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Abstract: Energy management methods (EMMs) utilizing sensing, communication, and networking
technologies appear to be one of the most promising directions for energy saving and environmental
protection of fuel cell vehicles (FCVs). In real-world driving situations, EMMs based on driving cycle
information are critical for FCVs and have been extensively studied. The collection and processing
of driving cycle information is a fundamental and critical work that cannot be separated from
sensors, global positioning system (GPS), vehicle-to-vehicle (V2V), vehicle-to-everything (V2X),
intelligent transportation system (ITS) and some processing algorithms. However, no reviews have
comprehensively summarized the EMMs for FCVs from the perspective of driving cycle information.
Motivated by the literature gap, this paper provides a state-of-the-art understanding of EMMs for
FCVs from the perspective of driving cycle information, including a detailed description for driving
cycle information analysis, and a comprehensive summary of the latest EMMs for FCVs, with a focus
on EMMs based on driving pattern recognition (DPR) and driving characteristic prediction (DCP).
Based on the above analysis, an in-depth presentation of the highlights and prospects is provided
for the realization of high-performance EMMs for FCVs in real-world driving situations. This paper
aims at helping the relevant researchers develop suitable and efficient EMMs for FCVs using driving
cycle information.

Keywords: energy management methods; fuel cell vehicles; driving cycle information

1. Introduction
1.1. Motivations

Energy shortage and environmental pollution are urgent problems that all countries
in the world need to face [1]. Academic researchers and industrial engineers strive to find
more green and efficient solutions for the automotive industry [2]. New energy vehicles
(NEVs) are regarded as effective technologies to address the above-mentioned problem [3],
and several types of NEVs have been promoted and applied, such as battery electric vehicles
(BEVs) [4], plug-in hybrid electric vehicles (PHEVs) [5] and fuel cell vehicles (FCVs) [6].
In recent years, the technological progress of hydrogen energy and fuel cells (FCs) has
greatly promoted the performance improvement of FCVs. FCVs have gradually become
the mainstream development direction of NEVs, attracting the attention of governments
and research institutes around the world [7,8]. Since FCVs typically contain two or more
energy storage systems (ESSs) [9], such as a power battery pack, a fuel cell, and a super-
capacitor [10], suitable and efficient energy management methods (EMMs) are critical for
FCVs [11].

Previous studies have shown that driving cycle information can make a difference
in vehicle energy management [12–14]. In view of this hot topic, we have studied the
characteristic relationship between energy management and the driving cycle of PHEV [15].
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Driving cycle information discussed in this paper indicates the vehicle speed trajectory,
which is an indication of vehicle speed versus sample time [16,17]. Driving characteristics
like mileage, standard deviation of vehicle speed, acceleration, parking time ratio, driv-
ing style, and driver behaviors can be captured from driving cycle information [1,18,19].
Particularly in the energy management of FCVs, driving cycle information will directly
determine the power demand, and will affect the implementation effect of energy man-
agement between the fuel cell and other ESSs [20]. Based on the above, this paper mainly
focuses on the recent advances of energy management methods for fuel cell vehicles from
the perspective of driving cycle information. Figure 1 depicts a summary of the major
points of this paper. A total of 137 related studies were referred to in this review, and the
scope, keywords and results of the literature survey in this paper are given in Table 1.
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Table 1. List of literature survey.

Scope Keywords Results

Web of Science and
Engineering Village

(Publisher: MDPI, Elsevier,
IEEE, etc.)

â energy management method
â fuel cell vehicles
â driving cycle information
â driving cycle collection
â driving pattern recognition
â driving pattern recognition

6 website report (1)

6 review papers (18)

6 journal articles (118)

! real-world driving
cycle information (60),
mainly from China

! non-real-world
driving cycle
information (58)

1.2. Contributions

Driving cycle information is very critical for the development of EMMs, mainly re-
flected in the current driving patterns and future driving characteristics. However, in
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real-world driving situations, the driving cycle changes in real time. Consequently, obtain-
ing current and future driving cycle information is a difficult and inaccessible task. As a
matter of fact, some papers have proposed some EMMs considering driving cycle informa-
tion for FCVs, mainly based on driving pattern recognition and future driving characteristic
prediction. It is noticed that recent reviews have stated the advances progress in energy man-
agement methods for fuel cell vehicles [21–25]. However, no reviews have comprehensively
summarized the EMMs for FCVs from the perspective of driving cycle information.

