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Abstract: Bioimpedance monitoring is an increasingly important non-invasive technique for assessing
physiological parameters such as body composition, hydration levels, heart rate, and breathing.
However, sensor signals obtained from real-world experimental conditions invariably contain noise,
which can significantly degrade the reliability of the derived quantities. Therefore, it is crucial to
evaluate the quality of measured signals to ensure accurate physiological parameter values. In this
study, we present a novel wrist-worn wearable device for bioimpedance monitoring, and propose
a method for estimating signal quality for sensor signals obtained on the device. The method is
based on the continuous wavelet transform of the measured signal, identification of wavelet ridges,
and assessment of their energy weighted by the ridge duration. We validate the algorithm using a
small-scale experimental study with the wearable device, and explore the effects of variables such
as window size and different skin/electrode coupling agents on signal quality and repeatability. In
comparison with traditional wavelet-based signal denoising, the proposed method is more adaptive
and achieves a comparable signal-to-noise ratio.

Keywords: signal quality; bioimpedance; wearable device; continuous wavelet transform

1. Introduction

Bioimpedance monitoring is a valuable technique to noninvasively assess various
physiological parameters such as body composition, hydration levels, heart rate and
breathing. However, signals acquired in real-world experimental conditions are often
corrupted by noise, posing challenges to the reliability of derived quantities. Therefore, it is
essential to evaluate the quality of measured signals to ensure the accuracy of the derived
physiological parameter values. This includes applications of bioimpedance signals such
as heart-rate monitoring [1], which is the focus of this article. Although heartbeat signals
obtained from different individuals tend to be similar, the shapes of individual heartbeat
signals are different and variable, and it is important to accurately distinguish between the
authentic signal from the interfering noise in terms of heart rate.

Existing approaches for signal quality assessment in bioimpedance monitoring mainly
focus on traditional signal-to-noise ratio (SNR) estimation techniques such as autocorrela-
tion [2]. However, these universal methods fail to take into account the specific shape and
features of bioimpedance signals; in short, the issue lies in the difficulty of identifying the
reference signal that should be compared with the noise. With regard to our application—
heart rate detection from the bioimpedance measurements—a problem is that heart rate
signals are non-stationary and not normally distributed, as shown further in this paper.
Therefore, they are challenging to the existing SNR estimation techniques.

The primary objective of this study is to propose an adaptive signal-to-noise ratio indi-
cator for bioimpedance signals recorded on a wearable device, with the target application
of heart-rate monitoring. We focus on signals from the wrist, as it is a typical location for
wearable devices. Our contributions are:
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• Present a custom wearable device for bioimpedance monitoring.
• Develop a SNR estimation method based on continuous wavelet transform (CWT) to

identify wavelet ridges and measure their energy.
• Validate the proposed method using bioimpedance signals obtained in a small-scale

experimental trial, with photoplethysmogram (PPG) signals as the reference.
• Compare the performance of the proposed adaptive method with a traditional wavelet-

based signal denoising approach.
• Compare the SNR depending on different electrode-to-skin contact materials and

other parameters.

The study shows that our adaptive method accurately captures the SNR information.
Unlike classical wavelet-based signal denoising and signal-to-noise ratio estimation meth-
ods, our adaptive method does not require setting fixed threshold levels or selecting proper
threshold types. The PPG signals serve as a reference as they have relatively lower amounts
of noise, and as such can validate the separation of bioimpedance signals in “signal” and
“noise” components. Developing methods for accurate heart rate estimation based on this
decomposition in the signal and noise is in our future plans.

This paper is structured as follows. Section 2 describes the related work. Section 3
describes the experimental platform used in this study. Section 4 explains the novel SNR
estimation method and the experimental setup, Section 5 shows the results of this approach,
and Section 6 concludes the paper.

2. Related Work

Various techniques are commonly employed to denoise biological signals. These in-
clude the application of highpass filters [3], lowpass filters [4,5], notch filters [6,7], adaptive
filters [8,9], empirical mode decomposition [10,11], blind source separation methods [12]
based on the Independent Component Analysis algorithm, and the Fourier decomposition
method [13].

Adaptive filters eliminate noise by utilizing a correlated reference signal alongside
the original signal. However, their suitability for real-time applications is limited due to
the requirement of a reference signal [14]. Nevertheless, the combination of blind source
separation methods and adaptive filtering can yield favorable outcomes by generating a
reference signal without the need for an implantable sensor [14]. It is important to note,
though, that blind source separation methods are computationally intensive, resulting
in higher power consumption and processing costs. Consequently, they are not ideal for
real-time monitoring.

To address the limitations of the aforementioned techniques and effectively denoise
non-stationary signals while preserving the essential signal characteristics, the wavelet
transform (WT) methods, namely, discrete wavelet transform [15,16], stationary wavelet
transform [14,17] and synchrosqueezed wavelet transform [18] had been used. These
approaches operate by decomposing the signals using wavelets and subsequently applying
coefficient thresholding to remove noise. These methods have proven to be successful in
eliminating the specified types of noise while maintaining the integrity of important signal
attributes [14].

Thresholding plays a crucial role in wavelet transform-based signal denoising, as it
determines the removal of WT coefficients below the threshold level. Therefore, careful
selection of the threshold is essential. The use of the universal threshold rule, proposed by
Donoho and Johnstone, has been widely adopted for signal denoising [19–21]. However, it
should be noted that the universal threshold method is not suitable when the noise variance
of the signal is unknown [18].

