
Citation: Chen, Y.; Dong, G.; Xu, C.;

Hao, Y.; Zhao, Y. EStore: A

User-Friendly Encrypted Storage

Scheme for Distributed File Systems.

Sensors 2023, 23, 8526. https://

doi.org/10.3390/s23208526

Academic Editor: Stefan Poslad

Received: 11 August 2023

Revised: 3 October 2023

Accepted: 12 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

EStore: A User-Friendly Encrypted Storage Scheme for
Distributed File Systems
Yuxiang Chen 1,2,3 , Guishan Dong 1,3, Chunxiang Xu 1,*, Yao Hao 2,3 and Yue Zhao 2,3

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; 202212081302@std.uestc.edu.cn (Y.C.)

2 Science and Technology on Communication Security Laboratory, Chengdu 610041, China;
haoyao30@163.com (Y.H.); yuezhao@foxmail.com (Y.Z.)

3 No. 30 Institute, China Electronics Technology Group Corporation, Chengdu 610041, China;
mountain_dong@163.com (G.D.)

* Correspondence: chxxu@uestc.edu.cn

Abstract: In this paper, we propose a user-friendly encrypted storage scheme named EStore, which
is based on the Hadoop distributed file system. Users can make use of cloud-based distributed file
systems to collaborate with each other. However, most data are processed and stored in plaintext,
which is out of the owner’s control after it has been uploaded and shared. Meanwhile, simple
encryption guarantees the confidentiality of uploaded data but reduces availability. Furthermore,
it is difficult to deal with complex key management as there is the problem whereby a single key
encrypts different files, thus increasing the risk of leakage. In order to solve the issues above, we
put forward an encrypted storage model and a threat model, designed with corresponding system
architecture to cope with these requirements. Further, we designed and implemented six sets of
protocols to meet users’ requirements for security and use. EStore manages users and their keys
through registration and authentication, and we developed a searchable encryption module and
encryption/decryption module to support ciphertext retrieval and secure data outsourcing, which
will only minimally increase the calculation overhead of the client and storage redundancy. Users are
invulnerable compared to the original file system. Finally, we conducted a security analysis of the
protocols to demonstrate that EStore is feasible and secure.

Keywords: distributed file system; ciphertext retrieval; key management; encrypted storage; fine-
grained encryption; secure data sharing

1. Introduction

The Hadoop distributed file system (HDFS) can be used to provide easily available
file storage services for massive data within a Hadoop cluster. At present, the HDFS
is widely used in various data analysis and storage scenarios such as e-office and the
Internet of Things. The Internet Data Center (IDC) predicts that the global dataset created,
collected, and copied will reach 175 ZB every year by 2025, an increase of more than five
times compared with 2018. A huge data volume requires a big data platform for data
management and security protection of sensitive messages such as user identity, user
accounts, and biometric features, which, once leaked, will threaten the security of millions
of users. It is necessary to provide secure services for the HDFS by means of access control
and data encryption.

The existing HDFS has basic resource control abilities, and its control objects are
only for HDFS directories and files. Furthermore, most HDFS files are stored in plaintext,
whereby its security of access control depends on the configuration of the permission policy.
Once the permissions are improperly configured or bypassed, this will lead to disclosure of
the data.

Sensors 2023, 23, 8526. https://doi.org/10.3390/s23208526 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23208526
https://doi.org/10.3390/s23208526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9963-9554
https://orcid.org/0000-0003-0621-941X
https://doi.org/10.3390/s23208526
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23208526?type=check_update&version=1

Sensors 2023, 23, 8526 2 of 27

Transparent encryption is another commonly used protection method of the HDFS. It
protects directories and files by setting up an encryption area. The keys to the encryption
area are stored and accessed separately in a key management system (KMS). This is not
calculated in real time. Moreover, the keys are not uniformly controlled with file access;
therefore, there is a risk that the keys will be leaked. Furthermore, an adversary (including
internal and external type) may obtain the keys and decrypt the ciphertext for commercial
benefits. Furthermore, if the internal adversary destroys the key, this spoils the availability
of the file. The existing KMS only provides a black-and-white list for control, which is very
simple and less efficient. Therefore, it is necessary to control the access to both files and
keys. The existing key resource and access control methods of the HDFS are coarse; for
example, the native POSIX permission model and ACL mechanism only control access to
basic operations such as reading, writing, and executing. Apache Sentry provides role-
based access control, while Apache Ranger provides label-based (role generalization) access
control for the HDFS. None of the existing components provide access control based on
fine-grained subject–object attributes. Therefore, it is necessary to design a complete and
efficient fine-grained access control mechanism to provide full life-cycle protection of data
and keys.

