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Abstract: Inter-turn short circuit (ITSC) is a common fault in induction motors. However, it is
challenging to detect the early stage of ITSC fault. To address this issue, this paper proposes an ITSC
fault detection method for three-phase induction motors based on start-up current envelope energy.
This approach uses Akima interpolation to calculate the envelope of the measured start-up current of
the induction motor. A Gaussian window weighting is applied to eliminate endpoint effects caused
by the initial phase angle, and the enveloping energy is obtained using the energy formula as the
fault feature. Finally, by combining this with the support vector machine (SVM) classification learner,
fault detection of ITSC in induction motors is achieved. The experimental results show that the
average accuracy of this method reaches 96.9%, which can quickly and accurately detect ITSC faults
in asynchronous motors and determine the severity of the faults. Furthermore, the average accuracy
of SVM in detecting early ITSC faults under no-load conditions is 98.8%, which is higher than other
classification learners, including LR, KNN, and NN. This study provides a new idea for induction
motor fault detection and can contribute to induction motor maintenance.

Keywords: induction motor; fault detection; inter-tern short circuit; envelope; support vector machine

1. Introduction

Induction motors are widely used in various industrial fields due to their simple
structure, excellent performance, and outstanding cost-effectiveness. However, the effect
of the working environment can lead to the occurrence of faults. The faults of induction
motors are mainly divided into mechanical faults and electrical faults. Electrical faults
include inter-turn short circuit (ITSC), open-circuit, ground, over/under-voltage faults,
and so on [1]. Among them, the ITSC fault of the stator winding is one of the most
common faults, accounting for 30% to 40% of all induction motor faults [2]. The reason
is that electrical and thermal stresses cause damage to the turn-to-turn insulation layer,
resulting in ITSC faults. The most evident phenomena in the middle and late stages of ITSC
faults of the stator winding are asymmetric phase currents and local overheating of the
winding. If the fault further intensifies, it will cause motor damage and even catastrophic
accidents in the entire system. Therefore, it is necessary to have a technology that can
timely detect the ITSC fault and take appropriate measures to ensure the safe operation of
the equipment. The former fault detection methods, which were based on user reviews,
required monitoring the visual and auditory information gathered from the equipment to
assess the motor’s health [3]. However, this approach incurred substantial costs in terms
of human labor and time. Currently, the main researched fault detection technologies
include motor current signature analysis (MCSA) [4–8], vibration analysis [3,9,10], acoustic
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signal analysis [11–13], and thermal imaging analysis [14–16]. Jung et al. [4] proposed an
online diagnostic method for current signature analysis based on advanced signal- and
data-processing algorithms, which successfully achieved the diagnosis of three types of
faults, namely rotor misalignment, stator winding short circuit, and bearing defects, in
induction motors. Cusidó et al. [5] proposed a current signature analysis method based on
injecting signals of different frequencies to identify faults in induction motors, such as rotor
broken bars, bearing damage, and rotor eccentricity, which provides new ideas for fault
diagnosis in electric motors. Bouzida et al. [6] proposed a fault diagnosis method based
on the discrete wavelet transform, which extracts the health information of electric motors
from wide-band signals utilizing wavelet decomposition. Ciszewski et al. [7] proposed
a current feature analysis diagnosis method based on higher-order spectral technology,
which effectively identified bearing faults in induction motors. Kim et al. [3] proposed a
fault diagnosis method based on vibration signals, and utilized various machine learning
models to achieve the classification of motor health, rotor faults, and bearing faults. Kafeel
et al. [8] proposed a fault detection system based on vibration signal analysis, which
utilized empirical mode decomposition for multi-domain feature extraction and achieved
satisfactory results through experiments. Pham et al. [10] proposed a deep learning-based
bearing fault diagnosis method using acoustic emission signals, which has the advantages of
higher accuracy and lower computational complexity compared to previous deep learning-
based diagnostic methods. Alvarado-Hernandez et al. [13] proposed a fault monitoring
technology based on infrared thermal imaging intelligent sensors, which was validated
on an experimental test bench. To sum up, the characteristic of these methods is to extract
signals under the stable operating state of the motor. However, in the early stages of ITSC
faults in the motor, the fault features extracted from the signal under stable operation
are relatively weak, especially under the influence of interference factors such as no-load,
unstable power supply voltage, and noise, which can bring great difficulties to the fault
detection of the motor.