Attempts to overcome the limitations of conventional thresholding methods were
carried out using metaheuristic algorithms. Li et al. [18] use the differential evolution
algorithm to dynamically determine the optimal threshold, followed by the application of
the soft threshold method to threshold the coefficients obtained from the wavelet transform,
similar to the approach adopted in [22].
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3. Experimental Platform

As part of the work, we have developed a prototype of a novel wearable device
(Figure 1). The main novelty of the device lies in the combination of bioimpedance sensing
with a nine-axial inertial measurement unit (IMU) sensor. Coupled with a next-generation,
powerful and energy-efficient ARM Cortex-M33 dual-core microcontroller (MCU), this
makes it possible to run on-board sensor fusion and activity recognition software [23], mak-
ing the wearable device suitable for novel applications in health and behavior monitoring.

Figure 1. The wearable device used in the experiments, fully assembled view.

The main features of the wearable device are

• nRF5340 System-on-Chip (SoC) with dual-core ARM Cortex-M33;
• MAX30001 bioimpedance chip;
• ICM-20994 nine-axial IMU chip, with accelerometer, gyroscope, and magnetometer

sensors;
• Li-Ion battery;
• Power sourcing from the USB or from the battery;
• LEDs and a vibration motor for feedback to the user;
• External flash for additional on-board storage;
• User button.

In the short-term future, we aim to develop a new version of the prototype with a smaller
form factor. The current PCB size of 53 × 55 mm is meant to enable easy testing and
debugging, rather than to be convenient for wearing.

For the experiments described in this paper, we connect two stainless steel electrodes
to this wearable device.

3.1. Component Selection
3.1.1. Microcontroller and Radio

One of the most important design choices is to find a suitable microcontroller. The lat-
est generation microcontrollers have 32-bit cores and offer much better performance/energy
consumption tradeoff than the older 8-bit and 16-bit MCU. Microcontrollers several families
were considered, all based on 32-bit ARM Cortex-M cores.

Tables 1 and 2 show the comparison. EFR32 and nRF5340 have the best overall results
across the variety of metrics that are important for our goals: low energy consumption,
sufficient RAM and flash memory size, and high performance. From these two, nRF5340
is selected as the one with the better software ecosystem support. While the EFR is the
absolute leader in energy efficiency from the MCU considered, it does not have as many
existing hardware drivers and experienced programmers as the nRF MCU.
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Table 1. Qualitative comparison of different MCU and SoC. nRF5340 (bolded in the table) is selected
for the wearable device.

Family Name Max Clock Frequency Architecture Radio

nRF52 nRF52840 64-MHz Cortex M4F BLE 5, IEEE 802.15.4, Propr. 2.4 GHz
nRF52 nRF52832 64-MHz Cortex M4F BLE 5.1, Propr. 2.4 GHz
nRF53 nRF5340 128-MHz Cortex M33 BLE 5.2, IEEE 802.15.4, Propr. 2.4 GHz

TI SimpleLink CC2652R 48-MHz Cortex M4F BLE 5.1, IEEE 802.15.4
MSP432 msp432p401r 48-MHz Cortex M4F No Built-in
STM32L STM32L475 48-MHz Cortex M4F No Built-in
ESP32 ESP32 240-MHz Xtensa LX6 BLE 5.0, WIFI, IEEE 802.11 b/g/n,

ESP32-C3 ESP32-C3 160-MHz RISC-V BLE 5.0, WIFI, IEEE 802.11 b/g/n,
EFR32 EFR32BG22 76.8-MHz Cortex M33 BLE 5.2, 802.15.4 g

SAM3X ATSAM3X8E 84-MHz Cortex M3 No Built-in

Table 2. Performance comparison of different MCU and SoC. nRF5340 (bolded in the table) is selected
for the wearable device.

Name Active Current/Radio Current @0 dB Avg. mA RAM FLASH
mA µA/MHz Rx (mA) Tx (mA) RAM ret. (µA) @ 48 MHz kB kB

nRF52840 3.328 52 4.6 4.8 3.16 53.1 256 1024
nRF52832 3.7 58 5.4 5.3 1.9 57.6 64/32 512/256
nRF5340 7.3 57 3.8 4.2 2.3 57 512 + 64 1024 + 256
CC2652R 3.4 70.8 6.9 7.3 0.94 69 80 352

msp432p401r 3.84 80 - - 0.35 - 64 256
STM32L475 8 166.7 - - 0.236 - 128 1000

ESP32 68 283.3 100 130 10 282.9 400 384
ESP32-C3 20 125 - - 5 - 400 384

EFR32BG22 2.07 27 3.6 4.1 1.4 27.3 32 512
ATSAM3X8E 70.89 923 - - 2.5 - 96 512

3.1.2. Bioimpedance Measurement Unit

The MAX30001 is a full analog front-end (AFE) solution for wearable applications that
includes biopotential and bioimpedance measurements. For bioimpedance input, ECG
input, and signal generator output, it features three distinct isolated channels. The biopo-
tential channel detects the electrocardiogram (ECG) waveform, heart rate, and pacemaker
edges, whereas the bioimpedance channel measures tissue impedance, such as respiration.
ECG and bioimpedance AFE of clinical quality with high-resolution data converter. The
32-word ECG and 8-word bioimpedance first-in first-out buffers (FIFOs) allow the MCU to
be turned off for 256 ms while still collecting data. Bioimpedance measurement parameters
on the MAX30001 frontend are set as follows: the measurement frequency is 80 kHz, the
injected current does not exceed 32 µA, the gain is 80 v/v, low-pass filter 16 Hz, high-pass
filter 7200 Hz, low noise mode selected. High input impedance, low noise, adjustable
gain, multiple low-pass and high-pass filter choices, and a high resolution analog-to-digital
converter are other features worth mentioning. Critcher et al. [24] provides a far more
extensive comparison and examination of this IC, detailing the capabilities supplied by
this component.

