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Abstract: Wearable accelerometers allow for continuous monitoring of function and behaviors in
the participant’s naturalistic environment. Devices are typically worn in different body locations
depending on the concept of interest and endpoint under investigation. The lumbar and wrist
are commonly used locations: devices placed at the lumbar region enable the derivation of spatio-
temporal characteristics of gait, while wrist-worn devices provide measurements of overall physical
activity (PA). Deploying multiple devices in clinical trial settings leads to higher patient burden
negatively impacting compliance and data quality and increases the operational complexity of the
trial. In this work, we evaluated the joint information shared by features derived from the lumbar and
wrist devices to assess whether gait characteristics can be adequately represented by PA measured
with wrist-worn devices. Data collected at the Pfizer Innovation Research (PfIRe) Lab were used as a
real data example, which had around 7 days of continuous at-home data from wrist- and lumbar-
worn devices (GENEActiv) obtained from a group of healthy participants. The relationship between
wrist- and lumbar-derived features was estimated using multiple statistical methods, including
penalized regression, principal component regression, partial least square regression, and joint and
individual variation explained (JIVE). By considering multilevel models, both between- and within-
subject effects were taken into account. This work demonstrated that selected gait features, which
are typically measured with lumbar-worn devices, can be represented by PA features measured
with wrist-worn devices, which provides preliminary evidence to reduce the number of devices
needed in clinical trials and to increase patients’ comfort. Moreover, the statistical methods used in
this work provided an analytic framework to compare repeated measures collected from multiple
data modalities.

Keywords: wearable devices; accelerometry; gait; physical activity; device placement; penalized
regressions; partial least square; joint and individual variation explained; multilevel model

1. Introduction

In recent years, due to advancements in sensor technologies, there has been a rapid
growth in the use of wearable devices to obtain high-resolution and objective measures of
physical function and behavior in participants’ free-living environments, for both public
health research and clinical trials [1]. Wearable devices provide opportunities to characterize
human health beyond conventional snapshots of in-lab measurements by capturing a
holistic picture of patients’ daily life, including sitting, walking, climbing, cycling, sleep,
etc. [2].

Among wearable devices, accelerometers, typically a key component of most wearable
activity trackers and smartphones, are commonly used to track 24-h motor activity such
as walking, climbing, cycling, and sleep [1,3,4]. Walking gait characteristics are important
functional measurements and have been shown to be associated with aging-related func-
tional and cognitive decline, falls, and mortality and can be used as clinical endpoints for
multiple conditions [5–10]. Research on physical activity (PA) focuses on summarizing
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overall activity volumes and categorizing the waking period into different activity intensi-
ties, such as sedentary, light, moderate, and vigorous [1,11], and studying the distributions
and transitions of different intensities. A wealth of evidence shows that time spent in
sedentary behaviors is associated with adverse health outcomes and increased time spent
in sedentary behaviors increases the severity and complications associated with those
health outcomes [12–14]. In recent years, accelerometry-measured PA has been gradually
accepted to be used as primary or secondary endpoint for pivotal clinical studies [15,16].

The location of the accelerometer on the body can impact the prediction of activity
types [3]. Lumbar-worn and wrist-worn devices are two commonly used types of de-
vices. There has been extensive literature demonstrating that the lumbar location can
provide a reliable estimation of temporal and spatial gait parameters [17–21]. Multiple
algorithms were developed to extract gait features based on signals from lumbar-worn
accelerometers [17,22,23]. On the other hand, wrist-worn devices are typically accurate
in quantifying PA in general and number of steps per day [24]. The underlying assump-
tion of employing accelerometers to quantify physical activity hinges on establishing a
correlation between the acceleration signal and energy expenditure, where this correlation
is established through controlled laboratory-based activity tasks, during which oxygen
consumption is measured. Numerous studies have been dedicated to constructing and
validating associations for difference cohorts. Below, we provide a selection of noteworthy
studies that have contributed significantly to this field of research [3,25–27]. More impor-
tantly, due to the high comfort and user acceptability of a wrist-worn device (i.e., nowadays
people are already used to wearing smart watches), it has been used in a number of large
cohort studies to objectively quantify daily PA for multiple days [28–31].

In drug development, it is of interest to select reliable and sensitive endpoints col-
lected from the most appropriate body location. For example, to evaluate the treatment
effect for Duchenne muscular dystrophy, stride velocity 95th percentile is considered a
regulatory acceptable clinical endpoint [32], which can be measured by a lumbar-worn
accelerometer [33]. From an operational point of view, it is important to consider patient
burdens and preferences when conducting a long-term clinical trial since this impacts
compliance and data completeness. Having to wear a device in the lumbar region for
weeks or months may not be ideal for patients. On the other hand, wrist-worn devices
have been shown to offer better compliance when compared with lumbar-worn devices
due to ease and comfort of wear resulting in lower patient burden [34,35], and therefore
may be preferred by patients [36]. Choosing the right sensor location based on cohort and
study design to obtain the endpoints of interest while maintaining operational simplicity is
critical for successful deployment in clinical trials.