During the start-up process, the induction motor operates under more critical condi-
tions, where the current reaches two to three times that of the stable operation stage, which
helps to amplify the characteristics of early faults [17]. Multiple fault detection methods
have emerged in the field of transient analysis based on the start-up process [15,17–29]. For
ITSC fault detection, Singh et al. [15] proposed an ITSC fault detection method using an
infrared thermal imager, which detects the transient thermal during the start-up process
of an induction motor to assess the severity of the fault present in the motor. Zaparoli
et al. [22] proposed a method for detecting ITSC faults based on principal component
analysis and monitored the evolution of faults through variance analysis. However, this
method uses a threshold to determine the degree of motor failure and does not provide a
specific accuracy rate.

Compared with the above studies, our work focuses primarily on detecting early ITSC
faults in three-phase induction motors during start-up. We utilize current parameters to
study the ITSC fault detection technology in three-phase induction motors and conduct
diagnostic evaluations of the fault severity. Based on the envelope and amplitude energy
analysis theory and combined with the support vector machine (SVM) classification model,
we propose an ITSC fault detection method based on start-up current. To evaluate the
effectiveness of our method, we first create a simulation environment where we establish
a mathematical model for ITSC faults in three-phase induction motors. We then collect
simulation data of starting current signals and apply our proposed method for evaluation.
Subsequently, we construct a motor performance testing platform to obtain the actual
current signals during the three-phase induction motors’ start-up process and further
validate our method’s effectiveness. Our proposed method can detect early ITSC faults
during the start-up process of three-phase induction motors, enabling diagnosis before the
induction motor enters regular operation. Consequently, it effectively minimizes losses
caused by induction motor failures during operation.
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The main contributions of this paper are as follows: (1) According to the current
variation characteristics during the start-up process of a three-phase induction motor,
a detection algorithm for ITSC faults based on the energy of start-up current envelope
is proposed. (2) Compare the performance of the proposed method with that of other
machine learning classifiers. The former has higher accuracy in detecting ITSC faults and
also achieved satisfactory results under no-load conditions.

The rest of the article is organized as follows: Section 2 introduces the mathematical
model of ITSC faults in three-phase induction motors. Section 3 illustrates the algorithms
for fault detection and provides corresponding explanations for the methods used. To
evaluate the detection strategy, relevant simulation studies were conducted in Section 4.
Section 5 explains the experiment setup, presents the results, and provides a discussion. A
summary of the work is given in Section 6.

2. Mathematical Model of Induction Motor ITSC Fault

To evaluate the feasibility of the proposed detection strategies, it is necessary to study
the effects of motors under different operating conditions. Therefore, it is crucial to select
appropriate induction motor models for simulation. Considering the influence of fault
resistance (R f ) and stator ITSC, Tallam’s transient three-phase induction motor model [30]
is introduced here. Before applying this model for simulation, the following assumptions
usually need to be made:

1. The constant temperature of the motor;
2. The three-phase winding is symmetrical, and the magnetic potential is distributed

sinusoidal along the air gap;
3. Unsaturation of the magnetic circuit;
4. Without consideration of the hysteresis effect, the diaphragm effect, and the eddy

current effect.

When the motor is in a healthy state, the stator winding is symmetrically distributed
in a 120-degree three-phase manner. When an ITSC fault occurs in the motor stator, the
structure of the motor is no longer symmetrical. As shown in Figure 1, assuming that the
three-phase stator winding of the motor is connected in Y configuration, an ITSC fault
occurs in the a-phase winding, and the short circuit fault coefficient is µ = sa2/(sa1 + sa2),
where sa2 is the number of short-circuit turns and sa1 + sa2 is the total number of turns of
the a-phase winding.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 16 
 

 

before the induction motor enters regular operation. Consequently, it effectively mini-
mizes losses caused by induction motor failures during operation. 