Motivated by the literature gap, this review mainly focuses on the technologies and
progress of EMMs for FCVs from the perspective of driving cycle information, and strives
to be comprehensive and innovative. The main contributions of this review are as follows:
(i) providing a state-of-the-art understanding of EMMs for FCVs from the perspective of
driving cycle information; (ii) providing a detailed description for driving cycle information
analysis, including driving cycle collection and processing; (iii) providing a comprehensive
summary of the latest EMMs for FCVs, with a focus on EMMs based on driving pattern
recognition and driving characteristic prediction; and (iv) providing an in-depth presenta-
tion of the important highlights and prospects regarding the innovation of EMMs for FCVs.
This review hopefully accelerates the realization of high-performance EMMs for FCVs in
real-world driving situations.

1.3. Organization

The rest of this review is organized into several sections: Section 2 mainly elaborates on
driving cycle information analysis from two aspects: driving cycle collection and processing.
Section 3 comprehensively summarizes energy management methods of fuel cell vehicles
based on driving cycle information, with a special focus on energy management methods
based on driving pattern recognition and driving characteristic prediction. Section 4
provides conclusions and prospects to accelerate the realization of high-performance energy
management methods for fuel cell vehicles in real-world driving situations.

2. Driving Cycle Information Analysis

As the driving cycle is discerned as the input of the EMMs for FCVs, its information
would affect the control performance of EMM extremely [2,26]. In addition, driving
characteristics mined from driving cycle information contribute to the development and
design of EMMs for FCVs. Despite having multiple typical driving cycle (such as NEDC,
UDDS, EUDC, and WLTC), it is still difficult to meet the deep energy-saving needs of
vehicles [27]. In order to seek larger fuel economy (FE) improvement, several studies have
set out to collect and process driving cycle in the real-world driving situations [28–30].

2.1. Driving Cycle Collection

With the development of intelligent networking technology, information and commu-
nication technology and big data technology, it is no longer difficult to collect and analyze
the driving cycle. In recent years, global positioning system (GPS) receivers [31], on board
diagnostics (OBD) [32] and other onboard devices [18] have become the main devices
for driving cycle collection, obtaining driving cycle information such as longitude, lati-
tude, altitude, vehicle speed, and acceleration [33]. In addition, smartphones with built-in
accelerometers, GPS receivers or any other positioning technologies are very useful for
collecting driving cycle [34]. Furthermore, with the rapid development of vehicle-to-vehicle
(V2V) and vehicle-to-everything (V2X) technology, an intelligent transportation system
(ITS) makes the vehicle become a “mobile sensor” to collect driving cycle [35]. To be sure,
driving cycle collection as the fundamental work for driving cycle analysis and processing
has received much attention from some studies. A comparison of reviewed driving cycle
collection studies is summarized in Table 2.
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Table 2. Comparison of reviewed driving cycle collection studies.

Collection Location Collection Device Sampling Rate Main Collected Information Ref.

Chengdu, China GPS / longitude, latitude, time stamp, etc. [36]

Toronto, Canada Qstarz BT-1000 × GPS 1 Hz instantaneous speed, longitude,
latitude, and altitude [37]

Michigan, USA OBD / latitude, longitude, vehicle speed, etc. [38]

Islamabad, Pakistan GPS + OBD 1 Hz latitude, longitude, altitude, speed,
road slope, etc. [39]

Shanghai, China Smartphones 1 Hz altitude, average speed, average
altitude, duration, etc. [40]

Zhengzhou, China OXTS inertial+ 5 Hz velocity, transient acceleration, and
road slope [41]

Hsinchu, China ITS (V2V, GPS, camera,
and sensors) / latitude, longitude, vehicle current

speed, etc. [42]

Due to the influence of the driving environment, jamming signals, zero drift, and
buildings, the driving information collected often exhibited bad data [43]. Bad data can
generally be classified into the following categories: (i) missing data, (ii) abnormal data,
and (iii) burrs data [44]. In terms of the missing data and abnormal data, some studies
have been conducted in detail and will not be repeated here [43,45,46]. In terms of the
burrs data, the wavelet denoising method is an algorithm, which ameliorates signals with
distortion, noise, and disruptions [47]. To clearly demonstrate the effectiveness of the
wavelet denoising method, we selected a segment of the driving cycle and applied the
wavelet denoising method, as shown in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 23 
 

 

processing has received much attention from some studies. A comparison of reviewed 
driving cycle collection studies is summarized in Table 2. 

Table 2. Comparison of reviewed driving cycle collection studies. 