To evaluate whether it is possible to avoid having to deploy both lumbar- and wrist-
worn devices in a clinical study, we need to explore the association between gait and
PA features measured at the two locations. Studies have demonstrated that specific gait
features such as gait speed are associated with PA [1,31,37]. Those studies typically only
focus on a small number of PA or gait features and are hard to be generalized to the two
domains of gait and activity with a full spectrum of features from each domain. Moreover,
results were based on accelerometry-measured PA and lab-measured gait speed. There
is still a lack of systematic evaluation of the association and joint information between a
comprehensive list of gait and PA features in free-living environments. It calls for statistical
innovation to explore their correlation while incorporating the totality of PA and gait
and also the repeated-measurement nature of the data collection. And, it has not been
established if gait features measured by lumbar-worn devices can be represented by PA
features measured by wrist-worn devices.

The purpose of this paper is to fill the gap by evaluating if gait features measured by
lumbar-worn devices can be represented by PA features measured by wrist-worn devices.
In the remainder of the paper, we first review multiple statistical models to evaluate the
univariate and multivariate association between measurements from the gait domain
and the PA domain. These methods range from simple feature-to-feature correlations,
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including linear regression analysis and principal component regression, to more complex
multivariate dimension reduction methods, such as partial least square (PLS) [38] and joint
and individual variation explained (JIVE) [39]. Since the features from lumbar and wrist
devices are generally collected for multiple days, we evaluated the association between
gait and PA based on both summary statistics (one-level) across seven days and repeated
measures recorded daily (multilevel). We then demonstrate how these methods can be
leveraged in a real data application where both wrist-worn and lumbar-worn devices were
deployed with the same participants simultaneously.

2. Evaluate the Association and Joint Information from the Two Placements

A large number of algorithms have been proposed in the literature to evaluate the
association or the joint information of data from different domains. In this section, we
review and summarize commonly used methods in three parts: (1) feature-on-domain
models, (2) domain-on-domain models, and (3) multilevel models. Figure 1 summarizes
statistical models implemented for one-level and multilevel data. In this work, one-level
methods refer to models applied to features averaged over days. Multilevel models are
extended from one-level models, which incorporate repeated daily measurements of each
feature for each participant. Feature-on-domain models are implemented only on one-level
data, including pairwise correlation analysis, penalized linear regression [40], and principal
component regression (PCR) [41]. Domain-on-domain models involve multivariate and
multidomain analysis for both one-level and multilevel data, such as partial least square
(PLS) regression [38] and joint and individual variation explained (JIVE) [39].

Figure 1. Overview of the analytical framework implemented in this paper for comparing multivari-
ate, multilevel, and multidomain data.

2.1. Notation

We use the P dimension vector xij = (xij1, . . . , xijP) and Q dimensional vector
yij = (yij1, . . . , yijQ) to denote the P features in the PA domain and Q features in the gait do-
main, respectively, for subject i, i = 1, . . . , n at day j, j = 1, . . . , ni. Let
xp = {xijp}i=1,...,n,j=1,...,ni be the pth feature vector in PA domain and yq = {yijq}i=1,...,n,j=1,...,ni
be the qth feature vector in PA domain. These vectors are stacked to form the PA fea-
ture domain X = (x1, . . . , xP) and the gait feature domain Y = (y1, . . . , yQ). We use
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N = ∑i ni to denote the total number of observations. In our proposed one-level models
(Sections 2.2 and 2.3), the mean values across days, i.e., xi.p = 1

ni
∑ni

j=1 xijp and

yi.q = 1
ni

∑ni
j=1 yijq, are incorporated. In these models, xip and yiq are used for notation

simplicity. We use (.)’ to denote the transpose of a vector or a matrix.

2.2. Feature-on-Domain Models

First, correlation and regression analysis are implemented to explore each feature
individually from both gait and PA domains and its association with the other domain.
The Pearson correlation coefficient is a measure of linear correlation between two sets of
data, with the form of the covariance of the two variables divided by the product of their
standard deviations. For each pair of features (xp, yq), p = 1, . . . , P, q = 1, . . . , Q, from
wrist- and lumbar-worn devices, respectively, we compute their corresponding correlation
coefficients ρxp ,yq .

In addition to pairwise correlation evaluation, linear multiple regression models are
included to further explore the linear associations between two domains, via regressing
each univariate variable from the gait domain on the PA domain. Multicollinearity within
the PA feature domain can be addressed with enforced sparsity via Lasso regressions, and
the model selection is based on a five-fold cross-validation procedure incorporating ’one-
standard-error’ rule, that is, choosing the model with the fewest coefficients that is less than
one standard error away from the sub-model with the lowest error. Therefore, the penalized
linear regression is utilized to explore the linear association between a single feature from
the one measurement domain with multiple features from the other measurement domain,
extending the one-on-one correlation analysis.

Another common approach to address multicollinearity when analyzing multiple
regression data is principal component regression (PCR) [41]. Specifically, principal com-
ponent analysis (PCA) was applied on the PA domain to transform it into an orthogonal
predictor space with a lower dimension. In our implementation, the number of principal
components (PCs) is selected based on finding the “elbow” point in the scree plot. PCR
is implemented to find the features in the PA domain which explain the most variance,
as well as to find the features in the gait domain which have the highest association with
the PCs.

2.3. Domain-on-Domain Models

We expand our modeling strategy to quantify the associations between the gait and
PA domains using multivariate models. These models, referred to as domain-on-domain
models, provide a more comprehensive analysis of the relationship between gait and
PA features.