The main contributions of this paper are as follows: (1) According to the current var-
iation characteristics during the start-up process of a three-phase induction motor, a de-
tection algorithm for ITSC faults based on the energy of start-up current envelope is pro-
posed. (2) Compare the performance of the proposed method with that of other machine 
learning classifiers. The former has higher accuracy in detecting ITSC faults and also 
achieved satisfactory results under no-load conditions. 

The rest of the article is organized as follows: Section 2 introduces the mathematical 
model of ITSC faults in three-phase induction motors. Section 3 illustrates the algorithms 
for fault detection and provides corresponding explanations for the methods used. To 
evaluate the detection strategy, relevant simulation studies were conducted in Section 4. 
Section 5 explains the experiment setup, presents the results, and provides a discussion. 
A summary of the work is given in Section 6. 

2. Mathematical Model of Induction Motor ITSC Fault 
To evaluate the feasibility of the proposed detection strategies, it is necessary to study 

the effects of motors under different operating conditions. Therefore, it is crucial to select 
appropriate induction motor models for simulation. Considering the influence of fault re-
sistance (𝑅 ) and stator ITSC, Tallam’s transient three-phase induction motor model [30] 
is introduced here. Before applying this model for simulation, the following assumptions 
usually need to be made: 
1. The constant temperature of the motor; 
2. The three-phase winding is symmetrical, and the magnetic potential is distributed 

sinusoidal along the air gap; 
3. Unsaturation of the magnetic circuit; 
4. Without consideration of the hysteresis effect, the diaphragm effect, and the eddy 

current effect. 
When the motor is in a healthy state, the stator winding is symmetrically distributed 

in a 120-degree three-phase manner. When an ITSC fault occurs in the motor stator, the 
structure of the motor is no longer symmetrical. As shown in Figure 1, assuming that the 
three-phase stator winding of the motor is connected in Y configuration, an ITSC fault 
occurs in the a-phase winding, and the short circuit fault coefficient is 𝜇 = 𝑠𝑎 /(𝑠𝑎 +𝑠𝑎 ), where 𝑠𝑎  is the number of short-circuit turns and 𝑠𝑎 + 𝑠𝑎  is the total number of 
turns of the a-phase winding.  

  
(a) (b) 

Figure 1. Stator winding diagram, (a) healthy state, (b) a phase ITSC fault. 

The voltage equation for the stator and rotor is 

Figure 1. Stator winding diagram, (a) healthy state, (b) a phase ITSC fault.

The voltage equation for the stator and rotor is



Sensors 2023, 23, 8581 4 of 16

[
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Rr
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[
ψs
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]
(1)

where us = [usa1 usa2 usb usc]
T, usa1, usa2, usb, usc are the instantaneous values of stator

voltages for the normal winding part of phase a, the ITSC winding part of phase a, and
the stator voltages for phases b and c, respectively. ur = [ ura urb urc]

T, ura, urb, urc are
the instantaneous values of the rotor voltages of phase a, b, and c, respectively, and
ura = urb = urc = 0. Rs = Rsdiag[(1− µ) µ 1 1]T, Rs is the resistance value of each phase
winding of the stator. Rr = RrI3×3, Rr is the resistance value of each phase winding of

the rotor. is =
[

isa

(
isa − i f

)
isbisc

]T
, isa, isb, isc, i f are the instantaneous values of stator

currents for phase a, b, c and short current, respectively. ir = [ ira irb irc]
T, ira, irb, irc are the

instantaneous values of rotor currents in phases a, b, and c, respectively. p is the differential
operator. ψs = [ψsa1 ψsa2 ψsb ψsc]

T, ψsa1, ψsa2, ψsb, ψsc are the instantaneous values of the
stator flux linkage for the normal winding part of phase a, the ITSC winding part of phase a,
and the stator flux linkage for phases b and c, respectively. ψr = [ψra ψrb ψrc]

T, ψra, ψrb, ψrc
are the instantaneous values of the rotor flux linkage for phases a, b, and c.