Collection Location Collection Device Sampling Rate Main Collected Information Ref. 
Chengdu, China GPS / longitude, latitude, time stamp, etc. [36] 

Toronto, Canada Qstarz BT-1000 × GPS 1 Hz 
instantaneous speed, longitude, lati-

tude, and altitude [37] 

Michigan, USA OBD / latitude, longitude, vehicle speed, etc. [38] 

Islamabad, Pakistan GPS + OBD 1 Hz latitude, longitude, altitude, speed, 
road slope, etc. 

[39] 

Shanghai, China Smartphones 1 Hz altitude, average speed, average alti-
tude, duration, etc. [40] 

Zhengzhou, China OXTS inertial+ 5 Hz 
velocity, transient acceleration, and 

road slope [41] 

Hsinchu, China ITS (V2V, GPS, cam-
era, and sensors) 

/ latitude, longitude, vehicle current 
speed, etc. 

[42] 

Due to the influence of the driving environment, jamming signals, zero drift, and 
buildings, the driving information collected often exhibited bad data [43]. Bad data can 
generally be classified into the following categories: (i) missing data, (ii) abnormal data, 
and (iii) burrs data [44]. In terms of the missing data and abnormal data, some studies 
have been conducted in detail and will not be repeated here [43,45,46]. In terms of the 
burrs data, the wavelet denoising method is an algorithm, which ameliorates signals with 
distortion, noise, and disruptions [47]. To clearly demonstrate the effectiveness of the 
wavelet denoising method, we selected a segment of the driving cycle and applied the 
wavelet denoising method, as shown in Figure 2. 

 
Figure 2. Comparison between the original and denoised data. 

  

Sp
ee

d 
(k

m
/h

)

Figure 2. Comparison between the original and denoised data.

2.2. Driving Cycle Processing

The preprocessed driving cycle can be divided into some kinematic segments to re-
duce the complexity of subsequent processing. This segmentation is performed for the
driving cycle characteristics analysis [48]. Driving cycle characteristic parameters such
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as vehicle speed, maximum speed, acceleration, standard deviation of vehicle speed, and
parking time ratio are often adopted to characterize driving cycle. Fewer characteristic
parameters will result in the loss of necessary information, making it difficult to accurately
describe driving cycle, while more characteristic parameters will increase the computa-
tional complexity. In light of this, an appropriate number of characteristic parameters
should be selected. Existing studies that have found that the appropriate number of driving
cycle characteristic parameters is approximately 14 include [49] (Shi et al., 12 characteris-
tic parameters), [18] (Kayma, et al., 14 characteristic parameters), and [50] (Wang, et al.,
14 characteristic parameters). However, the dimensionality of the 14 characteristic pa-
rameters is still high, and problems such as low computational efficiency and clustering
difficulties exist in subsequent processing. In light of this, some studies have carried out
relevant algorithms on characteristic parameters dimensionality reduction and driving
cycle (kinematic segments) clustering, and the specific comparison is shown in Table 3.

Table 3. Comparison of dimensionality reduction and clustering algorithms.

Algorithm Advantage Disadvantage Ref.

dimensionality
reduction

principal component
analysis (PCA)

simple and easy to
implement, mainstream

algorithm

can only extract linear
characteristics, inaccurate

results
[51]

kernel principal
component analysis

(KPCA)

improvement of PCA, can
extract non-linear

characteristics

more complex and difficult
to implement [50]

linear discriminant
analysis with the diagonal

eigenvalues (LDA-DE)

can efficiently handle
high-dimensional data, and

reduce the computation time

more complex and difficult
to implement [52]

clustering

K-means
simple and easy to

implement, mainstream
algorithm

slow convergence speed
(non-convex dataset), not

suitable for
complex structure

[53]

spectral high computational
efficiency, good convergence selection of cluster number [54]

K- modified particle swarm
optimization (K-MPSO)

stronger searching ability,
more accurate

clustering results

more complex with
larger calculations [55]