The existing measurement system uses a bipolar electrode measurement connection,
which gives acceptably good results for our requirements. Although the tetrapolar con-
figuration is recognized as more resistant to noise and has a better signal quality [25], the
bipolar system is still used for convenience and simplicity [26]. Also, the SNR ratio in the
tetrapolar configuration is not always unequivocally better [26].
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3.2. Wearable Device Design
3.2.1. Design Overview

The wearable device includes the following essential components: nRF5340 central
microcontroller, MAX30001 Bioimpedance measurement integrated circuit (IC), and ICM-
20948 IMU sensor module.

nRF5340 is a wireless SoC with two ARM Cortex-M33 processors. It supports Bluetooth
5.3, high-speed SPI, QSPI, USB, and an operational temperature of up to 105 °C. The
application processor is performance-optimized and may run at 128 or 64 MHz thanks
to voltage-frequency scaling. It has 1 MB of flash memory, 512 kb of RAM, a floating-
point unit (FPU), an 8 kb 2-way associative cache, and digital signal processing (DSP)
instructions. The network processor runs at 64 MHz and is designed to be energy efficient
(101 CoreMark/mA). It has a flash memory of 256 kb and a RAM of 64 kb. The SoC
supports Bluetooth 5.3 and other protocols including NFC, ANT, IEEE 802.15.4 at the
2.4 GHz frequency band.

The sensor part consists of two data collection channels. The first is the IMU (ICM-
209948) Motion Tracking system, which can transmit both the raw data and the results
from signal processing on the IMU chip itself. The MAX30001 IC is the second sensor
channel. Depending on where it is positioned and what signals are examined, the capacity
to measure bioimpedance signals permits the detection of human breathing, heart rate, and
other parameters. Both sensors support SPI data transmission, and system interrupts can
be used to wake up the main microcontroller from sleep mode.

The device has two power options: micro USB input, and a lithium ion battery. An
on-board switch selects the power supply mode. Additionally, 1.8 V voltage regulation IC
is included, which then provides the main voltage to all other nodes on the board.

For reading the bioimpedance signals, two stainless steel electrodes are connected to
the MAX30001 chip. The considerations behind the electrode design are described in [2].

3.2.2. Energy Consumption

The component selection allows to achieve a long battery life. Using high-accuracy
multimeter (Keysight Technologies 34460A, Santa Clara, U.S.) measurements and values
from datasheets, we found out that the wearable device with the measurement functional-
ity enabled and Bluetooth Low Energy (BLE) active consumes 3.16 mA average current.
When performing bioimpedance measurements without BLE, the current consumption is
2.7 mA. The nRF5340 module consumes approximately 1.5 µA in its sleep mode, while the
MAX30001 module consumes 0.6 µA during sleep. During its active operational mode, the
MAX30001 module typically consumes 163 µA.

3.3. Software

In terms of an operating system for the device, we selected the Zephyr OS, a small-
footprint OS designed for use on resource-constrained and embedded systems (https://docs.
zephyrproject.org/latest/introduction/index.html (accessed on 14 October 2023)). The main
benefits of Zephyr include an extensive ecosystem, inter alia direct support from the Nordic
Semiconductors company itself, as well as a complete BLE network stack and support for
a large number of hardware platforms, including nRF5340-based platforms. Zephyr also
features primitives required to work with hardware in a platform-independent way, for
example, abstractions for the SPI and I2C protocols, for general purpose input/output (GPIO)
and interrupt management, and similar.

4. Methods

Methodology of the signal quality estimation applicable in human heart beat monitor-
ing is schematically illustrated in Figure 2 and described below.

https://docs.zephyrproject.org/latest/introduction/index.html
https://docs.zephyrproject.org/latest/introduction/index.html
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Figure 2. Signal quality estimation in bioimpedance-based human heart rate monitoring applications.

4.1. Band-Pass Filtering

To eliminate undesirable signals such as low-frequency and high-frequency hiss from
the data, a standard bandpass filter is employed. The filter’s settings were established based
on a frequency response range that was determined using the upper and lower limits of
the heart rate, between 30 beats per minute and 300 beats per minute, assuming that these
limits were unattainable. The filter is designed using an infinite impulse response (IIR) filter
type, as specified by parameter bandpassiir in Matlab filter designer. The frequency range
is defined by the following parameters: The lower frequency edge of the first stop-band set
to 0.1 Hz, but the lower frequency edge of the pass-band set to 0.5 Hz. The upper frequency
edge of the pass-band, set to 5 Hz, but the upper frequency edge of the second stop-band,
set to 6 Hz.

To meet the desired frequency response, the filter has specific magnitude constraints,
defined by stop-band attenuation. The amount of attenuation in the first stop-band is set
to 40 dB and the amount of ripple allowed in the pass-band is set to 1 dB. The amount of
attenuation in the second stop-band is set to 50 dB. The filter is designed using the elliptic
filter design method. The MatchExactly parameter indicates that the filter design should
match the pass-band frequencies exactly. Finally, the sample rate of the signal to be filtered
is given as a constant value of 64 samples per second.