The magnetic linkage equations of the stator and rotor are[
ψs
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]
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]
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 (5)

The stator mutual inductance is equal to the rotor mutual inductance, i.e., Lm = Lms = Lmr.
θr is the displacement angle between the motor’s corresponding stator phase and ro-
tor phase.

The electromagnetic torque equation is

Te = −npLm

[
(isaira + isbirb + iscirc)sinθr + (isairb + isbirc + iscira)sin

(
θr +

2π

3

)
+ (isairc + isbira + iscirb)sin

(
θr −

2π

3

)]
(6)

where np is the number of magnetic pole pairs of the motor.
The torque balance equation is

Te = TL +
J

np

dωr

dt
(7)
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where TL is the load torque, J is the moment of inertia, and ωr is the angular velocity of
the rotor.

3. Proposed Algorithm

The flowchart of the proposed algorithm, as shown in Figure 2, consists of three steps:
data acquisition, feature extraction, and classification. During the data acquisition process,
the current signal of the induction motor was measured using a current sensor. In the
feature extraction step, the raw current signal is first filtered using a sliding-average filter.
Next, the upper and lower extreme points of the signal are calculated, and the upper and
lower envelopes are obtained using the Akima interpolation function. Then, the Gaussian
window is used to weigh the envelope and obtain the Gaussian envelope. Finally, the
energies of the upper and lower Gaussian envelope are calculated using the energy formula
to obtain the eigenvectors. In the classification step, the SVM model is used to classify the
extracted eigenvectors. In the classification step, the SVM model is used to classify the
extracted feature vectors of different health conditions (each color in the figure represents a
health condition, such as health, early stage fault, and severe fault).
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3.1. Sliding-Average Filter

After the motor current signal collection is completed, a sliding-average filter is used
to smooth the original signal to reduce the impact of noise on the results. The calculation
formula is as follows:

f (i) =
y
(

i− N
2

)
+ y
(

i− N
2 + 1

)
+ . . . + y(i) + . . . + y

(
i + N

2 − 1
)
+ y
(

i + N
2

)
N

(8)

where f(i) represents the filtered value of the i-th point, y(i) represents the original value of
the i-th point, and N represents the window width of the filter.

3.2. Envelope Extraction

The envelope is a commonly used method in signal analysis, widely employed in
Empirical Mode Decomposition (EMD) [31] and Envelope Spectral Analysis (ESA) [32–35].
The core idea of the envelope is to reduce the dimension of the high-frequency signal and
reflect the primary change trend of the signal. Common methods for envelope extraction in-
clude the Hilbert transform, the wavelet transform, and the interpolation-based techniques.
Due to the complex and diverse frequency components of the original signal, traditional
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methods such as the Hilbert transform and wavelet transform can often struggle to achieve
the desired results for envelope extraction. Interpolation, a classic mathematical method,
can be used to extract the envelope with the following specific steps:

1. Calculate all the original signal’s maximum and minimum coordinate points.
2. Use the maximum and minimum coordinate points to obtain the upper and lower

envelope through the interpolation function.

Compared with the Hilbert transform and wavelet transform, the envelope extracted
by interpolation accurately passes through the extreme points of the original signal. Com-
mon methods of interpolation include Hermite interpolation, Lagrange interpolation,
Newton interpolation, and Akima interpolation, among others. Akima interpolation [36]
has unique advantages. Like the cubic spline interpolation method, the Akima interpolation
method takes into account the effects of the derivative values of the elements. However,
cubic spline interpolation is sensitive to outliers in the input data, even a small outlier can
have a significant impact on the interpolation result. In contrast, Akima interpolation is
relatively robust when dealing with outliers and is less likely to be disturbed, showing
excellent robustness. Furthermore, cubic spline interpolation can cause oscillations, where
the derivative of the interpolation function changes rapidly at the connection points, re-
sulting in discontinuities or non-smoothness in the interpolation result. On the other hand,
Akima interpolation can generate a continuously smooth interpolation function, avoiding
this oscillation issue. Finally, Akima interpolation uses local linear functions, which makes
it computationally faster, and especially suitable for interpolating large-scale datasets.

