 GPUs.

Table 1. Detailed hyperparameters in the diffusion model.

Hyperparameters Value

Patch size 512 × 512

Kernel size 3 × 3

Batch size 64

Epoch 500,000

Initial learning rate 2× 10−5

2.5. Synthetic Training Data Generation

Based on the analysis of the signal dominant frequent, velocity, wavelet, and noise type
of the DAS-VSP data, we constructed synthetic data for training and testing the proposed
conditional diffusion model. The synthetic dataset consisted of two parts, the clean set
and the noisy set. For simplicity of the synthetic forward modeling, we considered the
modeling with acoustic wave propagation. The acoustic solver simulated the pressure
wavefield which for our manuscript was considered as a P-wave potential. The first vertical
derivative of the pressure brought us to data equivalent to the displacement and the second
derivative yielded the strain proxy. Given that the simulations were performed using a
6.25 m grid we applied a box filter with four grid points to obtain an analog of 25 m GL
for synthetic data which was close to one of our target real datasets. While elastic solvers
routinely used in DAS data simulation and inversion, e.g., [35–38] lead to higher fidelity in
DAS data amplitudes, the acoustic solver allows for computationally efficient generation of
large datasets necessary for training the network.

The velocity model is based on the SEAM Arid model [39]. The SEAM Arid model
is built from the Barrett model designed to represent unconventional reservoirs in Texas
and near-surface model generated to represent land data challenges typically faced in
exploration in the Middle East; it has been used extensively for studies on deep learning-
based inversion of seismic data [40], acquisition design for VSP [41] and surface seismic [42],
and evaluation of structural uncertainty in challenging desert environments [43]. We
created 135 shot gathers in the size of 2000 (samples) by 1098 (traces) with different offsets
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ranging from 0 to 3.5 km by moving the shot location from left to right in the model in
Figure 3 with increments of 50 m.
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leading to superior resolution.

The specific parameters of forward modeling are shown in Table 2. The Klauder
wavelet represents a realistic seismic vibrator sweep autocorrelation function [39]. Two
widely used in seismic exploration sampling intervals of 1 and 2 ms were used for simu-
lations. The grid size 6.25 is native to the SEAM Arid model. The central frequencies of
the source between 15 and 55 Hz were picked as representing common seismic monitoring
with VSP frequency content. We use the synthetic shot gathers to generate a clean set with a
512 by 512 moving window. The moving window randomly captured 20 patches from each
shot gather, and finally we obtained 2700 noise-free samples. After checking that the data
patches captured the first arrivals of the simulated records samples, they were randomly
separated into training (70% of samples), validation (20% of samples), and testing (10% of
samples) datasets.

Table 2. Specific parameters of forward modeling and noise generation.

Parameters Value

Wavelet Klauder

Time interval (s) 0.001, 0.002

Grid size (m) 6.25

Boundary condition PML

Frequency [min, max] (Hz) [15, 55]

Maximum period [min, max] (nmax) [20, 40]

Noise attenuation parameter [min, max] (x) [0.05, 0.7]

The generation of noise types found in field DAS-VSP records is crucial for training
the diffusion model effectively. One common type of noise is the zigzag noise (N), defined
by [44] as:

N = ∑nmax
i=1 A0xT0+(i−1)T ∗W, (10)

where T0 represents the first break time, A0 represents the first break amplitude, T is the
noise period, nmax represents the maximum period numbers of the noise, W is the wavelet,
and x represents the attenuation parameter. For synthetic data, we only considered the
typical noise types which are hard to eliminate by conventional methods in DAS-VSP data,
such as the zigzag noise, as shown in Figure 4c. The noise generation parameters are also
specified in Table 2.
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Once the clean acoustic DAS dataset was simulated, they were combined with the
noise to create the synthetic dataset used for training. By injecting the zigzag noise (and
possibly other types of noise) into the simulated wavefield, we created a noisy dataset that
the model then learned to denoise. This process effectively trained the model to handle the
kind of data that it would encounter in real-world scenarios.

3. Results
3.1. Test on the Synthetic Dataset

To assess the efficacy of our proposed method, we initially utilized the synthetic testing
dataset (Figure 5). Figure 5a displays the clean synthetic data produced via Deepwave [45]
and DAS conversion. The 2D synthetic DAS-VSP data, embedded with diverse noise
types, is depicted in Figure 5b, exhibiting an input SNR of 8 dB. Figure 5c illustrates the
denoised outcomes derived from our proposed diffusion model, while Figure 5d portrays
the extracted noise. A notable improvement in the signal-to-noise ratio (SNR) was observed,
increasing to 24 dB. The denoised data gathered in Figure 5c which is barely distinguishable
from the clean data in Figure 5a, and underscores our method’s capability to attenuate
noise while retaining the signal. However, minor signal leakage was observed when
examining the removed noise in Figure 5d. Minor signal leakage appeared to be inevitable
as the signal from some upgoing reflections resembled the noise when superimposed with
downgoing waves.
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To further evaluate the predicted results quantitatively on the synthetic dataset, we
introduced the Structural Similarity Index (SSIM) [46] as metrics. The SSIM can measure
the similarity between the denoised output/noisy data and the ground truth. The SSIM
ranges from −1 to 1. When two images are identical, the value of SSIM is equal to 1. The
SSIM of the data shown in Figure 5, where it improved from 0.67 to 0.81.