2.2.1. Driving Pattern Recognition

Previous studies have shown that driving pattern can greatly influence the effec-
tiveness of EMMs [56–58]. For example, in the urban driving pattern, vehicles start and
stop frequently, while in the highway driving pattern, vehicles often drive at a constant
speed. The control parameters of one driving pattern may not be suitable for other driving
patterns. In light of this, accurate and effective driving pattern recognition (DPR) can pro-
vide positive guidance for the development and design of EMMs. Some studies adopted
clustering [59,60] and a fuzzy controller [61,62] to establish the driving pattern recognizer.
However, the DPR effect of the clustering method is related to the initial point selection, and
it is easy to fall into the local optimum. In addition, the DPR effect of the fuzzy controller
relies heavily on engineering intuition, and it frequently fails to achieve satisfactory results.
In [63], Matignon et al. developed the online DPR using the fuzzy C-means clustering
technique. The developed driving pattern recognizer could be mainly summarized into
four steps: (i) database preprocessing, (ii) data standardization, (iii) classification, and
(iv) online DPR modeling, as shown in Figure 3a. The DPR method proposed in [63] adopts
standardized velocity and acceleration as the input and provides the driving pattern as the
output (see Figure 3b).
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In other studies of this area, supervised algorithms are adopted to recognize the
vehicle driving pattern [64], such as support vector machines (SVM) [65], learning vector
quantization (LVQ) [66], and artificial neural networks (ANN) [67]. LVQ is an output
forward neural network for training output, competing and output layers, which can be
used for DPR. For example, Chen et al. proposed a LVQ-based driving cycle recognition
method [68], and the construction process of the LVQ-based driving cycle recognizer was
shown in Figure 4a. The characteristic parameters of the driving cycle were calculated and
input as vectors into the LVQ-based driving cycle recognizer, and the LVQ-based driving
cycle recognizer was constructed by encapsulating the LVQ neural network into a module
via Simulink. The China heavy-duty commercial vehicle test cycle (CHTC) was used as
an example in [68], and the driving cycle recognition results were shown in Figure 4b.
In [69], a generalized regression neural network (GRNN)-based driving pattern recognizer
was developed to recognize the actual driving cycle. The characteristic parameters of the
driving cycle after dimensionality reduction (the PCA method) were used as inputs, and the
hierarchical cluster method was adopted to obtain representative typical driving patterns.
In addition, the GRNN algorithm was adopted to develop a driving pattern recognizer (see
Figure 4c). Finally, the corresponding types of driving patterns are output by the model,
with the example and recognition results shown in Figure 4d.
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Figure 4. Supervised algorithms to recognize the vehicle driving pattern: (a) method diagram of LVQ.
(b) DPR example and result adapted from [68]. (c) Method diagram of GRNN. (d) DPR example and
result. Adapted with permission from [69]. Copyright 2019 John Wiley and Sons.

2.2.2. Driving Characteristic Prediction

The driving cycle of a vehicle can be predicted by driving characteristic prediction
(DCP) techniques, and the results indicate the current or future driving characteristics of the
vehicle, like velocity and acceleration [70,71]. The effectiveness and real-time performance
of DCP results have great impacts on the performance of corresponding EMMs, such as
FE, lifetime of fuel cell and battery. However, DCP is a challenging study because vehicle
speed is influenced by various factors, such as traffic condition and driving behavior.
There are two main methods for DCP: one is model based, such as Markov Chain (MC)
models [72,73] and neural network (NN) models [74,75]. Lin et al. proposed a velocity
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prediction method based on Markov Chain integrated with driving pattern recognition [76].
Firstly, three typical driving cycles were adopted to construct a sample driving cycle.
Additionally, the K-means algorithm was adopted to cluster the constructed driving cycle
segments, then the LVQ algorithm was adopted to recognize the driving pattern in real time.
Finally, MC was applied to construct the Markov Transition Matrix (MTM), and the MTMs
corresponding to three clustered driving patterns were adopted to predict vehicle velocity.
The velocity prediction results under different prediction horizons were shown in Figure 5a,
and we found that the proposed velocity prediction method was able to improve prediction
accuracy effectively compared with the previous method without DPR. Xing et al. proposed
a deep learning NN architecture for vehicle speed prediction, called VSNet, by combining a
convolutional neural network (CNN) and a long short-term memory (LSTM) network [77].
The diagram of speed prediction was shown in Figure 5b, and the VSNet could identify the
mapping relationship between vehicle signals and vehicle speed to accurately predict the
future vehicle speed. The Markov Chain combined with Monte Carlo (MCMC), SVM and
CNN were compared with VSNet to verify the effectiveness of VSNet in DCP, as shown in
Figure 5c. The results show that VSNet outperformed the other three methods. In addition
to directly using Markov or a neural network for driving characteristic prediction models,
some combination methods are also proposed [78–80].
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The other is DCP based on positioning, sensing, interaction-aware, and other traffic
information service technologies, such as V2X, V2V, and ITS [81–83]. The development of
communication technologies has promoted the timely acquisition of long-term and short-
term traffic information. For instance, Adelberger et al. [84] proposed a long-term velocity
prediction method utilizing real-world V2X data. Hyeon et al. [85] proposed a simple and
effective prediction method for generating short-term future speed trajectories using V2V
information. A big data-assisted communication (BDAC) scheme for vehicular networks
was proposed by An and Wu [86], and the proposed scheme is to use offline traffic data pre-
diction to enhance the online packet forwarding procedure. The proposed scheme could be
divided into two parts: the prediction part and the forwarding part, as shown in Figure 6a.
The advantages of the proposed scheme in [86] over existing approaches mainly came
from improving efficiency and reducing overhead. Meanwhile, it is known that accurately
predicting the speed of an individual vehicle is very challenging [87]. In [87], Jiang and
Fei studied the integration of traffic and vehicle driving data for individual vehicle speed
prediction along specific driving routes, and proposed a novel two-level non-parametric
data-driven model to improve prediction accuracy. Moreover, some studies used Baidu,
Gaode, or other online map API to obtain future traffic information [88,89]. Practically, we
have conducted studies on how to predict future driving characteristics based on the Gaode
map API. We adopt the Gaode map API as an example [90] to construct a path-planning API
call and a driving characteristic prediction scheme to obtain information such as location,
mileage, and speed during future driving processes, as shown in Figure 6b.
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3. Energy Management Methods for FCVs