2.3.1. Partial Least Squares Regression

The partial least squares (PLS) regression [38] is a technique that combines features
from PCA and multiple linear regression, which seeks to find the multidimensional direc-
tion in the PA domain X that explains the maximum multidimensional variance direction
in the gait domain Y . In essence, the goal of PLS regression is to find a pair of unit vectors
µ and ν so that the expression

µ′X ′Yν, (1)

is maximized. The process is implemented with R package pls. The resulting relation
between gait and PA domains can be explained with the correlation and loading plots.
Compared with the PCR model introduced in Section 2.2, the components obtained from
the PLS regression are based on covariance from both X and Y domains so that they can
explain the mutual association.
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2.3.2. Joint and Individual Variation Explained

JIVE has been proposed to deal with scenarios where different sources or views of the
data are simultaneously available for the same set of samples [39]. JIVE decomposes the
original multiblock data into a sum of three components: a low-rank approximation captur-
ing joint variation of the domains, low-rank approximations capturing individual variation
in each domain, and residual noise. The imposed rank and orthogonality constraints can
be considered as extensions of PCA. Let Z =

(
X ′
Y ′
)
, represent the combined feature matrix

with dimension (P + Q)× N. The JIVE can be formulated as follows

X ′ = J1 + A1 + ε1

Y ′ = J2 + A2 + ε2, (2)

where εi is the error matrix of independent entries with E(εi) = 0, for i = 1, 2. J =
( J1

J2

)
is

the joint structure matrix with rank r and Al denotes the individual structure with respect
to X and Y with lower dimensional ranks r1 and r2, respectively. Row orthogonality is
enforced between both joint and individual components. JIVE was fitted using the R
package r.jive.

2.4. Multilevel Models

The above mentioned feature-on-domain and domain-on-domain models are all con-
sidered one level because they are implemented on the mean feature values recorded at
subject level. They can be further extended to multilevel models which include repeated
measures for each subject, since both lumbar-worn and wrist-worn devices are normally
worn continuously for multiple days.

2.4.1. Multilevel Partial Least Square Regression

The multilevel PLS regression [42] borrows the idea from the two-way ANOVA model,
which decomposes the original process into the sum of three parts: overall mean, between-
subject effect, and within-subject effect; i.e., for the observed feature vector xij (or yij), it
can be decomposed into

xij = µ + (xi. − µ) + (xij − xi.), (3)

where µ is the mean term with the form 1
∑ ni

∑i,j xij. (xij − xi.) is the within-subject matrix

with xi. =
1
ni

∑j xij, and (xi.− µ) represents the between-subject matrix. The same format of
transformation can be implemented on yij. For both within- and between-subject matrices,
the proposed PLS regression in Section 2.3.1 is performed. Therefore, both within-subject
and between-subject relations between gait and PA domains can be explained via the
multilevel PLS regression model.

2.4.2. Multilevel JIVE

To incorporate repeated measurements from multidomain data, Di et al. (2019) pro-
posed multilevel JIVE [43] that combines multilevel PCA (MPCA) [44] and JIVE.

Multilevel JIVE utilizes a two-step procedure. First, a two-way ANOVA like decom-
position is performed via MPCA to separate the joint variation into random between-
and within-subject effects (ui,wij, respectively) with lower dimensional presentation, as
shown in

zij = µ + ui + wij, (4)

where µ is the overall mean, and zij = (xij, yij) is the P + Q dimensional vector for
all features. The number of retained principal components is based on a pre-specified
percentage of explained variation.



Sensors 2023, 23, 8542 6 of 23

As the second step, JIVE is applied to both the between- and within-subject effects
(ui,wij, respectively) to extract the joint and individual structure, as shown in

u′i = Jui + Aui + εui

w′ij = Jwij + Awij + εwij . (5)

Therefore, the proposed multilevel JIVE is able to explain the joint and individual
effects at both subject and day levels.

3. Real Data Application: The STRYDE Study
3.1. Subjects and Instrumentation

The Sensors to Record Your Daily Exercise (STRYDE) study was conducted at the
Pfizer Innovation Research (PfIRe) Lab in Cambridge, Massachusetts. The study re-
cruited 65 healthy participants in total, with 33 of them in the younger (18–40) cohort
(age = 29.2± 4.6 years, 17 females) and 32 in the older (65–85) cohort (age = 72.3± 5.8 years,
16 females). Details of the study were previously published [33]. In general, the study was
designed to have participants perform the same walking tasks during two in-clinic visits
and be continuously monitored in their free-living environment for 7–14 days.

Specfically for this study, we only focused on the gait and PA measurements in the free-
living enviroments. Continuous assessment of functional activities at home was collected
using two Activinsights GENEActiv devices [45], with one placed at the lumbar, and the
other on the non-dominant wrist. Devices recorded tri-axial accelerometer data (range:
±8 g, sampling rate: 50 Hz, resolution: 12 bits/3.9 mg) and were attached to the body using
straps. A schematic representation of a participant wearing the device and participating
in the gait analysis is provided in Figure 2. Data were stored locally on the device and
downloaded for offline processing following the return of the device to the study site.

Figure 2. A schematic representation of devices placement of a participant (left) and gait characteris-
tics (right).