3.2. Test on the Field Data

The two field DAS-VSP datasets in the study come from the Citronelle dataset [11]
in the U.S., and the Groß Schönebeck site [47] in Germany. Both datasets are publicly
available with more processing results available for the Groß Schönebeck site. For this
study, we applied the diffusion model directly to two field DAS-VSP datasets for denoising.
While the diffusion model itself was trained using synthetic data, this represents the first
demonstration of its application to real-world DAS-VSP data for noise removal.

The Citronelle DAS-VSP dataset was acquired in Citronelle Field, Alabama in 2016.
The test site is a Triassic fluvial-dominated sandstone reservoir located at approximately
10,000 feet depth. The dataset was obtained using DAS technology along two ~1 km deep
vertical monitor wells with a VSP geometry. Controlled injection of ~22,000 tons of CO2
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created a CO2 plume extending ~300 m. The high-resolution DAS-VSP dataset allows
detailed imaging and characterization of the reservoir architecture, fracture networks, fluid
distributions, and CO2 plume behavior before, during, and after injection. This dataset
provides an invaluable resource to study time-lapse subsurface changes associated with
CO2 injection in a geologic reservoir using DAS-VSP.

Comparisons between the input data shown in Figure 6a, denoised output (Figure 6b),
and predicted noise (Figure 6c) provide several key observations. The green arrows indicate
the areas where the noise was successfully suppressed in the denoised output, compared
to the raw input data. This included attenuation of strong zigzag and checkerboard noise
patterns. The blue arrows pinpoint the regions where primary reflection signals were
preserved during denoising. The continuity and relative amplitudes of these events were
maintained from input to output. The purple arrow shows an example where the first
arrival direct wave was properly calibrated and aligned between the input and denoised
data. This demonstrates the model’s ability to retain important signal components. The red
arrow highlights an area of signal leakage where remnants of the reflection event persisted
in the predicted noise. This indicates the model needs further tuning to completely remove
noise without signal loss.
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The Groß Schönebeck area is part of a large geothermal project in Germany where
4.2 km deep wireline DAS was acquired for the first time [47] which after major efforts in
processing [48] led to successful imaging results in 3D VSP setup [49]. Public data retrieved
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for Groß Schönebeck dataset include correlated stacked noisy data and data after adaptive
deconvolution.

The diffusion model removed the noise even in this case allowing for picking around
the top of the well which significantly simplified the subsequent processing for the near-
surface data (Figure 7). Adaptive deconvolution is aimed at making data sparser and
spectrum flat is performed trace-by-trace and results into substantial amplitude changes
and disbalancing, yet removes a significant portion of the zigzag noise caused by cable
reverberations [48]. For the deeper part of the well, the reverberations were significantly
slower than the direct arrivals and spatially separated and deconvolution worked well.
However, deconvolution failed in the case when the reverberations had comparable speed
to the first arrivals and were spatially not separated from the direct arrivals (Figure 8);
this was particularly detrimental to the top part of the well that could not be picked due
to intersecting events (red arrow in Figure 8b). To further assess the results generated by
the proposed method, we applied a bandpass filter to extract a higher SNR bandwidth
(10–30 Hz) to the Groß Schönebeck dataset and juxtaposed the filtered data with those
derived from the diffusion model (Figure 9). While the bandpass filter result (Figure 9d)
did partially remove some of the zigzag noise, it also removed a significant portion of
signal introducing several issues including reduced temporal resolution (Figure 9e).
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Figure 7. The denoising result for the Groß Schönebeck dataset. (a) field data input, (b) diffusion
model denoised result, (c) predicted noise. The green arrows indicate that the noise is success-
fully suppressed. The blue arrows indicate the preserved signals. The red arrow indicates the
signal leakage.
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Figure 8. Comparison with deconvolution. (a) field data input, (b) adaptive deconvolution result,
(c) diffusion model denoised result. The red and green arrows indicate noisy areas in the data. The
green arrow indicates the area where denoising is successful in both methods. The red arrow indicates
that the deconvolution does not mitigate the noise, but the diffusion model does. The purple arrows
indicate that the deconvolution changes the amplitude which the diffusion model preserves.
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Figure 9. Comparison with bandpass filter. (a) field data input, (b) diffusion model denoised result,
(c) residual between (a,b), (d) bandpass filter result, (e) residual between (a,d). The red arrow indicates
aliasing introduced by the bandpass filter. The blue arrow points out the elimination of the first
arrival by the bandpass filter, while it is preserved by the diffusion model. The green arrow denotes
that the bandpass filter does not mitigate the noise, in contrast to the diffusion model. The purple
arrow highlights that the bandpass filter induces significant signal leakage and reduces the resolution.
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4. Discussion
4.1. Diffusion Time-Step Analysis