As mentioned above, FCVs are one of the most promising future vehicles [91], and suit-
able and effective energy management methods (EMMs) are critical for energy coordination
between fuel cells and power batteries/super-capacitors [92]. Therefore, the development
and design of EMMs to reduce energy consumption and prolong lifespan are the subject of
much research [93–96].

3.1. Overview of Energy Management Methods for FCVs

Previous studies have extensively studied the EMMs of FCVs to improve energy
efficiency and durability. The EMMs of FCVs can be divided into three major categories:
(i) rule based, (ii) optimization based, and (iii) other based, as shown in Figure 7. Rule-
based EMMs are always dependent on human experiences or engineering knowledge, and
they can also be divided into two categories: deterministic rules and fuzzy rules [97,98].
Although rule-based EMMs are widely adopted due to their simplicity and practicality, they
cannot obtain the globally optimal solution. To achieve better management results for FCVs,
numerous efforts have been made in the field of optimization-based EMMs, mainly with
respect to global optimization methods and local optimization methods [99,100]. Dynamic
programing (DP) and Pontryagin’s minimum principle (PMP) are classic global optimiza-
tion EMMs, as they can obtain the theoretical global optimal solution [101]. However, due
to non-prior driving cycle information, they cannot be directly applied to actual vehicles. To
overcome these issues, the stochastic dynamic programming (SDP) and adaptive dynamic
programming (ADP) methods are proposed to optimize power distribution [102,103]. Local
optimization methods mainly consist of the equivalent consumption minimization strategy
(ECMS) and the model predictive control (MPC) method, which can achieve real-time
optimization control [97,104]. Compared to other EMMs, real-time optimization control
methods are complicated, but indispensable. Similarly, to achieve near-optimal fuel econ-
omy, the adaptive equivalent consumption minimization strategy (A-ECMS) and adaptive
model predictive control (A-MPC) are designed and proposed [105,106]. In addition, some
papers propose combined EMMs to further improve fuel economy while ensuring FC
durability, such as DP-ECMS [107], the rule-based fuzzy control method [108], adaptive
neuro-fuzzy inference system-ECMS (ANFIS-ECMS) [109], and MPC-PMP [110].
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As a new research hotspot in the field of artificial intelligence (AI) and internet of
vehicles (IOV), learning-based and cycle information-based EMMs have been applied to
achieve the optimal fuel economy of FCVs in real time [63,111]. Progress, challenges,
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and potential solutions of learning-based EMMs for FCVs have been reviewed in detail
in [112–114] and will not be further elaborated here. More importantly, considering the
importance of driving cycle information in the design and development of EMMs for
FCVs, the following summarizes the existing papers from two perspectives: driving pattern
recognition and driving characteristic prediction. To the best of our knowledge, this
is the first attempt to summarize the EMMs of FCVs from the perspective of driving
cycle information.