3.2. Data Processing

Raw acceleration signals from lumbar-worn GENEActiv devices were used to de-
rive gait features. Gait features were generated using the implementation in the open-
source SciKit Digital Health (SKDH) (https://github.com/PfizerRD/scikit-digital-health
(accessed on 30 August 2023)) Python library [22]. The gait algorithm first detects gait bouts
from continuous free-living data using a gradient-boosted tree classifier and then applies
a continuous wavelet transformation [46] and inverted pendulum model [20] to derive
temporal and spatial gait features for steps in each gait bout. We followed previous practice
to first remove bouts that lasted <10 s or >3000 s, then take the median of gait features
across all steps within each bout, and eventually take the mean (and/or 95th percentile)
across all gait bouts per day [33]. Step counts and bout lengths were summed up across
all bouts within each day. Eleven gait features were derived, namely total step counts per
day, total bout length per day, gait speed, cadence, stance time, swing time, stride duration,
double support, single limb support, stride length, and 95th percentile of gait speed.

Raw signals from wrist-worn GENEActiv devices were used to derive PA features.
The Microsoft Excel Macros accompanying the GENEActiv device were used to generate
the PA features [47]. The algorithm generated minute-by-minute epochs in each 24-h

https://github.com/PfizerRD/scikit-digital-health
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period and classified them into sleep, wear, bed, no wear, wear time (excluding bed
time), sedentary activity, light activity, moderate activity, and vigorous activity time and
eventually generated the relevant activity features. The activity features were extracted
based on summarizing and thresholding the signal vector magnitude (SVMg). A total of
thirteen PA features were presented in this study, including: total duration and numbers
of sedentary, light, moderate, and vigorous PA bouts, total daily sleep time, and non-
thresholded features, such as mean and 95th percentile of SVMg and mean activity level
during the most active 6/15/60-min-window per day.

For both devices, we followed the convention to keep only valid days for each par-
ticipant, defined as having 10 h or more of wearing time of wrist-worn devices [48,49].
Table 1 provided a list of gait and PA features along with their corresponding abbreviations.
Summary metrics of these features for all participants, as well as for younger and older
cohorts, were included in Table 2. On average, participants in the study had 8.78 (±1.86)
valid days. To deal with the large discrepancy in the scales between different gait and PA
features, all features were centered and scaled. For the one-level model, for each gait and
PA feature, averages across days were taken. Sensitivity analysis showed that the model
performance was similar if the median or quantile value across days was used.

Table 1. List of features and corresponding abbreviations in figures and tables.

Features in the Gait Domain Abbreviations

total step counts per day (#) total_step_per_day
total bout length per day (s) total_bout_length

gait speed (m/s) gait_speed
cadence (# steps/min) cadence

stance time (s) stance
swing time (s) swing

stride duration (s) stride_duration
double support (s) double_support

single limb support (s) single_limb_support
stride length (m) stride_length

95th percentile of gait speed (m/s) gait_speed_95perc

Features in the PA domain Abbreviations

total duration of sedentary activity bouts (h) sedentary
total duration of light activity bouts (h) light

total duration of moderate activity bouts (h) moderate
total duration of vigorous activity bouts (h) vigorous

total daily sleep time (h) sleep_time
total number of sedentary activity bouts (#) sed_period

total number of light activity bouts (#) light_period
total number of moderate activity bouts (#) mod_period

mean SVMg mean_SVMg
95th percentile of SVMg perc95_SVMg

mean activity level during the most active
6-min window max_6min

mean activity level during the most active
15-min window max_15min

mean activity level during the most active
60-min window max_60min
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Table 2. Descriptive statistics (mean ± sd) of gait and PA features for all participants and younger
and older cohorts separately.

Features Overall (Mean ± sd) Younger (Mean ± sd) Older (Mean ± sd)

total_step_per_day 7361.59 ± 3249.69 7924.53 ± 3422.65 6781.05 ± 3004.10
total_bout_length 81.71 ± 34.01 86.47 ± 36.43 76.80 ± 31.14

gait_speed 0.86 ± 0.10 0.91 ± 0.09 0.81 ± 0.09
cadence 99.21 ± 5.82 101.11 ± 5.87 97.25 ± 0.16
stance 0.76 ± 0.04 0.75 ± 0.04 0.78 ± 0.04
swing 0.47 ± 0.03 0.46 ± 0.03 0.48 ± 0.03

stride_duration 1.25 ± 0.07 1.23 ± 0.07 1.27 ± 0.07
double_support 0.29 ± 0.02 0.29 ± 0.01 0.30 ± 0.02

single_limb_support 0.49 ± 0.03 0.48 ± 0.03 0.50 ± 0.03
stride_length 1.04 ± 0.11 1.07 ± 0.11 1.00 ± 0.10

gait_speed_95perc 1.27 ± 0.17 1.35 ± 0.14 1.18 ± 0.16

sedentary 11.22 ± 1.36 10.97 ± 1.31 11.47 ± 1.40
light 1.30 ± 0.46 1.29 ± 0.31 1.32 ± 0.58

moderate 2.06 ± 0.90 2.47 ± 0.78 1.64 ± 0.83
vigorous 0.11 ± 0.14 0.16 ± 0.16 0.07 ± 0.11

sleep_time 5.79 ± 1.48 5.64 ± 1.59 5.94 ± 1.38
sed_period 60.25 ± 15.73 64.41 ± 10.10 55.96 ± 19.18

light_period 56.24 ± 17.66 57.37 ± 12.11 55.07 ± 22.13
mod_period 45.05 ± 17.06 53.10 ± 11.27 36.75 ± 18.16
mean_SVMg 131.22 ± 33.95 146.59 ± 29.82 115.36 ± 30.85
perc95_SVMg 496.51 ± 139.47 558.60 ± 117.45 432.49 ± 132.61

max_6min 921.76 ± 362.27 1100.49 ± 344.17 737.44 ± 282.13
max_15min 726.55 ± 305.06 851.77 ± 302.87 597.42 ± 252.05
max_60min 441.38 ± 170.51 502.57 ± 169.68 378.28 ± 149.03