Diffusion models function by simulating a forward diffusion process that begins
from a target distribution—in this study, the noise-free DAS-VSP samples—and gradually
infuses noise until reaching a simple distribution, such as a standard Gaussian distribution.
This forward process is computationally straightforward, but the reverse procedure of
transitioning from the simple to the target distribution is more intricate and requires
iterative training.

The diffusion process is typically partitioned into discrete timesteps. The quantity
of the timesteps can significantly influence the model performance. We investigated the
impact of various timestep numbers on the efficacy of our proposed diffusion model,
ranging from 1 to 1000.

A single timestep (T = 1) configuration essentially requires the diffusion model to
encapsulate the entire distribution in one instance. This task is substantial as the trans-
formation from the simple to the target distribution is highly complex, leading to the
potential for distortion or anomalies in the output. When the timestep quantity is set to 1
for both forward and reverse diffusion processes, the model assumes the role of a single
step denoising model, adding and then trying to recover noise in one action. The U-Net, in
this case, serves as the architecture for the reverse process, tasked with mapping the noisy
data back to the original data. While the diffusion process is simplified, the U-Net’s task is
more intricate, given that it must reverse the noise effects in one go. Hence, the diffusion
model with a single timestep could be viewed as a single-step denoising U-Net.

Introducing 10 timesteps (T = 10) allows the diffusion model more ‘room’ to progres-
sively transform the simple distribution into the target distribution. While the sample
quality may improve compared to a single timestep, the output could still vary noticeably
from the target distribution. This situation signifies a trade-off between computational
complexity and sample quality.

Expanding to 100 timesteps (T = 100), the model can facilitate more gradual transitions
from the simple to the target distribution. Consequently, the quality of the generated
samples could surpass those of models with fewer timesteps. However, the increased
computational requirement and potential risk of overfitting are important considerations.

Finally, with 1000 timesteps (T = 1000), the model is provided ample opportunity
to make very incremental transitions from the simple to the target distribution. The
generated samples could potentially be of high quality, virtually indistinguishable from
the target distribution. But the computational expense escalates significantly, and careful
regularization could be necessary to circumvent overfitting. Figure 10 shows the diffusion
process with T = 1000. The noise is gradually removed with timestep increasing.
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There exists a trade-off between the settings of timesteps and computational efficiency.
For simpler tasks, a smaller timestep may suffice. Certain derivatives of diffusion models,
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like the deep diffusion implicit model (DDIM) by [50], can achieve comparable performance
with smaller timesteps as they would with larger ones.

4.2. Advantages and Limitations

The injection of noise at every timestep can be considered a form of data augmentation.
This process adds varying levels of noise to each training image at each timestep, creating
an altered version for the model to learn from. This inherent data augmentation property
can prove beneficial, especially when working with a limited dataset.

Comparisons with classic methods for denoising for DAS data described here are
limited to the deconvolution and bandpass filter methods, but generally machine learn-
ing based methods outperform classic denoising methods as multiple recent studies
suggest [15,19].

While diffusion models have several advantages, such as robustness to varying noise
levels and an ability to handle complex distributions, they also pose challenges like in-
creased computational demands. This increased complexity stems from the sequential
nature of the diffusion process, compared to models like the U-Net. Furthermore, the qual-
ity of results still heavily depends on the training data quality and variety in supervised
learning applied to train the diffusion models.

The computational expense of the current diffusion model implementation poses a
potential limitation, particularly due to the large timestep setting. At the current stage,
inference for a single shot gather takes about a minute while training requires several
days. However, there are ways to reduce the training and inference time requirements
by using transfer learning and adopting more computationally efficient diffusion model
architectures actively researched in the machine learning community.

5. Conclusions

We proposed a DAS-VSP denoising workflow based on the conditional diffusion
model, which was trained on a relatively small synthetic DAS-VSP shots dataset. The
model’s performance was evaluated using synthetic and field DAS-VSP datasets. When
compared to traditional methods, the proposed model offers a more robust and general
solution for suppressing typical noise in DAS-VSP data.

The field of generative modeling is currently undergoing rapid and significant advance-
ments. It is our hope that this pioneering research contributes to the ongoing development
of this field, paving the way for further applications of the generative modeling techniques,
such as diffusion models, in seismic and DAS-related research.
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