The Akima interpolation method is a method of interpolation between two measured
points. In addition to using these two measured values, it also requires the observed values
on the four adjacent measured points of these two points. In fact, interpolating between two
measured points requires a total of six measured points. The specific calculation process is
as follows:

1. The original data are (xi, yi)(i = 1, 2, 3 . . . , n), assuming that the curve y = f (x) meets
yi = f (xi). Meanwhile, any two adjacent data points are approximated using a
cubic polynomial.

2. Curve y needs to meet four conditions:

yi = f (xi)

yi+1 = f (xi+1)

y′i = ki

y′i+1 = ki+1

(9)

where ki is the slope of the point i. Therefore, the unique cubic polynomial can be deter-
mined, and the whole curve obtained is also smooth.

3. The expression for the cubic polynomial is as follows:

y = p0 + p1(x− xi) + p2(x− xi)
2 + p3(x− xi)

3 (10)

where 

p0 = yi

p1 = ki

p2 =
3(yi+1−yi)/(xi+1−xi)−2ki−ki+1

(xi+1−xi)

p3 =
ki+ki+1−2(yi+1−yi)/(xi+1−xi)

(xi+1−xi)
2

(11)
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ki is determined by the measured values at points i − 2, i − 1, i + 1, i + 2, and the
calculation formula is{

ki = (|mi+1 −mi|mi−1 + |mi−1 −mi−2|mi)/(|mi+1 −mi|+ |mi−1 −mi−2|)
mi = (yi+1 − yi)/(xi+1 − xi)

(12)

The equation does not hold when |mi+1 −mi|+ |mi−1 −mi−2| = 0. Therefore, when
this situation occurs, Akima states ti = (mi+1 + mi) or ti = mi.

When dealing with endpoint problems, adding two prediction points outside the
endpoint is necessary. Based on the four conditions that y needs to meet, it is not essential
to specifically determine the positions of these two points, but rather to calculate their
slope k.

3.3. Gaussian Window Weighting and Calculation of Envelope Energy

Due to variations in the timing of the induction motor connected to the power source,
the initial phase angle of the three-phase voltage source may differ. As a result, the initial
phase angle of the collected current signal may also vary. In this scenario, obtaining the
corresponding envelope using Akima interpolation results in significant differences at the
starting point, also known as end effects, as shown in Figure 3.
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Therefore, it is necessary to allocate weights to the envelope data accordingly to
minimize the impact of end effects and amplify the amplitude variation of the starting
current. In this paper, the entire envelope undergoes weighted modification using the
Gaussian window function. The coefficients of the Gaussian window are computed from
the following equation:

w(n) = e−
1
2 [α

n
(L−1)/2 ]

2

(13)
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where L represents the window length, and α represents the width factor, and its exact
correspondence with the standard deviation of a Gaussian probability density function is
σ = (L− 1)/(2α).

After processing with the Gaussian window weighting, the upper and lower Gaussian
envelope data are obtained as U = {(x1, y1), (x1, y1), (x1, y1) . . . (x1, y1)}, respectively.

The amplitude analysis of the signal includes both amplitude and energy aspects.
Signal energy refers to the total energy of a signal within a certain period of time and
is commonly used in signal processing, communication systems, image processing, and
other fields. It can be used to measure a signal’s strength, quality, and other aspects. The
mathematical definition of energy is

Ej =
n

∑
i=1
|yi|2 (14)

where y = U or L. yi represents the amplitude of the first data point in the upper or lower
filtering envelope.

Finally, the eigenvectors E = [EU , EL] will be used for fault detection.