4.2. Wavelet-Based Signal Quality Estimation

Continuous wavelet transform (CWT) is a time-frequency analysis technique allowing
us to observe changes of the signal’s frequency components with time. CWT is performed
on the measured signal y(t) to extract the wavelet transform coefficients Wy(s, b) at each
scale parameter s and time instant b according to the formula

Wy(s, b) =
∫ ∞

−∞
y(t)× 1√

|s|
× ψ∗(

t− b
s

)dt (1)

=
∫ ∞

−∞
y(t)× ψ∗s,bdt (2)

where ψ are wavelet functions—special functions satisfying conditions of zero mean and
finite energy. Wavelet scale parameter s is related to signal frequency f according to this
scale-to-frequency conversion

f =
ω0

2π × s
(3)
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where ω0 is a central frequency of the wavelet function. CWT decomposition of the
measured signal in time and scale (frequency) domains is conveniently viewed through
wavelet scalogram (WS), which shows proportion of signal energy in time-frequency plane.
The highest signal energy concentrates in so-called wavelet ridges, where high energy of a
signal corresponds to a specific scale parameter (related to signal frequency) and is traced
over the time instants of the signal. It is an instantaneous frequency of the signal. The WS
is calculated as

WSij =
|Wy(s, b)|2

∑M
i=1 ∑N

j=1 |Wy(si, bj)|2
(4)

where i = 1, . . . , M is a number of scales and j = 1, . . . , N is a number of time instances.
The wavelet ridges are identified from two conditions:

1. Derivative of absolute values of the wavelet coefficient with respect to the scale
parameter s as calculated for all time instants b of the signal is zero

d
ds
|Wy(s, b)| = 0 (5)

2. The second derivative of absolute values of the wavelet coefficient with respect to the
scale parameter s as calculated for all time instants b of the signal is negative

d2

ds2 |Wy(s, b)| < 0 (6)

Derivatives of Wy(s, b) of the first and second order with respect to s are calcu-
lated. For clarity, these quantities are denoted with D1 and D2, respectively. Time
instants and respective scale parameters s corresponding to negative values of D2 are
found and are denoted with b∗ and s∗, respectively. The identified wavelet ridges are
Wy(s, b) = Wy(s∗, b∗).

After the identification of ridges, their duration in number of samples is normalized
to the duration of an entire signal.

bn =
∑N

j=1 bj

bL
(7)

where bL is the duration of signal. The rationale is that the wavelet ridge corresponding to
the heartbeat should persist through all of the duration of the signal, while noisy ridges
may not have such a stability in time. Then, the energy of each ridge is computed by
summing up the wavelet scalogram coefficients corresponding to the ridge scale or along
the time axis as ∑N

j=1 |Wy(s∗k , b∗j )|.
The energy of the wavelet ridge characterizes the intensity of a particular signal

component. Next, a normalized energy is calculated for each ridge by dividing the ridge
energy by the total energy of the signal, yielding a percentage of energy associated with
each wavelet ridge.

en = 100×
∑N

j=1 |Wy(s∗k , b∗j )|
∑M

i=1 ∑N
j=1 |Wy(si, bj)|

(8)

Afterwards, this normalized energy is weighted by the duration of the wavelet ridge
to obtain the weighted ridge energy as

ew = en × bn (9)

The weighted ridge energy takes into account both ridge stability in time and also
intensity of the ridge. Hence, the signal component corresponding to heartbeat should
have a very high weighted energy compared to other ridges.
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A cornerstone of the proposed signal quality estimation method is estimation of noise
content. Here, the median filter is applied to the weighted ridge energies. The choice
of median filter instead of other filters is based on the distribution of ew values. As this
distribution is not normal, since relatively few samples have high values, median filter is
more robust to such outliers compared to, for example, mean filter. Median filter, however,
requires us to set a window length in which the median operation is to be performed.
The choice of window length is optimized using k-fold cross-validation technique in the
following manner: The weighted energy data ew have been split into 10 folds, where 9 folds
were used for applying the median filter to the data and obtaining filtered data eM. f ilt.

w at
pre-defined window length values. It constitutes a training data set. The remaining one
fold was used for testing where a mean-squared error metric between the filtered data
and data in this one fold (testing data set) was computed. This operation was repeated by
cycling through all 9 folds and the one fold for testing was fixed. The following 9 iterations,
however, cycled through the fold for testing so that eventually all 10 folds were used for
testing once. This scheme is shown in Figure 3.

Figure 3. k-fold cross-validation scheme with 10 folds to optimize window length selection for
median filtering.

When the optimum value of window length has been chosen. The noise component of
a signal is determined as a difference between the weighted ridge energy ew and a filtered
ew with a median filter as noise = ∑M

i=1 |ew,i − eM. f ilt.
w,i |2.

The proposed signal quality indicator, also called signal-to-noise-ratio (SNR) is
defined as

SNR = 10× log10
∑M

i=1 e2
w,i

noise
(10)

The numerator expresses the total energy of the signal y(t) across all frequencies and
time instants, whereas the denominator reflects the part of the signal related to noise—
information-carrying signal components subtracted from the total signal. Following other
definitions of the SNR, its proposed version is also expressed in decibels.

4.3. Experimental Measurements

The experiment was carried out with the wearable device shown in Figure 1 and de-
scribed in Section 3, Experimental Platform. The complete measurement system also includes
a BLE receiver module, a computer as a data receiving unit, as well as an impedance model of
organic human tissue as Z tissue, shown in Figure 4. The prototype includes a pair of stainless
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steel electrodes that are supported by a layer of foam to improve flexibility and reduce pres-
sure on the skin. The dimensions of prototype PCB are 55 mm × 52 mm × 30 mm, including
the battery and electrodes. The initial electrode size was approximately 8 mm × 18.5 mm, but
this was later changed to larger electrodes with dimensions of 18.5 mm × 44 mm to improve
the contact area with the skin. The decision to use stainless steel electrodes was based on
previous research on electrode materials and their properties, with particular emphasis on
their effectiveness in heart rate detection [2].

BLE 
Wearable 

device 
PC 

Z_electrode 
+ 
Z_tissue 
+ 
Z_electrode 

Figure 4. Bioimpedance wearable device equivalent circuit connected to a computer via Bluetooth.

The MAX30001 integrated circuit was configured to sample bioimpedance data at a
rate of 32 or 64 samples per second. Multiple readings were collected and transmitted to
a PC via the nRF5340 using Bluetooth Low Energy (BLE) protocol. A Python script was
used to collect data at the user end. The collected data were then transferred to Matlab for
analysis, where heart rate was extracted and analyzed over time.

