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Abstract: The fast and accurate solution of integer ambiguity is the key to achieve GNSS high-
precision positioning. Based on the lattice theory of high-dimensional ambiguity solving, the re-
duction time consumption is much larger than the search time consumption, and it is especially
important to improve the efficiency of the lattice basis reduction algorithm. The Householder QR
decomposition with minimal column pivoting is utilized to pre-sort the basis vectors and reduce the
number of basis vector exchanges during the reduction process by partial size reduction and relaxing
the basis vector exchange condition to improve the reduction efficiency of the LLL algorithm. The
improved algorithm is validated using simulated and measured data, respectively, and the perfor-
mance advantages and disadvantages of the improved algorithm are evaluated from the perspectives
of the extent of reduction basis orthogonality and the quality of reduction basis size reduction. The
results show that the improved LLL algorithm can significantly reduce the number of basis vector
exchanges and the reduction time consumption. The HSLLL and PSLLL algorithms with the Siegel
condition as the basis vector exchange condition have a better reduction effect, but are slightly less
stable. The PLLLR algorithm significantly improves the search ambiguity resolution efficiency, which
is conducive to the rapid realization of ambiguity resolution.

Keywords: GNSS; integer least squares; integer ambiguity; LLL reduction; partial size reduction

1. Introduction

The resolution of integer ambiguity has a significant impact on the high-precision
navigation and positioning results of the carrier phase. The LAMBDA method is currently
recognized as the most theoretically rigorous, most efficiently solved, and most widely used
ambiguity solving method [1]. It is based on the integer least squares model and reduces the
search space by reducing the correlation between the variance components of the ambiguity
in order to improve the search efficiency [2]. In addition, many scholars have carried out
a lot of fruitful research on the decorrelation algorithm: Liu et al. proposed an approach
to united ambiguity decorrelation from the perspective of LU decomposition [3]; Xu
proposed a decorrelation algorithm for inverse integer Cholesky decomposition using a pre-
sorting strategy [4,5]; Zhou proposed the (inverse) paired Cholesky integer transformation
algorithm using upper and lower triangular Cholesky decomposition [6,7]; and Chang et al.
improved the LAMBDA algorithm by using a greedy algorithm and lazy transformation
strategy, and proposed the MLAMBDA algorithm [8].

Ambiguity resolution is an integer least-squares problem, which is essentially equiva-
lent to the closest vector problem (CVP) in lattice theory, which is an NP-hard problem [9,10].
In order to obtain the nearest vector, it is usually necessary to reduce the basis vector. That
is, the integer Gaussian transform is utilized to reduce the correlation of the basis vector,
and the basis vector is sorted according to a certain criterion in order to obtain the shortest
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possible reduced basis. Among them, the LLL reduction algorithm is the most popular [11].
Therefore, the related methods of ambiguity resolution can be placed in the framework
of lattice theory, thus injecting new vitality into the in-depth study of integer ambiguity
resolution. Hassib et al. first introduced the LLL reduction algorithm to GNSS ambiguity
resolution [12]. Grafarend introduced the solution principle of the LLL algorithm and
carried out a detailed data analysis [13]. L.Z. Lou proposed to improve the original LLL
algorithm by using a new judgment criterion in response to the defect of iterative non-
convergence in the LLL algorithm [14]. Since the LLL algorithm introduces a large rounding
error during the rounding process, Z.P. Liu et al. proposed an improved LLL algorithm
based on overall matrix rounding [15]. R.H. Yang et al. improved the LLL algorithm by
reordering the Gram–Schmidt orthogonal basis [16]. L. Fan and K. Xie improved the LLL
algorithm from the perspective of reducing the length of the reduction basis vector [17,18].
Jazaeri et al. compared and analyzed the performance differences between the LAMBDA
algorithm and the LLL algorithm [19]. Ling and Howgrave-Graham pointed out that the
core of the LLL algorithm lies in the basis vector exchange by analyzing the characteristics
of the size reduction and basis vector exchange in the LLL algorithm, and based on this,
they proposed the ELLL (Effective LLL) algorithm with partial size reduction [20]. Xie
et al. analyzed the effectiveness of the size reduction in the LLL algorithm and proposed
the PLLL (Partial LLL) algorithm that selectively performs the size reduction of a column
vector in response to the large truncation error of the ELLL algorithm [21]. L.G. Lu et al.
improved the LLL algorithm using the greedy selection of the basis vector and partial
column vector reduction to reduce the computational complexity of the LLL algorithm [22].
H. Lv et al. improved the original LLL algorithm by using delayed size reduction and
partial size reduction in order to reduce the redundant size reduction during the reduction
process [23]. Li et al. improved the LLL algorithm based on the Householder transform by
using a symmetric pivoting strategy [24].