3.4. Support Vector Machine

SVM is a machine learning classification method based on the theory of structural
risk minimization proposed by Vapnik and his colleagues [37]. It is applicable to pattern
classification and handling nonlinear regression problems. SVM has the advantage of
achieving excellent performance in the small sample and binary classification problems.
Its fundamental idea is to define a classification hyperplane as the decision surface, which
can accurately distinguish the training data’s positive and negative sample points while
maximizing the geometric margin between the hyperplane and the samples. The derivation
process is as follows:

1. Assuming the training dataset is D = {(X1, Y1), (X2, Y2), . . . (Xn, Yn)} and linearly
separable, where Xi ∈ Rd, Xi are eigenvectors of dimension d, and Yi ∈ {−1,+1} is
the class of the sample, when Yi = −1, it is a negative example, and when Yi = +1, it
is a positive example.

2. Assuming the classification hyperplane is y = x + b, in order to maximize the geomet-
ric margin between the data points and the classification hyperplane, the Lagrange
method is introduced to solve the optimization problem, which can be expressed as

min 1
2

n
∑

i=1

n
∑

j=1
yiyjαiαj

(
xi·xj

)
−

n
∑

j=1
αj

s.t.
n
∑

i=1
yiαi = 0, αi ≥ 0, i = 1, 2, . . . n

(15)

3. After obtaining the optimal solution α∗ =
(
α∗1 , α∗2 , . . . , α∗n

)
, and selecting a positive

component α∗j of α∗, the parameters of the hyperplane can be calculated as follows:

b∗ = yi −
n

∑
i=1

yiα
∗
j
(

xi·xj
)

(16)

4. The decision function can be constructed as

f (x) = sgn

(
n

∑
i=1

yiα
∗
j xix + b∗

)
(17)

where sgn() is the sign function which returns +1 for positive values and −1 for nega-
tive values.
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4. Mathematical Simulation

Mathematical simulations were performed on the start-up current signals of the
induction motor with varying degrees of ITSC faults to evaluate the proposed method.
Table 1 shows the basic parameters of the induction motor simulation model.

Table 1. Basic parameters of the induction motor simulation model.

Parameters Values

Frequency f (Hz) 50
Rated voltage U(V) 220
Number of poles np 2

Stator resistance Rs(Ω) 20.63
Rotor resistance Rr(Ω) 20.69

Stator leakage inductance Lls(H) 0.0151
Rotor leakage inductance Llr(H) 0.0141

Mutual inductance between stator and rotor Lm(H) 0.347
Inertia J

(
kg·m2) 0.0066

Taking the ITSC in the A-phase winding of an electric motor as an example, simulations
were performed for a total of 54 scenarios. These scenarios included three different fault
levels for µ1 = 0, µ2 = 0.01, µ3 = 0.03 (representing healthy, early-stage ITSC fault and
severe fault condition, respectively), six different initial phase angles for the ϕ1 = 0◦,
ϕ2 = 60◦, ϕ3 = 120◦, ϕ4 = 180◦, ϕ5 = 240◦, ϕ6 = 300◦, and three different load conditions
at torque values of 0, 0.25, and 0.5 Nm.

The upper and lower envelopes were obtained by using the Akima interpolation
function. Next, the upper and lower envelopes are separately weighted and processed with
a Gaussian window of α = 5 to obtain the upper and lower Gaussian envelopes. Figure 4
shows the feature extraction process for different fault levels.

The energy of the upper and lower Gaussian envelopes was calculated for each
situation, and corresponding health status labels were assigned to each sample as feature
vector samples. Specifically, the feature vector samples with µ = 0 were labeled as ‘health’,
those with µ = 0.01 were labeled as ‘fault1′, and those with µ = 0.03 were labeled as ‘fault2′.
Table 2 presents the Gaussian envelope energies for each situation.

Table 2. The Gaussian envelope energies for each situation.

Type Load

No Load 0.25 Nm 0.5 Nm

Upper Energy Lower Energy Upper Energy Lower Energy Upper Energy Lower Energy

Health

0◦ 527.553 530.990 563.514 567.522 599.831 604.131
60◦ 519.365 521.687 555.176 557.106 592.212 593.567

120◦ 528.407 527.650 563.809 561.980 599.486 596.512
180◦ 530.990 527.553 567.522 563.514 604.131 599.831
240◦ 521.687 519.365 557.106 555.176 593.567 592.212
300◦ 527.650 528.407 561.980 563.809 596.512 599.486

Fault 1

0◦ 553.208 556.694 590.093 594.171 627.316 631.706
60◦ 543.654 546.890 581.301 583.363 619.326 620.762

120◦ 553.397 552.692 589.689 587.894 626.246 623.280
180◦ 556.694 553.208 594.171 590.093 631.706 627.316
240◦ 546.890 543.654 583.363 581.301 620.762 619.326
300◦ 552.692 553.397 587.894 589.689 623.280 626.246
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Table 2. Cont.