Bioimpedance signatures were measured on nine individuals (subjects I to IX). In-
formed informed consent was obtained from all experimental subjects. Biological data of
the test subjects are shown in Table 3. Each measurement session consisted of simultaneous
bioimpedance and PPG measurements, where a PPG sensor was held between the thumb
and an index finger. The wearable device was put on the wrist parallel to ulnar and radial ar-
teries. The test subjects were sitting still during the measurement session. The effect of two
different couplings between skin and electrodes was explored. A total of 10 measurements
were performed using a gel “E.C.G. AND TENS GEL” [27] and 10 measurements were
performed using hydrogel sheets “MODEL MA1017” [28] with size 4 × 6 cm, cut to pre-
cisely match the electrode size. Ambient temperature during the measurement sessions
was approximately 19 °C. For clarity, only the results for subject I are shown in the
following plots.

Table 3. Biological data of test subjects.

Subject Gender
Age

(Years)
Mass
(kg)

Height
(m) BMI Activity Level

I male 34 76 1.80 23.46 high
II male 54 94 1.84 27.76 low
III male 22 57 1.78 17.99 medium
IV male 30 75 1.95 19.72 medium
V male 39 70 1.83 20.90 medium
VI male 26 83 1.83 24.78 medium
VII female 23 70 1.75 22.86 low
VIII male 30 88 1.75 28.73 high
IX male 24 105 2.03 25.48 low

TENS GEL that we use in experiments [27] is specifically designed for this purpose,
does not contain formaldehyde and is free from salts, completely hypoallergenic, water-
soluble, resistant to drying, odourless, and easily removable. It does not stain, does
not grease, does not ionize and does not oxidize over time. It does not contain active
ingredients that could damage the electrodes in any way. The manufacturer did not
provide much information about the hydrogel used in our experiments; however, similar
hydrogel materials and applications are discussed in [29].
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5. Results
5.1. Measured Signals

The recorded raw bioimpedance measurements are presented in Figure 5. Out of the
10 measurements, only three are presented—the first, the fifth and the last (10th) signal
with the highest SNR, signal with the lowest SNR and signal obtained as an average of
all 10 signals. These three signals are shown for both gel and hydrogel couplant cases.
Bioimpedance values have a settling time—a trend to decrease over time and asymptotically
tend to an equilibrium value. Bioimpedance starting values differ for different coupling
agents. In the case of hydrogel, the starting bioimpedance value is about two to three times
higher compared to measurements with gel. Moreover, the slopes of bioimpedance that
decay over time are also different. In the case of gel coupling, the rate of decay is lower and
small-amplitude oscillations can be seen for the fifth and tenth measurements. The signal
obtained after placing the electrodes on the skin can be affected by the resulting capacitance
of the skin layers. This can cause the signal to appear as a falling exponent, which can
obscure the true nature of the signal and affect the accuracy of heart rate measurements, as
mentioned in [30].
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Figure 5. Raw bioimpedance measurements for subject I. Measurements no. 1, 5 and 10 are shown.

Bioimpedance signals processed with band-pass filtering are shown in Figure 6. This
step has removed the slope of the raw signals as well as some noise outside the pass bands
of the filter. For ease of comparison, these processed signals are also normalized to the range
from −1 to 1. Periodic oscillations corresponding to heartbeat can be clearly seen. Zoom-in
on the first 10 s of measurement is shown in Figure 7. A clear pattern of hemodynamic
activity with the fiducial points can be seen.

Results of raw PPG signals measured simultaneously with a bioimpedance are shown
in Figure 8. These signals correspond to the ones presented for the bioimpedance. Several
observations can be made. Firstly, compared to bioimpedance, the values of PPG do not
change significantly with time. Secondly, there is a pronounced baseline wander. Thirdly,
apart from higher frequency oscillations associated with a heart beat, smaller frequency
components are presumably related to respiration. The respiration frequency is in the range
0.15–0.4 Hz [31]. Band-pass filtering of PPG signals, as shown in Figure 9 has removed a
wander of baseline level and the zoom-in on the first 10 s is depicted in Figure 10.

Figure 5. Raw bioimpedance measurements for subject I. Measurements no. 1, 5 and 10 are shown.

Bioimpedance signals processed with band-pass filtering are shown in Figure 6. This
step has removed the slope of the raw signals as well as some noise outside the pass bands
of the filter. For ease of comparison, these processed signals are also normalized to the range
from −1 to 1. Periodic oscillations corresponding to heartbeat can be clearly seen. Zoom-in
on the first 10 s of measurement is shown in Figure 7. A clear pattern of hemodynamic
activity with the fiducial points can be seen.

Results of raw PPG signals measured simultaneously with a bioimpedance are shown
in Figure 8. These signals correspond to the ones presented for the bioimpedance. Several
observations can be made. Firstly, compared to bioimpedance, the values of PPG do not
change significantly with time. Secondly, there is a pronounced baseline wander. Thirdly,
apart from higher frequency oscillations associated with a heart beat, smaller frequency
components are presumably related to respiration. The respiration frequency is in the range
0.15–0.4 Hz [31]. Band-pass filtering of PPG signals, as shown in Figure 9 has removed a
wander of baseline level and the zoom-in on the first 10 s is depicted in Figure 10.
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Figure 6. Band-pass filtered bioimpedance signals for subject I.
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Figure 7. Zoomed-in on the first 10 s of band-pass filtered bioimpedance signals for subject I.
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Figure 6. Band-pass filtered bioimpedance signals for subject I.
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Figure 7. Zoomed-in on the first 10 s of band-pass filtered bioimpedance signals for subject I.
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Figure 8. Raw PPG measurements for subject I. Measurements no. 1, 5 and 10 are shown.Figure 8. Raw PPG measurements for subject I. Measurements no. 1, 5 and 10 are shown.
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Figure 9. Band-pass filtered PPG signals for subject I. These signals correspond to the presented
filtered bioimpedance signals.
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Figure 10. Zoom-in on the first 10 s of band-pass filtered PPG signals for subject I.