3.2. Energy Management Methods for FCVs: Based on Driving Pattern Recognition

In recent years, to improve the performance of the EMMs for FCVs, research on driving
pattern recognition has been proposed [115–120]. The comparative analysis of the EMMs
for FCVs based on driving pattern recognition is shown in Table 4. Particularly in [119], a
multi-mode EMM for fuel cell hybrid electric vehicles was proposed. The multi-mode EMM
consisted of (i) a Markov Chain driving pattern recognizer, (ii) a multi-mode MPC controller,
and (iii) a vehicle powertrain model, as shown in Figure 8. In fact, each driving pattern has
its own (v-a) transition characteristic. Therefore, the MC transition probability matrix (TPM)
could be used to characterize the (v-a) transition behavior of each driving segment, and the
MC recognizer could periodically update the pattern identification results (updated per
50 s). In addition, the offline DP algorithm was applied to carefully tune and optimize three
sets of MPC control parameters. Afterwards, with the online DPR results, one set of offline-
tuned MPC parameters was selected to handle the power requirement under corresponding
driving patterns. The multi-mode EMM could adapt to the changeable driving conditions
automatically while matching suitable MPC control parameters to achieve fuel economy
and fuel cell durability improvement.
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Moreover, to further improve the comprehensive economy of FCVs and extend the life
of the ESSs, optimization algorithms and learning algorithms were combined and adopted
in the design of EMMs. In [121], a genetic algorithm (GA)-based fuzzy optimization of
EMM for FCVs considering driving cycle recognition was proposed (see Figure 9a). In the
proposed EMM, the K-means clustering method was developed to recognize the driving
cycles, and GA was adopted to optimize the centers and widths of the fuzzy logical control
membership function to overcome the limitation of the dependence on expert knowledge
and improve the control efficiency of traditional fuzzy logical control. In [122], an online
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adaptive EMM based on DPR and regression learning was proposed. Like [121], an im-
proved k-means cluster method was designed for DPR, which mitigated the impact of
different distance definitions on clustering results. Additionally, regression learning was
employed to learn the optimal control laws for DP. Finally, an online energy management
regression learner chose different management models according to different patterns. To
achieve equivalent hydrogen consumption minimization and battery degradation inhibi-
tion, a deep Q-learning-based trip pattern adaptive (DQN-TPA) battery longevity-conscious
EMM was developed in [123]. In the proposed EMM, a learning vector quantization neural
network (LVQ-NN)-based method was devised for pattern identification, and the A-ECMS
was conducted to improve hydrogen consumption. Then, based on the A-ECMS, three
battery longevity-conscious EMMs consisting of the multi-criteria optimization method, the
TPA method, and the DQN-TPA method were developed and comprehensively discussed
(see Figure 9b). Both the numerical validation and the hardware in loop (HIL) results
demonstrated that the proposed DQN-TPA method could further improve hydrogen con-
sumption and battery durability.

Table 4. Comparative analysis of the main EMMs for FCVs: based on driving pattern recognition.

EMMs DPR Methods Energy Sources Simulation/
Hardware Description Ref.

intelligent fuzzy
controller

traffic condition
recognition algorithm

(TCRA)
fuel cells + batteries Advisor

(UDDS/EUDC)

9~17% fuel consumption
improvement vs. primary
controller, and 84% correct

recognition (TCRA)

[115]

adaptive fuzzy
controller neural network (NN) fuel cells +

supercapacitors
Matlab

(hybrid cycles)

minimum current
fluctuations and fuel

consumption vs.
conventional EMM, and
95% test accuracy (NN)

[116]

multi-mode EMM LVQ neural network
(NN) fuel cells + batteries

Matlab (multi-
cycle)/dynamometer

testing bench

economy performance:
8.44% higher than

thermostat control strategy
with empirical value, 3.71%

higher than thermostat
control strategy optimized
by the genetic algorithm

(GA)

[117]

adaptive game theory
controller

neural network
(NN)

fuel cells + batteries +
supercapacitors

Matlab
(hybrid cycles)

7.4% reduction in hydrogen
consumption and 23.99%

reduction in battery
degradation cost vs.

conventional game theory
controller

[118]

MPC-based
multi-mode EMM Markov Chain (MC) fuel cells + batteries

Advisor
(three multi-pattern

testing cycles)

2.07~3.26% hydrogen
consumption saving vs.
single-mode benchmark

strategy, and 94.97~98.16%
identification accuracy

(MC)

[119]

adaptive rule
controller with
optimization

vehicle operation
state recognition

fuel cells + batteries +
ultracapacitors

Matlab
(WLTP)

33.7% increase in hydrogen
consumption, 31.6%

decrease in electric power
consumption, and 10.94%

reduction in the
comprehensive operating

cost vs. EMM before
optimization

[120]
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3.3. Energy Management Methods for FCVs: Based on Driving Characteristic Prediction

Compared to the related research on the EMMs for FCVs based on driving pat-
tern recognition, research on the EMMs for FCVs based on driving characteristic pre-
diction is more extensive and in-depth due to the promotion of the intelligent process
of NEVs [124–132]. The comparative analysis of the EMMs for FCVs based on driving
characteristic prediction is shown in Table 5. The team of Sun et al. (Academician of
Chinese Academy of Engineering) developed research on fuel cell system optimization