Type Load

No Load 0.25 Nm 0.5 Nm

Upper Energy Lower Energy Upper Energy Lower Energy Upper Energy Lower Energy

Fault 2

0◦ 600.357 604.015 638.967 643.109 677.946 682.491
60◦ 599.295 602.505 635.106 637.718 671.325 672.771

120◦ 607.993 607.472 646.167 644.522 684.601 681.725
180◦ 604.015 600.357 643.109 638.967 682.491 677.946
240◦ 602.505 599.295 637.718 635.106 672.771 671.325
300◦ 607.472 607.993 644.522 646.167 681.725 684.601
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An amount of 95% of the eigenvector samples were randomly selected as input to
train the model, while the remaining 5% of the eigenvector samples were used as a testing
dataset to validate the trained model. The training and validation accuracy of the model
both reached 100%. The proposed approach not only enables the detection of ITSC faults in
induction motors but also identifies the severity of the faults. Figure 5a,b show the scatter
plot and confusion matrix of the trained model, respectively.
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5. Results and Discussion
5.1. Experiment Setup

To verify the effectiveness of the proposed method, an electric motor performance
testing platform was established for motor current data acquisition experiments on start-up.
The basic structure of the experiment is shown in Figure 6.
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In the experiment, three induction motors of the exact specifications were used as test
objects, including a healthy motor, an early-stage fault motor, and a severe fault motor. The
early-stage fault motor is made by manually scraping off the insulation layer of the adjacent
coils of the U phase and then using welding technology to weld the two coils together,
resulting in early ITSC faults. The severe fault motor was made by welding the six adjacent
coils in the u-phase using the same method. The basic parameters of this motor are a rated
power of 1 hp, two pairs of poles, and a rated speed of 1400 rpm. The equipment of the
entire experimental platform includes a load motor and its corresponding controller capable
of providing 7.5 Nm, a torque sensor with a range of 15 Nm and an accuracy of 0.2% Fs,
a TCP0030A current sensor (TEKTRONIX) with a bandwidth of 120 MHz, a maximum
effective current of 30A and sensitivity of 1 mA, a TBS2000B oscilloscope (TEKTRONIX), a
laptop computer equipped with MATLAB, a voltage source, an experimental induction
motor, and its corresponding controller. The sampling frequency of the current sensor was
set to 20 kHz, and the motor was connected to an AC voltage with a frequency of 20 Hz
through the controller. The experimental induction motor and laboratory setup are shown
in Figure 7.
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5.2. Results Analysis

The experimental platform has collected a data set of u-phase start-up current signals
for healthy, early-stage fault and severe fault motors, which includes three scenarios under
no load, 0.52 Nm, and 1.04 Nm loads, totaling 450(50× 3× 3) sets of data. To ensure the
effectiveness of the model, a randomized approach was employed to divide the dataset
into two distinct subsets: an 80% sample used for training and a residual 20% sample
reserved solely for testing. This approach was chosen to reduce potential problems of
under-fitting or over-fitting that might impede the model’s predictive performance. In
addition, a data set of current signals for the steady-state operation of induction motors was
obtained under three different load conditions. Using the proposed method, the upper and
lower envelope energies of each group of data in the training set are extracted as feature
vectors, and corresponding state labels are set for the samples to obtain feature samples
Si = [EUi, ELi, load, type], where Si represents the i-th sample, EUi and ELi represent the
upper and lower Gaussian envelope energy of the i-th sample, load = 0, 0.52 or 1.04
represents the load situation of the induction motor, and type = health, fault1 or fault2
represents the status label of the sample (‘fault1′ refers to early-stage fault, while ‘fault2′

indicates severe fault). The feature dataset was inputted into the SVM model for training,
and finally, the model was verified using the test feature dataset. The trained model
achieved a detection accuracy of 96.3%, 95.4%, and 99% for health, early-stage fault, and
severe fault, respectively, with an average accuracy of 96.9% and a validation average
accuracy of 95.3%. Figure 8a,b, respectively, show the scatter plot and confusion matrix
plot of the trained model.