3.3. Results—One-Level Models

The linear correlation between the gait and PA features was analyzed using pairwise
Pearson correlation coefficients and is displayed in Figure 3. The within-domain corre-
lations for gait features revealed patterns that potentially group gait features into three
clusters, i.e., spatial features related to gait quality (including stride duration, cadence,
double support, single limb support, stance, and swing times), spatial and spatio-temporal
features (stride length, gait speed, 95th percentile of gait speed total steps), and features
related to gait quantity (total steps and total bout length). The results also indicated
that gait quantity measures, i.e., total steps and total bout length, have a stronger cor-
relation with PA features. In PA domain, features related to peak activities during the
day were grouped, such as maximum activity in the most active 6/15/60 window, moder-
ate/vigorous activity, and mean/95th percentile of SVMg, while sedentary to light activities
formed another group.

We applied linear multiple regression models with a Lasso penalty to evaluate the
relationship between the two domains. Figure 4 displays the coefficients from the Lasso
regression for the selected predictors in each regression model. The results showed that
gait quantity features, i.e., total steps and total bout length, are positively associated with
time spent in moderate activity and mean SVMg.

PCA was applied to the PA features and the first four components explained over 90%
of total variation in the PA domain. Figure 5 displays the estimated eigenvectors of the top
two PCs. Specifically, the first PC (PC1) was heavily loaded on mean SVMg, 95% percentile
SVMg, and moderate activity, while the second PC (PC2) was heavily loaded on light
activity and number of light and sedentary activity bouts. We fitted the PCR with the top
four PCs as the predictors and each gait feature as the response. The estimated coefficients
are displayed in Figure 6, which further supported the strong association between total
bout length and total steps per day, and the activity features, especially in the first and
fourth PCs.
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Figure 3. Pairwise cross-correlation matrix for gait features (colored in red) and physical activity
(colored in blue) at significance level 0.1. The ‘X’ represents non-significant correlation. Three groups
in gait domain (red box) and two groups in PA domain (blue box) were identified.
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Figure 4. Regression coefficient (numbers in the circles) from Lasso regression, with one feature
from one domain (rows) regressed on the multivariate feature domain of the other one (columns).
The place was left blank if the variable was not selected in the corresponding penalized regression
model. From the regression models, total bout length and total steps per day are associated with more
features from the PA domain and the corresponding estimated coefficients tend to be of large value.
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Figure 5. Loading vectors of the first two principal components from PCA applied to all PA features.
Features related with peak activity (e.g., mean/95th percentile SVMg and moderate activity) con-
tributed more to the first component. Features related to low-intensity activity (e.g., sedentary to
light activities) contributed more to the second component.

In the domain-on-domain models, we aimed to uncover the association between
two domains including all features. Figure 7 displays the contribution of gait and PA
features on the top two components estimated from PLS. It first showed that gait features,
including total bout length, total steps per day, 95th percentile of gait speed, mean gait
speed, and stride length heavily contributed to the first component in the same direction,
while double support, single limb support, stance, and swing times contributed to the first
component in the opposite direction. This suggests that within all gait features, there are
two latent clusters. The first cluster includes spatial and spatio-temporal features (e.g., gait
speed and stride length) and gait quantity features (e.g., total steps per day and total bout
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length). And another cluster consists of gait quality features, such as double support and
stride duration. Moreover, total steps per day, total bout length, mean and 95% percentile
gait speed, and stride length contributed to the first component in a similar fashion to
almost all PA features (i.e., negative loadings on the first component) except for sleep and
sedentary time. Interestingly, PA features that summarized peak activity during the day
(e.g., maximum activity in the most active 6/15/60 window, vigorous activity, and 95th
percentile of SVMg) and the gait quantity features contributed to both components in a
similar fashion, which suggests that they are highly correlated.

Figure 6. Estimated coefficients (numbers in circles) from PCR using the first four principal com-
ponents from the PCA decomposition as the regression predictors. The blank box represents non-
significant (p-value < 0.05) coefficients. PC 1 and PC 4 from the PA domain have the highest correlation
with total steps and total bout length.

We further applied JIVE to explore the joint variation shared by the two domains. We
identified a rank-1 representation of the joint structure and rank-2 representations of the
gait and PA individual structure. Table 3 provides the contribution of both gait and PA
features to the variation explained by the joint and individual components. Overall, the
joint component explained 30% of the total variation of the combined gait and PA domain
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and the individual components contributed slightly more, which explained 56% of the
total variation. In total, the joint and individual components explained over 85% of the
total variation in two domains. Fifty eight percent of the joint variation was contributed by
gait and the remaining forty-two percent by PA. These results suggest that the domains
shared a great amount of joint information, with the gait domain contributing to the joint
information slightly more than the PA domain. On the contrary, the PA domain explained
more variation in individual components than the gait domain.