At the same time, relevant scholars have also conducted in-depth research on the
correlation between the LAMBDA decorrelation algorithm and LLL reduction algorithm
in lattice theory, as well as the performance evaluation index of lattice basis reduction
assisting ambiguity resolution. J.N. Liu et al. theoretically proved the equivalence between
the decorrelation and the lattice basis reduction [9]. Lannes further proved the equivalence
of the LAMBDA decorrelation algorithm and the LLL algorithm [25]. Borno et al. pointed
out through theoretical analysis that simple integer Gaussian transformations do not affect
the efficiency of the search for integer ambiguity [26]. Jazaeri et al. analyzed the relationship
between commonly used reduction performance evaluation indexes (condition number
and orthogonal defect) and search efficiency, and pointed out that the above indexes could
not accurately measure the efficiency of an accelerated ambiguity search for lattice basis
reduction methods [27]. L.G. Lu et al. compared and analyzed the performance of the
LAMBDA decorrelation algorithm and the LLL reduction algorithm under different decom-
position methods. They categorized and generalized the common decorrelation (reduction)
evaluation indexes from a geometric perspective. It is further illustrated that different
evaluation indexes are not directly related to the search efficiency of ambiguity [28].

In view of this, this paper proposes new improved algorithms on the basis of LLL
and PLLL algorithms for the characteristics of ambiguity resolution, and appropriately
relaxes the exchange conditions of the basis vector in order to reduce the reduction time
consumption and improve the computational efficiency of ambiguity resolution. The
effectiveness of the improved algorithms and the reduction performance are verified by
simulation and measured data.

2. Methods and Improvement Strategies

The following describes the notations to be used in this paper. The set of real and
integer formed by n-dimensional vectors are denoted by Rn and Zn, respectively. MATLAB
notation is used to represent submatrices. Specifically, if A =

(
ai,j
)
∈ R, then A(i, :) denotes
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the i-th row, A(:, j) denotes the j-th column, and A(i1 : i2, j1 : j2) the submatrix formed by
rows i1 to i2 and columns j1 to j2. For the element (i, j) of A, it is denoteb by ai,j or A(i, j).

2.1. Integer Least Squares Model

The GNSS observation equation is [29,30]:

y = Aa + Bb + e (1)

where a is the carrier phase ambiguity parameter, b is the baseline parameter of the com-
ponent to be estimated, e is the observation noise, y is the carrier phase and pseudorange
observation, and A and B are the design matrix.

Using the least squares criterion [31,32], it can be shown that

min‖y−Aa− Bb‖2
Qy

a ∈ Zm , b ∈ Rn (2)

where ‖·‖ = (·)TQ−1
y (·), Qy is the variance covariance matrix of observation y. Considering

that the ambiguity parameter is an integer, Equation (2) can be further decomposed as:

‖y−Aa− Bb‖2
Qy

= ‖ê‖2
Qy

+ ‖â − a‖2
Qâ

+
∥∥b̂(a)−b

∥∥2
Qb̂|â

(3)

and
ê = y−Aâ − Bb̂

b̂(a)= b̂ −Qb̂âQ−1
â (â − a)

Qb̂|â = Qb̂ −Qb̂âQ−1
â Qâb̂

 (4)

where â is the ambiguity float solution, b̂ is the baseline component corresponding to
the ambiguity float solution, and b̂(a) is the baseline component corresponding to the
ambiguity fixed solution. Since b in Equation (1) is a real vector, the third term to the
right of Equation (3) should be zero. So when b = b̂(a) and ‖â − a‖2

Qâ
takes the minimum

value, ‖y−Aa− Bb‖2
Qy

takes the minimum value. Therefore, the minimization problem of
Equation (2) is transformed into:

min‖â− a‖2
Qâ

= min(â − a)TQ−1
â (â − a) a ∈ Zm (5)

The Cholesky decomposition of Qâ, namely,

Qâ = GTG (6)

where G is the upper triangular matrix.
Substituting Equation (6) into Equation (5) gives

min
∥∥∥G−T(â − a)

∥∥∥2
= min

∥∥∥y−G−Ta
∥∥∥2

(7)

where y =G−Tâ is a constant.
Equation (7) is also known as the nearest vector problem in lattice theory [33]. In order

to obtain the integer solution of the ambiguity rapidly, the decorrelation process is usually
used to reduce the correlation between the variance components in Q, which improves the
efficiency of the search for the ambiguity in Equation (5).
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2.2. LLL Algorithm Based on QR Decomposition

Let g1 , g2 , · · · gn ∈ Rn be a set of linearly independent basis vectors and the lat-
tice L(g1 , g2 , · · · gn) represent the set consisting of all linear combinations of integers of
g1 , g2 , · · · gn, i.e.,:

L(G) =

{
n

∑
i=1

xigi , xi ∈ Z(1 ≤ ∀i ≤ n)

}
(8)

where G = {g1 , g2 , · · · gn} is called a set of basis of the lattice, L(G) is the lattice generated
by G, and xi is the combinatorial coefficient of gi.

The classical LLL algorithm implements the reduction on the basis of Gram–Schmidt
Orthogonalization (GSO) [11]. Schmidt Orthogonalization is performed on the basis matrix
G = [g1 , g2 , · · · gn]:

G = G ∗U = [g∗1 , g∗2 , · · · g∗n]


1 u1,2 · · · u1,n
0 1 · · · u2,n

0 0
. . .