Sensors 2023, 23, 8571 14 of 22

control [133,134] and vehicle energy management [135,136] of FCVs based on driving speed
prediction. In [135], a vehicle speed prediction model predictive control (SP-MPC) EMM
was developed for FCVs (see Figure 10a). Firstly, the future vehicle total power demand
was predicted through the proposed exponential smoothing law-Markov Chain vehicle
speed predictor. Then, the total power demand prediction sequence was regarded as the
disturbance, imported into the system response prediction model of the MPC. Finally,
simulation and HIL were conducted for performance verification of the proposed SP-MPC.
Correspondingly, a real-time cost-minimization strategy via speed prediction and MPC
for FCVs was proposed in [137], with its schematic diagram given in Figure 10b. Firstly,
upcoming vehicle speed prediction was realized by the online-learning enhanced Markov
Chain (OL-MC) predictor. Then, MPC was used to quantify the vehicle’s operating cost,
and DP was adopted to derive the optimal power-splitting decision over each receding
horizon. Finally, the proposed method was compared against multiple benchmark methods
to assess the functionality and real-time suitability.

Table 5. Comparative analysis of the main EMMs for FCVs: based on driving characteristic prediction.

EMMs DCP Methods Energy Sources Simulation/
Hardware Description Ref.

hierarchical
reinforcement
learning EMM

â long-term prediction:
k-nearest neighbor
(KNN)

â short-term prediction:
feature extraction
and Bayesian
information criterion

fuel cells + batteries
(plug-in)

Matlab
(UDDS)

6.46% and 5.82%
reduction in hydrogen

consumption vs. CD and
CS mode, respectively,

and 10%~33% reduction
in the fuel cell start–stop

times vs. rule-based

[127]

multi-objective
hierarchical

prediction EMM

â short-term prediction:
back propagation
neural network
(BPNN)

fuel cells + batteries
(range extended)

Matlab
(three testing cycles)

8.6% and 13.5% reduction
in the operating costs vs.
CD-CS strategy and the

ECMS, respectively

[128]

integrated predictive
(A-MPC) EMM

â short-term prediction:
fuzzy C-means
clustering and
multi-step Markov
Chain

fuel cells + batteries
(range-extended

plug-in)

Matlab
(five testing cycles)

3.79% hydrogen
consumption saving and
40.4% FC power spikes

limiting vs. lower
benchmark strategy, and

0.84% fuel economy
deficiency and 9.18% fuel

cell power transients
deficiency vs. DP

[129]

real-time
multi-criteria control

(MPC) EMM

â short-term prediction:
adaptive
online-learning
enhanced Markov

fuel cells + batteries
Matlab

(multi-pattern testing
cycle)

12.5% hydrogen
consumption saving and
94.9% average FC power
transients suppressing vs.

CD-CS

[130]

sequential quadratic
programming (SQP)

based real-time
optimization EMM

â short-term prediction:
inflated 3D inception
long short-term
memory (LSTM)

fuel cells + batteries Matlab

7.50% and 2.48%
reduction in the

powertrain system
degradation and total

cost of the energy
consumption and

powertrain system
degradation, respectively,

vs. ECMS

[131]

A-ECMS

â short-term prediction:
long short-term
memory-neural
network (LSTM-NN)

fuel cells + batteries
(heavy-duty vehicle)

Matlab
(four driving cycles)

3.76~11.40% increase in
hydrogen consumption
vs. standard ECMS, but

feasible for realistic
conditions

[132]
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4. Conclusions and Prospects

In order to improve the energy economy and prolong the powertrain system durability
of FCVs, it is urgent and meaningful to develop suitable and efficient EMMs. As driving
cycle information is extremely important in EMMs for FCVs, some studies have studied
driving cycle information collection and processing, which lay the foundation for the
development of EMMs based on driving cycle information. This paper provides a state-of-
the-art understanding and a detailed overview of EMMs for FCVs from the perspective of
driving cycle information. More specifically, this paper comprehensively reviews studies
on driving cycle information analysis and the EMMs for FCVs, which mainly focuses on
EMMs based on DPR and DCP. This paper can provide potential guidance for the design
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and development of EMMs for FCVs in real-world driving situations. Although great
progress has been made in the EMMs based on driving cycle information for FCVs, there
are still many challenges. The main prospects of this review are the following:

1. Accurate driving pattern recognition: The accuracy of driving pattern recognition
is crucial for the development and implementation of EMMs. However, recognition
accuracy and algorithm complexity are interrelated. Some advanced recognition
algorithms in the existing literature have the problem of low recognition accuracy.
In the future, the sampling time, the selection of characteristic parameters, and the
recognition period can all be combined with advanced recognition algorithms to
construct recognition methods with excellent recognition accuracy and efficiency.