5.2. Signal Stationarity and Normality

A more straightforward method of signal quality assessment in periodic signals is
based on the autocorrelation function. This method involves computing the autocorrelation
function of the signal. The SNR indicator is computed as SNR = R(τ=0)

1
N ∑N

i=1 R(τi)
, where R

is the correlation coefficient and τ are time lags of the signal with itself. The idea is
that by combining the fact that, theoretically, the autocorrelation of noise is zero [32]
and diminishing of autocorrelation values with increasing time lags, the mean over all
time lags except at τ = 0 corresponds to noise. Compared to the classical wavelet-based
denoising method, this method requires less computational resources, since there is no need
to decompose the signal into frequencies. However, the restriction of the autocorrelation
method is that the signal has to be periodic, stationary and it should not be correlated with
the noise.

The measured bioimpedance signals were tested regarding stationarity and normality
in order to asses the appropriateness of the autocorrelation method for estimation of the
SNR of bioimpedance signals. For this task, Kolmogorov–Smirnov, Anderson–Darling and
Jarque–Bera statistical tests were conducted on the normalized bioimpedance signals to
assess their normality. On the other hand, Augmented Dickey–Fuler test and Variance
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ratio test were carried out to test the stationarity of the recorded signals. Multiple tests
were performed to increase the assurance of the judgment on the nature of the signals. The
results on the signals measured on subject I are shown in Tables 4 and 5. The tests were
performed at a five percent significance level. All of the included signals are non-normal,
since the associated p-value is less than α and statistic value is larger than the critical value.
The same is true for non-stationarity tests. Hence, the measured bioimpedance signals are
non-normal and non-stationary at α = 0.05 and it is not correct to apply simpler signal
quality estimation methods, such as the autocorrelation method.

Table 4. Normality test of bioimpedance data for subject I at α = 0.05.

Kolmogorov–Smirnov Test Anderson–Darling Test Jarque–Bera Test

p-Value KS KS Crit. p-Value AD AD Crit. p-Value JB JB Crit.

Gel #1 0 0.27 0.0197 0.0005 3.59 0.75 0.001 28.26 5.98
Gel #2 0 0.32 0.0195 0.0005 6.37 0.75 0.001 31.09 5.98
Gel #3 0 0.28 0.0197 0.0005 5.97 0.75 0.001 37.29 5.98
Gel #4 0 0.25 0.0196 0.0005 6.10 0.75 0.001 55.09 5.98
Gel #5 0 0.29 0.0197 0.0005 2.31 0.75 0.001 20.11 5.98
Gel #6 0 0.26 0.0196 0.0005 3.90 0.75 0.001 20.00 5.98
Gel #7 0 0.30 0.0193 0.0005 1.80 0.75 0.001 15.05 5.98
Gel #8 0 0.30 0.0203 0.0005 5.21 0.75 0.001 68.05 5.98
Gel #9 0 0.27 0.0198 0.0005 2.70 0.75 0.001 21.72 5.98
Gel #10 0 0.26 0.0198 0.0044 1.18 0.75 0.006 10.71 5.98

H.gel #1 0 0.36 0.0168 0.0005 2.29 0.75 0.001 240.36 5.98
H.gel #2 0 0.31 0.0191 0.0005 1.87 0.75 0.006 10.41 5.98
H.gel #3 0 0.27 0.0193 0.0005 5.52 0.75 0.003 12.57 5.98
H.gel #4 0 0.31 0.0196 0.0005 6.43 0.75 0.001 28.12 5.98
H.gel #5 0 0.26 0.0195 0.0005 4.17 0.75 0.001 37.50 5.98
H.gel #6 0 0.25 0.0196 0.0005 7.05 0.75 0.001 55.15 5.98
H.gel #7 0 0.26 0.0195 0.0005 15.19 0.75 0.001 89.20 5.98
H.gel #8 0 0.27 0.0194 0.0005 4.72 0.75 0.001 31.16 5.98
H.gel #9 0 0.26 0.0199 0.0005 7.07 0.75 0.001 41.09 5.98
H.gel #10 0 0.27 0.0195 0.0005 12.84 0.75 0.001 81.95 5.98

Table 5. Stationarity test of bioimpedance data for subject I at α = 0.05.

Augmented Dickey–Fuller Test Variance Ratio Test

p-Value ADF ADF Crit. p-Value VR VR Crit.

Gel #1 0.001 −6.79 −1.94 0 35.14 1.96
Gel #2 0.001 −7.51 −1.94 0 34.97 1.96
Gel #3 0.001 −6.88 −1.94 0 35.26 1.96
Gel #4 0.001 −7.43 −1.94 0 36.39 1.96
Gel #5 0.001 −7.06 −1.94 0 33.30 1.96
Gel #6 0.001 −7.26 −1.94 0 34.65 1.96
Gel #7 0.001 −7.53 −1.94 0 36.12 1.96
Gel #8 0.001 −7.43 −1.94 0 34.97 1.96
Gel #9 0.001 −7.23 −1.94 0 33.79 1.96
Gel #10 0.001 −7.68 −1.94 0 34.22 1.96