...
0 0 0 1

 (9)

In the formula, G∗ =
[
g∗1 , g∗2 , · · · g∗n

]
and g∗i = gi −

i−1
∑

j=1
uj,ig∗j , U =

[
uj,i
]

are the unit

upper triangular matrix and satisfy uj,i =
〈

gi, g∗j
〉

/
∥∥∥g∗j
∥∥∥ 2

, 1 ≤ j < i ≤ n. Matrix G∗ and
U satisfy the following two reduction conditions:∣∣uj,i

∣∣ ≤ 1
2 1 ≤ j < i ≤ n

δ
∥∥g∗i−1

∥∥2 ≤
∥∥g∗i
∥∥2

+ u2
i,i−1

∥∥g∗i−1

∥∥2 1
4 < δ ≤ 1

}
(10)

Call G the LLL reduction basis parameterized by δ. The first equation is called the size
reduction and the second equation is the basis vector exchange.

In fact, in order to improve the float accuracy of the lattice basis reduction, the LLL
reduction algorithm based on QR decomposition is usually used [34]. The following
decomposition is performed on the basis matrix G:

G = QR = [q1, q2, · · · qn]


r1,1 r1,2 · · · r1,n
0 r2,2 · · · r2,n

0 0
. . .

...
0 0 0 rn,n

 (11)

In the equation, Q is the orthogonal matrix and qi = g∗i /
∥∥g∗i
∥∥ ,R =

[
rj,i
]

is the upper

triangular matrix and satisfies uj,i = rj,i/rj,j and
∥∥∥b∗j
∥∥∥ = rj,j.

Thus, the reduction condition of Equation (8) can be rewritten as:∣∣∣ rj,i
rj,j

∣∣∣ ≤ 1
2 1 ≤ j < i ≤ n

δr2
i−1,i−1 ≤ r2

i,i + r2
i−1,i

1
4 < δ ≤ 1

}
(12)

Equation (12) is the reduction condition of the LLL algorithm based on QR decomposition.
In order to satisfy the above reduction conditions, it is usually necessary to construct a

transformation matrix for reduction operation.

1. Size reduction: in order to realize the first condition in Equation (10), construct
the unimodular matrix Zj,i = In −

[
rj,i/rj,j

]
intejeT

i ([•]int represents the rounding
operator), use its right multiplication by the basis matrix G to realize the size reduction
of the corresponding element, and, at the same time, update the upper triangular
matrix R.
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2. Basis vector exchange (Lovasz condition): if the second condition in Equation (10) is
not satisfied, the exchange matrix Pi−1,i is constructed to swap the order of gi−1 and
gi, and the matrix R is updated to re-triangularize it.

2.3. Improved LLL Algorithm
2.3.1. Householder QR Decomposition Based on Minimum Column Pivoting

The original LLL algorithm performs a QR decomposition of the basis matrix based
on GSO. The Householder QR decomposition has lower computational complexity and
better numerical stability compared to GSO [35]. Partial LLL reduction algorithms utilize
the Householder QR decomposition with minimum column pivoting instead of the regular
Householder QR decomposition. In general, the number of basis vector exchanges is a
key factor affecting the time consumption of the whole LLL reduction, and it is possible to
reduce the number of basis vector exchanges if matrix R of QR decomposition can be made
closer to the LLL reduction basis. It can be obtained from Equation (12) that(

δ− 1
4

)
r2

i−1,i−1 ≤ r2
j,j

1
4
< δ ≤ 1 (13)

In order to make it easier for matrix R to satisfy Equation (13), the minimum column
pivoting strategy selects the columns that minimize

∣∣rj,j
∣∣ to be exchanged. In the j-th step

of the QR decomposition, find column i of G(j : n, j : n) which has the shortest length and
exchange the i-th column of G with the j-th column. The off-diagonal element G(j + 1 : n, j)
is then eliminated by the Householder transformation. By using the minimum column
pivoting strategy, the Householder QR expression is:

QTGP = R (14)

where P ∈ Zn is the exchange matrix and QT = HnHn−1 · · ·H1 is the product of n House-
holder transformations.

2.3.2. Partial Size Reduction

It has been theoretically demonstrated in the literature that simple size reduction
does not affect the number of candidate points for the ambiguity search, and that basis
vector exchange is the real goal of lattice basis reduction to accelerate the ambiguity
search. In the LLL algorithm, only the size reduction of the secondary diagonal element
is generally required. However, considering the lattice basis reduction efficiency and
numerical stability of the algorithm, it is necessary to carry out size reduction for partial
non-principal secondary diagonal elements under certain conditions.

ri−1,i = ri−1,i − ζri−1,i−1 (15)

where ζ = [ri−1,i/ri−1,i−1]int. The size reduction is applied to the non-principal secondary
diagonal elements when they satisfy

∣∣[ri−1,i/ri−1,i−1]int

∣∣ ≥ 2, viz:

rk,i = rk,i − [rk,i/rk,k]intrk,k , k = i− 2, i− 3, · · · , 1 (16)

It should be noted that matrix element size reduction is an integer transformation
process, which not only reduces the size of the element itself, but also updates the rest of
the column vector accordingly.
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Givens rotation has better numerical stability than GSO. Therefore, Givens rotation
is used for triangularization after the exchange of the basis vector of the PLLL reduction
algorithm. Suppose we exchange the k−1 and k columns of R, i.e.,:

RPk−1,k =

R1,1 R1,2 R1,3
R̃2,2 R2,3

R3,3

 k−2

2

n−k

k−2 2 n−k

(17)

then

Pk−1,k =

 Ik−2
P

In−k

, P =

[
0 1
1 0

]
, R̃2,2 =

[
rk−1,k rk−1,k−1

rk,k 0

]
, R1,2 =

[
R1:k−2,k−1 R1:k−2,k

]
.