Figure 7. Variable correlation circle plot between gait (red) and PA (blue) domains for the first two
PLS components. Two latent clusters were identified here. The first cluster included spatial and
spatio−temporal features (e.g., gait speed and stride length) and gait quantity features (e.g., total
steps per day and total bout length), contributing to the first component in the same direction as PA
features. Another cluster included gait quality features, such as double support and stride duration.
They contributed to the first component in the opposite direction of other gait features, together with
sedentary activity and sleep time features from PA domain.

Table 3. Percentages of joint and individual variation explained by each domain in JIVE.

Joint Component Individual Components

Explained Variation 0.30 0.56

Gait 0.58 0.47
PA 0.42 0.53
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3.4. Results—Multilevel Models

In the multilevel models, the day-to-day variations in PA and gait features were taken
into account. The results from the multilevel PLS regression demonstrated that the between-
and within-subject effects were dominated by total steps per day and total bout length
in the gait domain. Figure 8 shows the estimated first component for both between and
within-subject effects. Particularly, total bout length and total steps per day had the highest
contributions from the gait domain, followed by moderate time, mean, and 95th percentile
of SVMg from the activity domain, within both between- and within-subject effects. These
findings strengthen the conclusion that total steps per day and total bout length were
closely related to the PA domain and played a significant role in the association between
gait and PA domains.

Figure 8. Loading plot of 1st component in multilevel PLS for between-subject (left) and within-
subject (right) effects for both gait (red) and PA (blue) features. Total bout length and total steps per
day from the gait domain and moderate time, mean and 95th percentile of SVMg from the PA domain
had the highest contributions to the first component for both between and within-subject effects.

Furthermore, the two-step multilevel JIVE was implemented. In the first step, MPCA
was applied to all the features to separate between-subject and within-subject effects. The
estimated between-subject and within-subject effects both explained around 45% of the
total variation, which demonstrated the importance of not overlooking the within-subject
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(day-to-day) variation (Table 4). In the second step, JIVE was applied on between-subject
effects and within-subject effects with main results shown in the second part of Table 4,
which indicated that around 50% joint variation was shared between the two domains
for both between- and within-subject effects. This demonstrated the equal importance
of two domains in explaining the joint variance. The individual components explained
42% and 49% of the between- and within-subject effects, respectively. Therefore, for both
between- and within-subject effects, over 95% of the total variation was covered by the
joint and individual components. Figures 9 and 10 illustrate the cross-correlation between
features from the lower-rank representation of the between-subject effect ui and within-
subject effect wij and the extracted JIVE scores from the corresponding multilevel JIVE
models. Similar grouping patterns of features were found in between-subject and within-
subject effects. Gait quantity features (i.e., total bout length, total steps) and gait speed
contributed to the joint component (first column) in the same direction as most of features
from the PA domain (except for sedentary and sleep features). Furthermore, these gait
features exhibited the highest correlation with the joint component, indicating that they are
more likely to be represented by the PA features. Regarding the gait individual component
in within-subject effects (as shown in the second column in Figure 10), it was observed that
PA features related with more vigorous activities, such as maximum activity in the most
active 6/15/60 window and 95th percentile of SVMg, contributed to this component in the
same direction as gait speed, stride length, and cadence.

Figure 9. Cross-correlations between eleven gait features and thirteen PA features and the first
joint score, first gait individual score, and two PA individual scores for between-subject effect from
multilevel JIVE (* indicates p-values < 0.05). Total bout length and total steps per day from the gait
domain and mean/95th percentile SVMg and moderate activity from the PA domain had the biggest
contribution to the joint component in the same direction (blue dots).
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Table 4. Results from multilevel JIVE. 1. Between- and within-subject effects (percentages of explained
variance) from MPCA decomposition. 2. Percentages of joint and individual variation explained by
each domain for between- and within-subject effect in multilevel JIVE.

Between-Subject Effect Within-Subject Effect
1. MPCA

decomposition 0.46 0.44

Joint Individual Joint Individual
2. JIVE

decomposition 0.53 0.42 0.45 0.49

Gait 0.47 0.41 0.54 0.27
PA 0.53 0.59 0.46 0.73

Figure 10. Cross-correlations between eleven gait features and thirteen PA features and the first
joint score, first gait individual score, and two PA individual scores for within-subject effect from
multilevel JIVE (* indicates p-values < 0.05). Total bout length and total steps per day from the gait
domain and mean/95th percentile SVMg and moderate activity from the PA domain had the biggest
contribution to the joint component in the same direction (red dots).

3.5. Comparison between One-/Multilevel PLS/JIVE

We then compared the results from the one-level and multilevel models. The estimated
lower dimension components from the one- and the multilevel PLS and JIVE are shown
in Figure 11. The first component in each model, which explains the largest amount of
variance, was always highly correlated with the first components from the other models,
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indicating that the results are consistent across models. In particular, the strongest correla-
tions were observed between the first principal components of the two one-level models
(PLS.PC1 vs. JIVE.JT.PC1) and between the between-subject and within-subject effects of
the multilevel models (PLS.B.PC1 vs. PLS.W.PC1 and JIVE.B.JT.PC1 vs. JIVE.W.JT.PC1).

Figure 11. Correlations between first two components from one-level and multilevel PLS and JIVE
models. First components from all models are correlated with each other, indicating the results are
consistent across models. Label notations: PC1/2: 1st/2nd principal component; B.: between-subject
effect; W.: within-subject effect; JT.: joint component in JIVE; ind.: individual component in JIVE.