Hydrogel #1 0.001 −7.76 −1.94 0 40.81 1.96
Hydrogel #2 0.001 −6.55 −1.94 0 35.91 1.96
Hydrogel #3 0.001 −6.44 −1.94 0 33.95 1.96
Hydrogel #4 0.001 −6.11 −1.94 0 34.35 1.96
Hydrogel #5 0.001 −6.92 −1.94 0 34.74 1.96
Hydrogel #6 0.001 −6.18 −1.94 0 35.13 1.96
Hydrogel #7 0.001 −6.86 −1.94 0 36.19 1.96
Hydrogel #8 0.001 −6.76 −1.94 0 33.42 1.96
Hydrogel #9 0.001 −5.97 −1.94 0 34.17 1.96
Hydrogel #10 0.001 −6.34 −1.94 0 34.92 1.96
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5.3. Noise Detection

Further, both band-pass-filtered bioimpedance and PPG measurements are processed
with CWT. Scalograms of the bioimpedance signals are shown in Figure 11. A dominating
wavelet ridge can be seen around 1 Hz on the frequency axis and can be traced for all time
instants in all measurements conducted on subject I. It is clearly related to heart beat as the
frequency if 1 Hz approximately matches the human heart beat at rest and the amplitude of
modulus of CWT coefficients related to this signal component is much higher compared to
other signal components. Relatively low amplitude CWT coefficients are observed at higher
frequencies. Analogous results for PPG signals are illustrated in Figure 12. In this case,
scalograms are dominated by a single signal component around 1Hz. These scalograms
contain less noise compared to the ones of bioimpedance signals as is also evidenced by
higher SNR indicator values.

Sensors 2023, 1, 0 15 of 21

Figure 11. Bioimpedance scalograms for subject I. High amplitude can be traced around 1 Hz. Lower
amplitude and lower duration signal components are present.

Figure 12. PPG scalograms for subject I. Dominating signal component is around 1 Hz.

Results of window length optimization for median filtering through 10-fold cross-
validation are depicted in Figure 13. Here, window length values in a range from 1 to 15
were tested in a total of 1000 independent runs. A high scatter of values as indicated by
the coefficient of variation indicates that no particular value is favorable over others. By
increasing the number of runs from 100 to 1000, the coefficient of variation decreased by
only approximately 1 percent. As there is no significance to a particular value of window
length, it was decided to select the one that yields the maximum SNR.

Figure 11. Bioimpedance scalograms for subject I. High amplitude can be traced around 1 Hz. Lower
amplitude and lower duration signal components are present.

Figure 12. PPG scalograms for subject I. Dominating signal component is around 1 Hz.

Results of window length optimization for median filtering through 10-fold cross-
validation are depicted in Figure 13. Here, window length values in a range from 1 to 15
were tested in a total of 1000 independent runs. A high scatter of values as indicated by



Sensors 2023, 23, 8532 15 of 20

the coefficient of variation indicates that no particular value is favorable over others. By
increasing the number of runs from 100 to 1000, the coefficient of variation decreased by
only approximately 1 percent. As there is no significance to a particular value of window
length, it was decided to select the one that yields the maximum SNR.
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CoV = 46.79 %

GEL

Figure 13. Values of the optimized window length values as obtained in 1000 runs of 10-fold cross-
validation for subject I, trial 1. Each * denotes the result of an individual run. High coefficient of
variation suggests that selection of a particular value is not critical.

Median filtering results are illustrated in Figure 14. For clarity, these results are shown
only for a trial I (gel) of subject I as intermediate results. The blue bars denote the scale
parameters satisfying the ridge conditions. However, the duration of the associated ridges are
not necessarily high. The red bars correspond to the relative energy expressed as percentage
from the total energy of a signal. An overlay of both plots gives a visual indication of a mutual
relationship between the ridge duration and its energy. The bottom plot shows weighted
ridge energy (multiplication of both quantities from the upper plot). Hence, a ridge energy
that is weighted by duration (red bars) is obtained. The maximum weighted energy is at a
scale parameter of 51, which, in turn, corresponds to 0.868 Hz through scale-to-frequency
conversion. Blue bars, on the other hand, are obtained from applying a median filter to the
weighted energy data. A logarithmic scale is used so that the small and large amplitudes are
clearly visualized.

5.4. Signal Quality

The effect of window length of the median filter on estimation of the SNR was carried
out. The SNR values versus window lengths ranging from 2 to 40 were calculated on
measurements performed on subject I and shown in Figure 15. The first, fifth and tenth
measurements are displayed both for gel and hydrogel couplants. It can be seen that the
maximum SNR is consistently achieved at a window length of three. As the window length
increases, the SNR values decrease and eventually stabilize where a further increase in
window length does not have an impact on the SNR. In those cases, the weighted energy
data are over-smoothed.

The final results of the obtained SNR values are shown in Figure 16. Here, the mean
values of the SNR are illustrated for all test subjects for both couplants along with vertical
errorbars. The errorbars were calculated as confidence intervals CI = t1−α,ν × σ√

N
and the

final result can be presented as SNR = SNR± CI.
The obtained mean SNR values range between 19 dB and about 24 dB. There are no

significant differences in SNR results between gel and hydrogel couplants for all subjects—
all differences are within the error bounds. Moreover, no significant differences are observed
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between test subjects. Hence, the choice of couplant has an impact mostly on practical
aspects of measurement, such as availability, ease of application and personal comfort of
the test subject rather than the actual quality of the measured signal. These bioparameters
might show a correlation with specific features of the bioimpedance signals rather than the
SNR values.
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Figure 14. Normalized durations and energies of the ridges identified from the post-processed
bioimpedance signals for subject I. Ridge durations normalized to a measurement length are shown
as blue bars corresponding to the left y axis. Ridge energies normalized to the total signal energy are
shown as red bars.
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Figure 15. SNR values versus window length for the 1st, 5th and 10th trial measurements performed
on subject I. The maximum SNR is consistently achieved at window length 3 both, for gel and
hydrogel couplants.