It can be seen that the block matrix R̃2,2 is not an upper triangular matrix. Therefore, it
is triangularized using Givens rotation. Assuming that the Givens rotation matrix is Γ, we
have:

R2,2 := ΓR̃2,2 =

[
c s
−s c

][
rk−1,k rk−1,k−1

rk,k 0

]
(18)

where
c =

rk−1,k√
r2

k−1,k + r2
k,k

, s =
rk,k√

r2
k−1,k + r2

k,k

.

Therefore, it can be concluded that

Γk−1,kRPk−1,k = R =

 R1,1 R1,2 R1,3
R2,2 R2,3

R3,3

, Γk−1,k =

 Ik−2
Γ

In−k

, R2,3 = ΓR2,3.

2.3.3. Improvement of the LLL Algorithm

From the PLLL reduction algorithm we note that size reduction is only carried out
when the basis vector exchange occurs, and the resulting matrix R is not fully regulated.
Therefore, we add an additional size reduction process at the end of the PLLL reduction
algorithm and convert R to the LLL reduction matrix. We denote the PLLL algorithm with
extra size reduction as PLLLR.

In addition, in the procedure of LLL reduction, it is necessary to detect whether
the basis vector satisfies the exchange condition to decide whether it enters the column
exchange step or not, and it is obvious that the procedure of LLL reduction can be simplified
if the exchange condition of the basis vector is appropriately relaxed in order to reduce
the operations, such as the column exchange afterward. Inspired by the literature [36],
we replace the Lovasz condition in the LLL reduction with the Siegel condition, and
Equation (13) becomes: (

δ− 1
2

)
r2

i−1,i−1 ≤ r2
j,j

3
4
≤ δ ≤ 1 (19)

We denote the LLL algorithm based on the Householder QR decomposition as HLLL.
The HLLL algorithm is where the basis vector exchange condition is replaced by the Siegel
condition as HSLLL, and the PLLL algorithm is where the Siegel condition is used as the
basis vector exchange condition as PSLLL. The specific flow of the two improved algorithms
is shown in Figure 1.
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3. Experiments and Results Analysis

In order to verify the effectiveness of the LLL improvement algorithm proposed in this
paper in the application of ambiguity resolution, simulation experiments and measured
data are used to compare and analyze HLLL, HSLLL, PLLL, PSLLL, and PLLLR, and to
evaluate the performance advantages and disadvantages of each algorithm in terms of the
extent of reduction basis orthogonality and the quality of reduction basis size reduction.
In ambiguity resolution, the searching process of the ambiguity degree adopts the SE-VB
strategy which is widely used at present [10]. The experimental environment is a private PC
(Intel Core i7-9700 CPU, 2.80 GHz, 16.0 GB of RAM, 64-bit Windows 10 operating system)
and the software is MATLAB R2017 a.

3.1. Indicators for Evaluating the Quality of the Reduced Basis

In measuring the performance of lattice basis reduction, an orthogonal defect (OD) is
usually used to reflect the orthogonality of the basis vector, but it has an obvious disadvan-
tage in that only the OD value is obtained, which is not able to intuitively judge the extent
of the orthogonality of the reduced basis [37–39]. Therefore, in this paper, the minimum
angle θ of the reduced basis vector is used instead of the orthogonality defect to measure
the extent of the orthogonality of the reduced basis. Its expression is given as:

θ(G) = min
{

θi,j , 1 ≤ i < j ≤ n
}

(20)
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where
θi,j = min

{
arccos

(
ρi,j
)
, 180◦ − arccos

(
ρi,j
)}

ρi,j =

(
gi ,gj

)
‖gi‖

∥∥∥gj

∥∥∥
By definition, it follows that 0◦ ≤ θ(G) ≤ 90◦. If θ(G) = 90◦, it means that all

basis vectors are orthogonal to each other. θ, as an alternative indicator of the extent of
orthogonality, can be used to roughly determine the orthogonality of the reduced basis
intuitively. And the calculation of θ and OD is based only on the elements of the variance
covariance matrix Qâ; it does not increase the computational complexity.

The purpose of the lattice basis reduction is to make the reduced basis as orthogonal
as possible and to make the length of the first basis vector as short as possible after the basis
vector exchange. Based on this property, the Hermite factor in lattice theory is introduced
as another indicator for evaluating the performance of the reduction [40,41], which is
defined as:

κ =
‖g1‖

[det(Qâ)]
1

2n
(21)

where g1 denotes the first basis vector of the lattice basis G. Obviously, det(Qâ) is a fixed
value, then the size of the Hermite factor depends on the length of g1. The smaller the value
of κ, the shorter the length of the first basis vector after the lattice basis reduction, the more
adequate the basis vector exchange, and the better the quality of the reduction, and vice
versa.