4. Discussion

In this paper, we systematically investigated the association between gait features
measured with lumbar-worn accelerometers and PA features measured with wrist-worn
accelerometers, which, to the best of our knowledge, is the first study of its kind. We
applied multiple univariate and multivariate statistical models to data collected from the
STRYDE study to evaluate the association based on the average feature values across
days and repeated measurements across days. Our results showed that gait and PA are
interrelated and share joint information. Specifically, gait quantity measures, such as total
steps and total bout length, and gait speed show a higher correlation with PA features
when compared to other gait features. As a result, they are more likely to be represented by
a combination of PA features, including those summarizing peak activity during the day,
such as maximum activity within the most active 6-, 15-, and 60-min windows, vigorous
activity, and the 95th percentile of SVMg. This result has been corroborated by multiple
univariate and multivariate methods, such as multilevel JIVE and multilevel PLS.
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We implemented multiple statistical models, including both univariate and multivari-
ate methods which can be categorized into feature-on-domain analyses and domain-on-
domain analyses. Specifically, the feature-on-domain analyses aim to reveal the association
between each individual gait feature with all PA features. The domain-on-domain analyses
aim to reveal the overall covariance and shared variation between the two domains of
gait and PA. We specifically highlighted the use of JIVE, which has been previously used
to explore the joint association among different physiological domains of PA, sleep, and
circadian rhythms [1]. JIVE can be further applied in multimodal or multidomain data
analyses. The day-to-day variation in continuous measurements from wearable devices is
a well-known fact [50] and is associated with multiple health-related phenomena, such as
social jetlag [51] and weekend warrior [52]. Therefore, in this work, we also assessed the
importance of using multilevel analyses to take into account the within-subject correlation
due to the repeated daily measurements, which are often ignored by only considering
average values across days. Both one-level and multilevel models yielded consistent re-
sults, demonstrating that gait quantity features can be represented by PA features. The
multilevel models provided further insights—it showed that both between-subject and
within-subject effects explain 50% of the total variation in the data, which indicates that
individual characteristics and day-to-day variability play important roles in understanding
the associations between the gait and activity domains.

Previous research has indeed established connections between specific gait character-
istics and PA features. For instance, Wanigatunga et al. identified associations between
faster gait speed and several PA metrics, including increased activity counts, daily active
minutes, and reduced activity fragmentation [31]. Similarly, Schrack et al. also observed
a correlation between gait speed and activity fragmentation [37]. However, these studies
primarily focused on gait speed as a singular gait characteristic and relied on lab-measured
gait speed rather than accelerometer-based gait characterization. Moreover, Dawe et al. [53]
discovered that three gait and balance measures were independently associated with total
daily physical activity, assessed through total activity counts. However, it is important to
highlight that the “gait and balance measures” in this research encompassed a combination
of activities such as walking, sit-to-stand, and turning, extending beyond a pure gait char-
acterization. These measurements were derived from a structured mobility testing protocol
conducted in a controlled laboratory environment, which differs from the accelerometer-
based gait characterization in free-living environment used in our study. Nevertheless, our
study reinforces the consistent conclusion that gait speed is indeed correlated with various
PA features. Importantly, we achieved this through a comprehensive analytical framework
that encompasses a wide range of gait and PA characteristics. This approach not only
reaffirms the relationship between gait and PA but also underscores the potential clinical
significance of these correlations, particularly in understanding patients’ prognoses. Future
research endeavors should explore these connections further, delving into longitudinal
trends to provide valuable insights into the evolving relationship between PA and gait in
clinical contexts.

The association between gait features and PA features identified in this work provides
preliminary evidence that a single wrist-worn device can be deployed in a clinical trial.
Specifically, as our results suggest, total gait quantity and gait speed exhibit a strong
association with PA features, which indicates that they can be analytically represented by
PA features. Furthermore, in scenarios where the primary interest lies in assessing total
gait quantity or gait speed, PA features hold potential as surrogate endpoints. From an
operational point of view, deploying a single wrist-worn, watch-like device will increase
compliance and reduce data loss due to difficulty in wearing the devices. This will be
a good step further toward decentralized clinical trials and more patient-centric clinical
trials in general [11,54]. However, for therapeutic areas where specific spatial and spatio-
temporal features are of clinical interest, such as stride duration, step symmetry, or gait
variability, it may still be preferable to use the more fit-for-purpose devices, such as the
lumbar-worn devices [55].



Sensors 2023, 23, 8542 19 of 23

There has been recent research attempting to directly quantify walking gaits from wrist-
worn accelerometers. However, it is worth noting that challenges persist when utilizing a
single wrist-worn accelerometer for comprehensive and reliable gait characterization. For
instance, Trost et al. [56] employed logistic regressions to classify various activity types,
including walking, using both wrist and hip-worn devices. While their walking detection
achieved reasonable accuracy, extracting precise gait metrics from wrist-accelerometry
signals during walking bouts remains non-trivial. Similarly, Sokas et al. [57] detected
6-minute windows of fast walking in daily activities using wrist-worn accelerometers. They
counted steps in these windows and used piece-wise linear models with covariates like
age and height to estimate walking distance which potentially can be hard to scale. While
valuable for estimating distance in free-living 6-minute walk task, this approach did not
delve into detailed spatial and spatio-temporal gait characteristics. Brand [58] explored
machine learning and deep learning techniques to classify gait based on free-living data.
However, their summarization of walking bouts was limited to total daily walking time and
a few time and frequency domain features, lacking the comprehensive gait characterization
which can be typically obtained from lumbar-worn devices. Soltani et al. [59] proposed
a personalized machine learning method for gait speed estimation using accelerometers
but relied on Global Navigation Satellite System’s calibration and correction, limiting its
generalizability. Chan et al. [60] employed support vector machine (SVM) models for
gait bout classification and speed estimation but faced challenges in characterizing a wide
range of gait characteristics. Additionally, the non-physical nature of the SVM model may
not fully capture the underlying mechanics of walking. Therefore, the need for further
investigation into wrist-worn-accelerometer-based gait characterization is evident, and
lumbar-worn accelerometers remain the preferred choice for reliable and comprehensive
gait characterization, surpassing the mere detection of walking bouts. Future research may
leverage this framework to examine cross-domain associations between wrist-based activity,
lumbar-based gait, and wrist-based gait once more reliable wrist-based gait estimation
becomes available.