2. Short-term driving characteristic prediction: Affected by the impacts of real-world
driving conditions, the driving characteristics of vehicles will change in real time.
Therefore, short-term driving characteristic prediction remains a hot and challenging
issue, as it depends on various factors like the prediction method and traffic conditions.
In the future, with the help of V2V, V2X, ITS and predictive algorithms, driving
characteristics like speed, mileage, slope, and traffic signal light states can be predicted
in the short term.

3. Real-time energy management optimization: Ideal energy management optimiza-
tion methods can adaptively generate effective control decisions considering the DPR
and DCP results. However, most current energy management optimization methods
are difficult to apply to real vehicles. Advanced algorithms bring up more possibilities
of real-time energy management optimization which are worth exploring. In the fu-
ture, real-time/online/adaptive EMMs will be considered for supplying an excellent
control effect.

4. Integrated driving style recognition: Even the same driver can exhibit different
driving styles under different road conditions, and different driving styles can directly
affect the energy management of the FCVs. Therefore, introducing the influence of
driving styles into the EMMs for FCVs will be valuable and crucial. However, driving
style is often described qualitatively, and is not integrated into the EMMs. In the
future, integrated driving style recognition of drivers in real social driving networks
will improve the effectiveness of EMMs for FCVs.

Accurate driving pattern recognition algorithms, short-term driving characteristic
prediction algorithms, real-time energy management optimization methods and integrated
driving style recognition methods will improve the energy economy and prolong the pow-
ertrain system durability of FCVs. In the future, our work will focus on the development
and application of EMMs for FCVs based on the ITS and DCP technologies.
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Abbreviations

NEV New Energy Vehicle
BEV Battery Electric Vehicle
PHEV Plug-in Hybrid Electric Vehicle
FCV Fuel Cell Vehicle
FC Fuel Cell
ESS Energy Storage System
EMM Energy Management Method
NEDC New European Driving Cycle
UDDS Urban Dynamometer Driving Schedule
EUDC Extra Urban Driving Cycle
WLTC Worldwide harmonized Light-duty Test Cycle
WLTP Worldwide harmonized Light-duty Test Procedure
CHTC China Heavy-duty commercial vehicle Test Cycle
FE Fuel Economy
SOC State of Charge
OBD On Board Diagnostics
GPS Global Positioning System
V2V Vehicle to Vehicle
V2X Vehicle to Everything
ITS Intelligent Transportation System
API Application Programming Interface
PCA Principal Component Analysis
KPCA Kernel Principal Component Analysis
LDA-DE Linear Discriminant Analysis with the Diagonal Eigenvalues
K-MPSO K- Modified Particle Swarm Optimization
DPR Driving Pattern Recognition
DCP Driving Characteristic Prediction
SVM Support Vector Machine
LVQ Learning Vector Quantization
NN Neural Network
ANN Artificial Neural Network
GRNN Generalized Regression Neural Network
BPNN Back Propagation Neural Network
CNN Convolutional Neural Network
LVQ-NN Learning Vector Quantization Neural Network
LSTM Long Short-Term Memory
LSTM-NN Long Short-Term Memory-Neural Network
MC Markov Chain
MTM Markov Transition Matrix
TPM Transition Probability Matrix
MCMC Markov Chain combined with Monte Carlo
OL-MC Online-Learning enhanced Markov Chain
CD-CS Charge Depleting and Charge Sustaining
FLC Fuzzy Logical Control
DP Dynamic Programing
PMP Pontryagin’s Minimum Principle
SDP Stochastic Dynamic Programming
ADP Adaptive Dynamic Programing
ECMS Equivalent Consumption Minimization Strategy
MPC Model Predictive Control
A-ECMS Adaptive Equivalent Consumption Minimization Strategy
A-MPC Adaptive Model Predictive Control
ANFIS-ECMS Adaptive Neuro-Fuzzy Inference System-ECMS
RL Reinforcement Learning
SL Supervised Learning
AP-MPC Speed Prediction Model Predictive Control
BDAC Big Data-Assisted Communication
AI Artificial Intelligence
IOV Internet of Vehicles
TCRA Traffic Condition Recognition Algorithm
GA Genetic Algorithm
DQN-TPA Deep Q-learning based Trip Pattern Adaptive
HIL Hardware in Loop
KNN K-Nearest Neighbor
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