3.2. Simulation Experiment

The random simulation method in the literature [8] is used to construct 5–40 dimen-
sional ambiguity float solution â and variance covariance matrix Qâ. Each dimension
constructs 100 groups of data, which are processed by HLLL, HSLLL, PLLL, PSLLL, and
PLLLR algorithms for lattice basis reduction, respectively. These calculate the average
number of basis vector swaps, the average reduction time consumption, and the average
number of ambiguity candidate points for the 100 groups of data. The specific construction
is as follows:

â = 100× randn(n, 1)
Qâ = LDLT

}
(22)

• Scheme 1: L is an upper triangular matrix unit and the upper triangular element lj,i

follows the standard normal distribution; D = diag
(

n−1, (n− 1)−1, · · · , 1
)

.

• Scheme 2: L is a random orthogonal matrix, obtained by the QR decomposition
of the random matrix generated by randn(n, n); d1 = 2

n
4 , dn = 2−

n
4 , di ∈ (dn, d1),

D = diag(d1, · · · , di, · · · , dn).

Figure 2 shows the trend of the number of basis vector swaps for the five algorithms
in different schemes and dimensions. As seen in Figure 2, the number of basis vector swaps
for the five algorithms is positively correlated with the number of dimensions; overall,
PSLLL has the fewest number of swaps, and PLLL and PLLLR have the same number
of swaps.

By analyzing the results in Figure 2, it can be seen that PLLLR is equivalent to PLLL in
terms of the number of basis vector swaps because PLLLR only adds an additional size
reduction process, which has no effect on the ordering of the basis vectors, a phenomenon
that is in line with the theory. HSLLL and PSLLL simplify the LLL reduction process
by relaxing the swap condition of the basis vector, which reduces the number of basis
vector swaps.
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Figure 3 shows the reduction time consumption for the five algorithms with different
schemes and dimensions. It can be intuitively seen from Figure 3 that as the number of
dimensions increases, the overall trend of the reduction time consumption for ambiguity is
upward, and PSLLL has the smallest reduction times. From Figure 3a, it can be observed
that the PLLLR reduction time consumption is lower than the HLLL, except for the 16th
dimension. The PSLLL reduction time consumption is lower than the HSLLL (except for
the 6th and 11th dimensions). A similar conclusion can be drawn in Figure 3b. The possible
reasons for the above special cases are that the reduction time consumption is smaller in
the case of lower dimensions and due to the running error of MATLAB.
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Figure 4 represents the number of search candidate points for the five algorithms
with different schemes and dimensions. As can be seen from Figure 4, the change in the
number of search candidate points and dimensions have the same trend overall, that is,
the number of candidate points increase with the growth of dimensions. PLLLR and PLLL
have the same number of search candidate points, whereas the number of candidate points
for the ambiguity of HSLLL and PSLLL is more than HLLL and PLLL in most dimensions
compared to the other methods, which indicates that it may be more time consuming in the
ambiguity search process.
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In analyzing the results of Figure 4, since the simple size reduction does not change
the candidate integer vector for the ambiguity search, the number of candidate points for
the search of PLLL is equivalent to the search results of the PLLLR algorithm, which is
consistent with the theory. Since HSLLL and PSLLL adopt different basis vector exchange
conditions from the regular LLL algorithms, the column exchange operation is reduced
on the basis vector exchange, thus speeding up the lattice basis reduction procedure.
Therefore, the final basis vector lengths obtained are different from those of HLLL and
PLLL (the basis vector is obtained by exchanging them in a certain order), which results in a
different number of search candidate vectors for HSLLL and PSLLL in different dimensions
compared to HLLL and PLLL.

The minimum angle θ and Hermite factor κ between the basis vectors after the reduc-
tion of Schemes 1 and 2 using the HLLL, HSLLL, PLLL, PSLLL, and PLLLR algorithms
are listed in Tables 1 and 2, respectively. As can be seen from the average basis vectors
of the five algorithms in Table 1 with minimum angles θ, all five algorithms in Scheme 1
have good reduction effects in general. Considering the extent of the orthogonality of the
basis vectors, the HSLLL reduction performance is optimal, followed by PLLLR, PLLL,
and PSLLL, and HLLL is the worst. Similar conclusions to Table 1 can be drawn from
Table 2, but with slight differences in terms of the reduction performance advantages and
disadvantages, with PLLLR being the best, followed by PSLLL, HSLLL, and PLLL, and
HLLL being the worst. The reason for this difference is that HSLLL and PSLLL are less
stable compared to PLLLR. The minimum value of the PSLLL algorithm in Table 1 is
41.3540◦, which fluctuates a lot, which means that the orthogonal performance will be poor,
whereas both HSLLL and PLLL’s minimum values are greater than 45◦ and the reduction
performance is more stable. Similarly, the same is true for HSLLL in Table 2, which will not
be explained here. Combining Tables 1 and 2, PLLLR is superior in terms of the stability
and extent of orthogonality combined.

Table 1. Basis vector minimum angle (deg) and Hermite factor for the five algorithms of Scheme 1.