A significant contribution of this work is to provide a comprehensive analytic frame-
work to study the inter-correlation and association between multiple data modalities with
repeated measurements. Using this framework, we comprehensively evaluate the relation-
ship between PA and gait, taking into account the repeated measurement design and a
wide spectrum of PA and gait characteristics. This approach distinguishes our research
from previous studies with similar objectives. We have implemented our methods within
a hierarchical fashion, making it more accessible for researchers with less statistical back-
ground in this field. As demonstrated in this work, while one could consider a subset of
the introduced methods to assess the association between features from different domains,
our comprehensive implementation has provided new insights and interpretations from
various perspectives. Additionally, cross-checking between methods has been performed to
validate the results obtained from them. In this paper, even though the two modalities are
gait and PA features from lumbar- and wrist-worn devices, respectively, such an analytic
framework can be generalized to other comparisons involving repeated measurements
to explore the associations, interactions, and shared information across different data
modalities, domains, and/or time points.

We acknowledge that the biggest limitation of this work is the relatively small sample
size. One important future work is to validate our findings in a separate study with a
larger sample size and with both lumbar- and wrist-worn devices deployed, which may be
challenging. Another direction to pursue validation is to pool multiple studies with small
sample sizes which utilize both device locations. If the studies use different brands of de-
vices, a device-agnostic data processing pipeline, such as Scikit Digital Health (SKDH) [22],
could be used to generate gait and PA features across studies. With lager sample sizes,
it is possible to evaluate the age effect on the association between gait and PA features,
which may provide additional clinical insights. Furthermore, it is important to note that
the STRYDE study primarily relied on data collected from a sample of healthy adult partici-
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pants. While the findings from this study offer valuable insights, it is essential to exercise
caution when extrapolating these results to individuals with pathological conditions. To es-
tablish a broader applicability of the conclusions drawn from the STRYDE study, additional
research involving participants who have specific medical conditions or pathology may be
necessary. In those cases, our proposed analytic framework can be directly applied.

Author Contributions: Conceptualization, J.D., F.I.K. and C.D.; methodology, J.D., W.L. and F.I.K.;
formal analysis, W.L. and J.D.; data curation, L.A. and D.P.; study design and data collection, M.S.,
X.C., C.D. and F.I.K.; writing—original draft preparation, W.L. and J.D.; writing—review and editing,
all authors; supervision, J.D. and F.I.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was sponsored by Pfizer Inc.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Advarra Institutional Review Board (protocol code: Pro00029419
initial date of approval 12Oct2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Upon request, and subject to review, Pfizer will provide the data that
support the findings of this study. Subject to certain criteria, conditions and exceptions, Pfizer may
also provide access to the related individual de-identified participant data. See https://www.pfizer.
com/science/clinical-trials/data-and-results (accessed on 30 August 2023).

Acknowledgments: We thank all the staff members of Pfizer Innovation Research Lab for conducting
the study and collecting the data, including Hao Zhang, Tomasz Adamusiak, Monica Calicchio, Amey
Kelekar, Andrew Messere, Koene R. A. Van Dijk, Vesper Ramos, and Steve Amatto.

Conflicts of Interest: All authors are employees and stockholders of Pfizer Inc.

Abbreviations
The following abbreviations are used in this manuscript:

PA Physical activity
JIVE Joint and individual variation explained
PC Principal component
PCA Principal component analysis
PCR Principal component regression
PLS Partial Least Square
MPCA Multilevel principal component analysis
STRYDE Sensors to Record Your Daily Exercise
PfIRe Pfizer Innovation Research
SVMg Signal vector magnitude
ANOVA Analysis of variance
SKDH SciKit Digital Health

References
1. Di, J.; Spira, A.; Bai, J.; Urbanek, J.; Leroux, A.; Wu, M.; Resnick, S.; Simonsick, E.; Ferrucci, L.; Schrack, J.; et al. Joint and

individual representation of domains of physical activity, sleep, and circadian rhythmicity. Stat. Biosci. 2019, 11, 371–402.
[CrossRef] [PubMed]

2. Rose, M.J.; Neogi, T.; Friscia, B.; Torabian, K.A.; LaValley, M.P.; Gheller, M.; Adamowicz, L.; Georgiev, P.; Viktrup, L.; Demanuele,
C.; et al. Reliability of wearable sensors for assessing gait and chair stand function at home in people with knee osteoarthritis.
Arthritis Care Res. 2023, 75, 1939–1948. [CrossRef]
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