5.5. Classical Wavelet Transform Approach

The procedure of signal denoising using the classical wavelet transform approach is as
follows. Signal decomposition into approximation and detail coefficients at different levels
is performed using a discreet wavelet transform (DFT) with a selected mother wavelet
function. The maximum level of decomposition depends on the length of the signal. A
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rule of thumb is to set it as equal or less than log2(N), where N is length of the signal. The
threshold level is calculated as

T = TM× threshold_type (11)

where TM is the threshold multiplier, and “threshold_type” is the type of the threshold.
Common choices include soft, hard or universal. The universal threshold is defined by
MAD(Wx) =

median(|Wx−median(Wx)|)
0.6745 . and MAD is median absolute deviation of wavelet

decomposition coefficients Wx of signal x representing a noise level in the signal.

Subject I(a) Subject I(b) Subject II Subject III Subject IV Subject V Subject VI Subject VII Subject VIII Subject IX
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

S
N

R
(d

B
)

gel
hydrogel

Figure 16. Mean SNR values for gel and hydrogel couplants for all test subjects. Error bars show
confidence intervals.

A drawback of the classical wavelet transform approach for SNR estimation is that
many parameters need to be provided by the user or found via an optimization process.
These parameters include threshold type (soft, hard, universal or other), threshold mul-
tiplier and mother wavelet function. Even though the threshold type can be selected
through trial and error, no particular guidelines exist for wavelet mother function and an
appropriate value of threshold multiplier.

In the current study, we attempt to present a solution to the selection of the threshold
multiplier value. At each level of wavelet decomposition, a threshold T calculated for each
value of TM is applied to wavelet transform coefficients to obtain a reconstructed denoised
signal xd. Then, a mean-squared error between the original signal and a reconstructed
denoised signal is computed at each value of TM. Finally, the SNR is computed as

SNR(TM) = 10× log10
||xd(TM)||2

||x(TM)− xd(TM)||2 (12)

where ||.|| is the norm. In this study, 100 linearly spaced threshold multiplier values ranging
from 0.5 to 10 were tested to estimate an appropriate threshold multiplier. As a threshold
multiplier increases, the threshold level increases as well, meaning more aggressive denoising
as more wavelet decomposition coefficients are set to zero. As a consequence, the mean
squared error (MSE) increases and the SNR decreases. This effect can be seen in Figure 17,
where both of these quantities change monotonically. A breakpoint of TM is chosen where
the MSE and SNR curves intersect. With this approach, SNR is equal to 33.4 dB and TM to
2.13. The disadvantage of this approach is that it is empirical as no strict guidelines exist on
how to adequately choose TM.
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Figure 17. Estimation of threshold multiplier using classical wavelet transform method (subject I,
trial 8, gel). Threshold multiplier is selected at the crossing of MSE and SNR curves. With this
approach the SNR is equal to 33.4 dB.

6. Conclusions

The main goal of the study is the development of signal quality estimation technique
based on continuous wavelet transform (CWT). This method requires identification of
wavelet ridges, weighing their energy by a duration normalized to the duration of the whole
signal and, lastly, performing median filtering of the weighted energies. Optimal median
filtering is assured by selecting appropriate window length. The method is validated on
nine test subjects, with different body mass indices, ages and levels of physical activity. The
bioimpedance signals are measured with a wearable device fixed on a wrist. In addition,
plethysmography (PPG) signals are measured from an index finger. We assess the effect of
two different electrode couplants: gel and hydrogel.

In addition, this work also showcases a custom wearable device for human bio-
impedance measurements. It has proven to be reliable according to the inspection of the
measured signals. Nevertheless, it was necessary to carry out band-pass filtering to remove
a negative slope and reveal the details of signal morphology.

The following findings must be highlighted:

1. Visualization of signal components in time-frequency plane aids in signal quality
estimation. The most intensive signal components corresponding to heartbeat are
traced through the whole duration of the signal. Other components, including noise,
can also be traced in terms of their amplitude and duration as indicated by wavelet
scalograms.

2. PPG signals are helpful to be correlated with bioimpedance signals to match the
heartbeat component. PPG scalograms show that apart from the heartbeat compo-
nent, signals are relatively clean. This means that the other components as seen in
bioimpedance scalograms likely correspond to noise.

3. The measured bioimpedance signals are non-stationary and are not normally dis-
tributed, meaning that many existing methods for signal quality estimation such
as autocorrelation are not applicable. The proposed method, on the other hand, is
based on wavelet transform of the measured signal and, hence, can handle signal
non-stationarity and non-normality.

4. The developed signal quality estimation method is fully adaptive. Compared to the
classical wavelet-based signal denoising and signal-to-noise ratio estimation, there is
no need to set fixed threshold levels or select proper threshold types. Instead, median
filtering with an optimized window length is performed and noise is estimated from
the available ridge information. SNR estimates obtained with the classical and the
proposed methods are within error bounds.

5. The effect of coupling agent does not have a significant impact on signal quality as
assessed by the SNR. All the differences are within the error bounds. Also, there is no
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evidence that physical activity levels, age and BMI of test subjects have a role in signal
quality of the bioimpedance signals. Again, all differences are within error bounds.

The limitations of the applicability of the proposed SNR indicator include relatively high
computational requirements. First, the signal needs to be pre-processed, as the low fre-
quency slope had to be removed, since otherwise the energy of the slope’s frequency
component might have been taken into account in calculation of the SNR. Secondly, compu-
tation of continuous wavelet transform with a desired resolution itself requires significant
computational resources, especially for the median filtering via a cross-validation routine.
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