Methods
HLLL HSLLL PLLL PSLLL PLLLR

θ κ θ κ θ κ θ κ θ κ

Max 65.0848 0.7704 72.4634 0.6544 68.6206 0.7537 65.6931 0.6544 68.6206 0.7537
Min 41.1187 0.6279 46.2028 0.6277 43.5084 0.6277 41.3540 0.6277 45.6056 0.6277

Mean 51.2901 0.6622 58.7290 0.6355 54.7261 0.6599 52.5564 0.6361 57.1343 0.6598
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Table 2. Basis vector minimum angle (deg) and Hermite factor for the five algorithms of Scheme 2.

Methods
HLLL HSLLL PLLL PSLLL PLLLR

θ κ θ κ θ κ θ κ θ κ

Max 67.2323 1.0223 67.5014 0.9893 67.3050 0.9893 67.3050 0.9893 67.3050 0.9893
Min 39.3641 0.7985 44.3996 0.4801 45.4427 0.6445 47.4158 0.4801 47.6255 0.6445

Mean 50.0438 0.8652 55.4014 0.7804 54.7020 0.8237 57.0028 0.7705 57.7065 0.8237

From the Hermite factor κ of the five algorithms in Tables 1 and 2, it can be observed
that the Hermite factors of PLLLR and PLLL are basically the same, and the relative error is
0.0072%, which is negligible. This indicates that it is difficult to evaluate the performance
advantages and disadvantages of the two algorithms from the Hermite factor indicator.
There is little difference in the reduction performance between HSLLL and PSLLL, and both
outperform the other three algorithms. HSLLL slightly outperforms PSLLL in Scheme 1,
while the opposite is true for Scheme 2, which may be related to the type and randomness
of the reduced basis. HLLL has the worst reduction performance.

3.3. Measured Experiment 1

To further validate the effectiveness of the algorithm and the reduction effect, using
the GPS dual-frequency observation data from the US CORS station LWES with DSTR on
15 March 2023 (DOY-074) for 2778 epochs, the baseline length is 7.79 km and the sampling
interval is 30 s. The ambiguity dilution of precision (ADOP) is usually used to evaluate
the accuracy of the ambiguity resolution [42]. Figure 5 shows the variation trend of the
ambiguity dimension and ADOP in DOY-074. It can be observed from Figure 5 that the
ambiguity dimension of DOY-074 ranges from 12 to 22 dimensions, and the ADOP value is
all less than 0.1. The dimensions of the first 200 epochs are about 20, and the ADOP value
is all less than 0.06. Therefore, in this paper, we select the data of the first 200 epochs to
verify the effectiveness and reduction performance of the improved algorithm.
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Figure 6 shows the cumulative distribution functions of the number of basis vector
swaps and reduction time consumption for the first 200 epochs of the five algorithms. It
can be seen from Figure 6a that PLLL and PLLLR have the same number of basis vector
swaps, and PSLLL has the smallest number of basis vector swaps, followed by HSLLL.
This is consistent with the conclusion of the simulation experiments in Section 3.2. From
Figure 6b, it can be observed that the reduction time consumption of PSLLL and HSLLL
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is significantly less than the other three algorithms, and PLLLR consumes slightly more
reduction time than PLLL due to the extra added size reduction, which is in line with the
theory in Section 2.3. The five algorithms in descending order of reduction efficiency are
PSLLL, HSLLL, PLLL, PLLLR, and HLLL.
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Figure 6. (a) Plot of the cumulative distribution functions of the number of basis vector swaps for
the five algorithms in the first 200 epochs; (b) Plot of the cumulative distribution functions of the
reduction time consumption for the five algorithms in the first 200 epochs.

Figure 7 shows the variation of the number of ambiguity candidate points for the five
reduction algorithms in the first 200 epochs, from which it can be seen that the number of
ambiguity candidate points is exactly the same for PLLL and PLLLR, which is consistent
with the conclusion of the simulation experiments, and will not be explained here. HLLL,
HSLLL, and PSLLL have different numbers of candidate points for ambiguity, and the
differences between HLLL and HSLLL can be clearly seen in the figure, while the overall
trend of PSLLL is in line with PLLL and PLLLR.
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Table 3 shows the statistical results for the five algorithmic basis vectors’ minimum
angles (deg) and Hermite factors in the first 200 epochs. As seen in Table 3, the average
basis vector minimum angle of all five algorithms is greater than 45◦, and the PLLLR has
the best reduction performance. From the Hermite factors κ of the five algorithms, it can
be observed that the order of the reduction performance is consistent with Scheme 2 in
the simulation experiments, PLLLR and PLLL have the same Hermite factor, and PSLLL
outperforms several other methods.

Table 3. Basis vector minimum angle (deg) and Hermite factor for five algorithms of Measured
Experiment 1.