In addition, we conducted further experimental analysis on early fault detection under
no-load conditions. The experiment will use the start-up current dataset of health and early-
stage fault under no-load conditions. An amount of 80% of the sample data are randomly
selected as the training set, and the remaining 20% are used as the validation set, which
is input into the classification model for training and validation. Figure 9a,b, respectively,
show the scatter plot and confusion matrix of the training model. The proposed method
achieved 100% and 97.5% accuracy in detecting health and faults in the training model,
with an average accuracy of 98.8%. In validation, it reached an average accuracy of 100%.

5.3. Discussion
5.3.1. Classification Performance Analysis

To verify the early-stage fault detection superiority of the proposed method under
no-load conditions, the other classification machine learning methods, including Logistic
Regression (LR), k-Nearest Neighbor (KNN), and Neural Network (NN), will be compared.
Table 3 shows the comparison results. The results show that the average accuracy of using
LR, KNN, and NN to train classification models was 96.2%, 97.5%, and 98.8%, respectively.
The average accuracy of LR and KNN is lower than SVM, while NN has the same accuracy
as SVM but a longer training time. From the above, it can be seen that the proposed method
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has excellent performance in SVM classification and achieved satisfactory results in this
dataset. In addition, it is worth noting that although NN requires a relatively long training
time, its accuracy after training is also excellent, and it has great potential on the basis of
the proposed method.
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Table 3. Comparison results.

Method Accuracy (Validation) Training Time

Proposed Features + SVM 98.8% 0.5395 s
Proposed Features + LR 96.2% 0.8597 s

Proposed Features + KNN 97.5% 0.6569 s
Proposed Features + NN 98.8% 1.2627 s

5.3.2. Limitations of the Proposed Method

Although the fault detection and determination of the severity of ITSC in induction
motors has been achieved by utilizing the envelope energy of the starting current in this
paper, several limitations to our study that should be acknowledged.

1. The instability of the voltage source will have a specific impact on the motor’s start-
up current, resulting in a decrease in the fault detection accuracy of the proposed
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method. Therefore, in future research, the stability characteristics of the voltage need
to be considered.

2. When ITSC faults occur in other phases, they will affect the starting current of the
measured phase, resulting in misjudgment of the location of the short circuit fault. This
means that measuring single-phase current cannot achieve the position determination
of ITSC faults.

6. Conclusions

In this study, to solve the problem of difficult detection of early-stage ITSC faults in
the three-phase induction motor, we propose an ITSC fault detection method based on
the envelope energy of the start-up current. The results demonstrate that the proposed
method exhibits excellent performance in the detection of ITSC faults and the determina-
tion of the severity in induction motors. The detection accuracy of the proposed method
training model for health, early-stage fault, and severe fault reached 96.3%, 95.4%, and
99%, respectively, with an average accuracy of 96.9% and a validation accuracy of 95.3%.
Furthermore, to verify the early-stage fault detection superiority of the proposed method
under no-load conditions, the other classification machine learning methods were com-
pared. The average accuracy of the SVM training model for the proposed method is 98.8%,
while the average accuracies of the LR, KNN, and NN training models are 96.2%, 97.5%,
and 98.8%, respectively.

Our future work will focus on determining the location of the fault. We may consider
adding current sensors to other phases to improve the performance of the proposed method.
Then, we will use voltage signals to reduce the impact of voltage instability on the proposed
method. In addition, we will consider incorporating temperature sensors to monitor the
motor and analyze the influence of temperature factors on the proposed method. Finally,
we will study more effective machine learning classification models to improve the accuracy
of fault detection.
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