Methods
HLLL HSLLL PLLL PSLLL PLLLR

θ κ θ κ θ κ θ κ θ κ

Max 52.0347 2.1952 55.8564 2.0917 53.4141 2.1952 52.1806 2.0917 56.5125 2.1952
Min 41.0043 1.1528 44.0579 1.1527 42.1093 1.1528 41.4327 1.1527 45.8418 1.1528

Mean 45.5869 1.7399 50.3149 1.7338 47.6742 1.7383 46.8228 1.7331 50.7791 1.7383

Table 4 represents the solution time consumption (reduction time consumption, search
time consumption, and total time consumption) of the five algorithms for the first 200
epochs, from which it can be observed that the five algorithms have the highest overall
efficiency in the order of PSLLL, HSLLL, PLLLR, PLLL, and HLLL. The PSLLL has the
highest overall efficiency. The PLLLR algorithm has the highest search efficiency by further
size reduction and has the best stability, which is favorable for improving the search
efficiency of ambiguity.

Table 4. Statistical results of five algorithms’ resolution times for Measured Experiment 1 (ms).

Time Methods HLLL HSLLL PLLL PSLLL PLLLR

Reduction
mean 18.7527 15.7789 17.2777 15.3097 17.3245
max 20.4329 18.8352 18.6567 18.9781 18.4936

Search
mean 2.5271 2.2992 1.6384 2.0732 0.9467
max 4.9388 4.3730 2.7543 4.7754 2.3275

Total
mean 21.2798 18.0781 18.9161 17.3829 18.2712
max 24.8507 22.8804 20.8045 22.3506 20.5054

3.4. Measured Experiment 2

In order to further verify the reduction performance of the algorithm in the case of
multiple GNSS systems and higher dimensionality, the simulated railroad track measured
GPS/BDS data of 1210 epochs from Southwest Jiaotong University on 16 August 2023
(DOY-228) are selected, with a baseline length of 9.80 m and a sampling interval of 1 s.
Figure 8 shows the trend plot of the ambiguity dimension and ADOP for 1210 epochs.
From the figure, it can be seen that the number of ambiguity dimension is greater than 36
and the value of ADOP is less than 0.07. Therefore, the accuracy of the float solution of the
ambiguity is better.

Figure 9 shows the cumulative distribution functions of the number of basis vector
swaps and the reduction time consumption for the five algorithms, from which it can
be observed that PLLL and PLLLR have the same number of basis vector swaps. As
the number of ambiguity dimensions is close to 40, the variation of the reduction time
consumption of PSLLL and HSLLL is small, and the reduction time consumption of
PSLLL and HSLLL is significantly smaller than the other three algorithms. The reduction
time consumption of PLLLR adding extra size reduction does not increase significantly
compared with PLLL, which is due to the extra size reduction with low complexity, and the
time consumption is basically negligible. There is no difference in the trend of the number
of ambiguity candidate points of the five algorithms, which will not be shown here.
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Table 5 shows the basis vector minimum angle (deg) and Hermite factor of the five
algorithms. It can be seen that the average basis vector minimum angle θ of the five
algorithms is greater than 45◦, and all of them have good reduction effects. The minimum
value of θ of the PLLLR algorithm is greater than 45◦, which indicates that PLLLR has the
best robustness in avoiding the reduced basis of poor orthogonality. The Hermite factor κ of
PLLLR and PLLL is basically the same, and the relative error is negligible. The superiority
of the PLLLR and PLLL algorithms cannot be judged from the Hermite factor κ alone.

Table 5. Basis vector minimum angle (deg) and Hermite factor for five algorithms of Measured
Experiment 2.

Methods
HLLL HSLLL PLLL PSLLL PLLLR

θ κ θ κ θ κ θ κ θ κ

Max 53.1254 2.1676 55.1371 2.0435 56.4574 2.1676 55.6064 2.0434 58.1738 2.1675
Min 42.2783 1.1366 43.4854 1.1364 44.0098 1.1365 43.7539 1.1364 46.1105 1.1365

Mean 46.0438 1.7013 48.5130 1.6954 48.1327 1.6977 49.6103 1.6912 51.0883 1.6977
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Table 6 shows the solution time consumption of the five algorithms (reduction time
consumption, search time consumption, and total time consumption), from which the
conclusions are consistent with those of Table 4 in Measured Experiment 1, and will not be
repeated here. Figure 10 illustrates the cumulative distribution functions of the total time
consumed for the two measured experiments, from which it can be seen that the HSLLL,
PSLLL, and PLLLR algorithms outperform the HLLL and PLLL. The difference is that it
is not possible to ascertain the performance of the HSLLL and PLLLR algorithms from
Measured Experiment 1, whereas Measured Experiment 2 clearly shows that the efficiency
of the HSLLL outperforms that of the PLLLR. The possible reasons for this difference are
related to the number of ambiguity dimensions and MATLAB running errors.

Table 6. Statistical results of five algorithms’ resolution times for Measured Experiment 2 (ms).

Time Methods HLLL HSLLL PLLL PSLLL PLLLR

Reduction
mean 27.1813 18.0880 21.3378 17.8412 21.3639
max 29.0811 28.6279 22.6296 27.8739 22.5280

Search
mean 3.8941 3.3249 2.8544 2.9592 1.7886
max 6.1841 5.2118 3.2176 5.1017 2.8402

Total
mean 31.0754 21.4129 24.1922 20.8004 23.1525
max 34.2219 30.5801 25.6345 29.6266 24.5172
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In order to illustrate the performance difference between HLLL, HSLLL, PLLL, PSLLL,
and PLLLR more clearly, we compare the speed, stability, and computational complexity of
the five algorithms, and the results are shown in Table 7.

Table 7. Comparison of the five algorithms.

Method HLLL HSLLL PLLL PSLLL PLLLR

Reduction speed Slow Faster Fast Fastest Faster

Search speed Slow Fast Faster Faster Fastest

Stability Good Good in most cases Better Good in most cases Best

Complexity o
(

4
3 n3 + n5 + n4 log α

β

)
* Same as HLLL Same as HLLL Same as HLLL o

(
7
3 n3 + n5 + n4 log α

β

)
*

* α = max‖gi‖ and β = min
∥∥∥G−Ta

∥∥∥.

4. Discussion

The classical LLL algorithm is based on the QR decomposition of the basis matrix by
GSO. The computational complexity of GSO is 2n3, while the Householder QR decomposi-
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tion does not require the formation of orthogonality factor Q during the reduction process,
and the computational complexity is 4/3n3 . In addition, the GSO method has poor numeri-
cal properties because there is usually a severe loss of orthogonality in the computation of
the orthogonality factor Q. Therefore, in this paper, the Householder QR decomposition is
utilized instead of the conventional GSO decomposition, which has lower computational
complexity and better numerical stability. We propose corresponding improved algorithms
based on the HLLL and PLLL algorithms, and verify the validity of the methods and the
performance of the reduction through simulation and measured experiments. Figure 2,
Figure 6a, and Figure 9a represent the number of basis vector swaps for the simulation
and measured experiments, from which it can be seen that PSLLL has the smallest number
of basis vector swaps, and PLLLR has the same number of basis vector swaps as PLLL.
From the reduction time consumption of different algorithms in Figure 3, Figure 6b, and
Figure 9b, it can be seen that the reduction time consumption of PSLLL and HSLLL is
less than the other algorithms, whereas PLLLR makes the reduction time slightly higher
than PLLL due to the extra size reduction. Combined with the cumulative distribution
functions of the total time consumption (the sum of the reduction time and the search time)
of the two measured experiments in Figure 10, it can be seen that although the PLLLR
reduction time consumption is slightly higher than that of PLLL, the further size reduction
of the R-matrix after exchanging the basis vectors greatly shortens the search time, which
improves the overall efficiency of the ambiguity resolution. Figures 4 and 7 analyze the
five algorithms from the comparison of the number of ambiguity candidate points. The
number of ambiguity candidate points is exactly the same for PLLLR and PLLL, while the
other algorithms are slightly different. Tables 4 and 6 show the solution time consumption
of the five algorithms, where PSLLL has the fastest reduction efficiency and PLLLR has the
best stability. Table 7 summarizes the performance differences of the five algorithms.

There is a close correlation between lattice basis orthogonality and basis vector length,
and the ambiguity lattice basis reduction is precise to better solve the CVP on the lattice.
In measuring the performance of the lattice basis reduction, the extent of orthogonality
between the reduced basis vector is not intuitively determined due to the orthogonal
defect indicator. We introduce the minimum angles θ among the reduced basis vectors
as an alternative to overcome the drawbacks of the orthogonal defect. It can be found
through Equation (20) that a good lattice basis reduction algorithm should ensure that θ
is greater than 45◦. As can be seen from the minimum angles among the basis vectors in
Tables 1–3 and Table 5, the minimum values of θ for the PLLLR algorithm are all greater
than 45◦, which suggests that it is the most robust in terms of avoiding a reduced basis
with poor orthogonality. The Hermite factors can well reflect the property of the first basis
vector of the lattice basis reduction, that is, whether the length of the first orthogonal basis
vector is short enough. From the Hermite factors statistics in Tables 1–3 and Table 5, it
can be observed that HSLLL and PSLLL outperform the other three algorithms in terms
of reduction performance. PLLLR and PLLL have basically the same Hermite factors
with negligible relative errors. It is difficult to evaluate their performance advantages or
disadvantages from the Hermite factors.

5. Conclusions

In this paper, for the characteristics of the high dimensionality and high accuracy of
ambiguity resolution, based on analyzing the LLL reduction algorithm, we introduce the
minimum column pivoting Householder QR decomposition, partial size reduction, and the
relaxation of the basis vector exchange condition to improve the regular LLL algorithm. In
order to visualize the extent of the orthogonality of the basis vectors, the minimum angle
of the basis vectors is used to replace the conventional degree of orthogonality defects,
and the quality of the reduced basis size reduction is evaluated by the Hermite factor.
Based on the simulation and measured data to verify the effectiveness of the improved
algorithm and the reduction effect, the experimental results show that the improved
algorithm effectively reduces the size reduction and the number of basis vectors exchanged
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in the process of lattice basis reduction, and can obtain a better reduction effect, which
significantly improves the reduction performance of the LLL algorithm. HSLLL and PSLLL
have a better reduction effect, but are poor in the stability performance of lattice base
reduction. The PLLLR algorithm loses a small amount of reduction time, but improves the
search efficiency of the ambiguity, which effectively improves the overall efficiency of the
ambiguity resolution.
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