2. Related Work

The Hadoop distributed file system (HDFS) has the characteristics of high fault tol-
erance and high throughput, which are widely used for storing massive data. With the
development of Hadoop, its security issues have become increasingly prominent. In order
to ensure the security of the data stored in the HDFS, existing methods include access
control, encryption, etc.

2.1. Access Control

Colombo et al. [1] combed access control models from MapReduce’s distributed
computing scenario, including Access Control for the Hadoop ecosystem (HeAC), Object-
Tagged Role-Based Access Control (OT-RBAC), and so on. The formal Hadoop HeAC
was proposed by Gupta et al. [2], and it describes the authorization mechanism of data in
Hadoop services and ecosystem services (such as Hive, Kafka, and other components), and
it can set attribute values as tags to control access to various operations. However, they
did not consider upload operations or the decision of rejection. Gupta also introduced the
mechanism of group hierarchy (GH), proposing that the permissions of Hadoop services
can be assigned to certain roles. Awaysheh et al. [3] put forward a federation access
control reference model (FACRM) and its implementation process, which is in line with
the service-oriented architecture (SOA). Ugobame et al. [4] introduced blockchain into big
data access control, complete identity management, and authority control and protected
data privacy.

The abovementioned access control mechanisms are set for data in Hadoop without
considering the access control for keys. They cannot guarantee the security of data and
keys simultaneously and thus cannot prevent the storage server from stealing data. Access
control, as the first line of defense for data protection, confirms the identity of the users
by adopting authentication methods such as Kerberos, Sentry, and Ranger. However,
once the data leave the control domain, protection becomes invalid. On the contrary, data
encryption stores and transmits data in the ciphertext, and it provides continuous and
stronger protection even if it leaves the access control domain. Below, we review the
research on the strength of the data encryption protection effect.

2.2. Encrypted Storage

The encryption of Hadoop includes transmission and storage types. In terms of
transmission encryption, most components of the Hadoop platform already have mature
transmission protocols such as simple authentication and security layer (SASL) and secure
sockets layer/transport layer security (SSL/TLS) [5]. In terms of storage encryption,

Sensors 2023, 23, 8526 3 of 27

the Apache Hadoop has included a KMS module since version 2.6.0 and a transparent
encryption/decryption mechanism, allowing users or administrators to set the encryption
area. The Hadoop platform can automatically encrypt data and then transmit and store
it when uploading/downloading data to this area. However, the existing KMS has the
problems of low search efficiency and low encryption efficiency. At present, the keys
are randomly arranged in a hash table according to the hash value of the key name and
version number, and the different versions of the same key are also arranged in a disorderly
manner, which leads to low key retrieval efficiency. The encryption process built into
the Hadoop platform includes plaintext preparation, encryption, and ciphertext sending
preparation. These steps are executed in series, leading to insufficient utilization of the
encryption resources and low performance. In addition, transparent encryption assumes
that the HDFS is maintained by a trusted third party, which is unrealistic; furthermore, the
granularity of the encrypted data is too coarse, which also introduces security risks of data
leakage. Diaz et al. established an authentication mechanism based on a bilinear elliptic
curve in the Hadoop platform, but the computation cost and configuration are relatively
complex [6]. Song et al. added the ARIA block encryption algorithm on the basis of the
AES algorithm in the HDFS transparent encryption mechanism, making HDFS double
encryption algorithms optional [7]. Ciphertext policy attribute-based encryption (CP-
ABE) [8,9] and key policy attribute-based encryption (KP-ABE) [10] can indeed provide the
functions of encryption and access control simultaneously, but they are essentially public
key types, and their overheads are not suitable for the big data environment; furthermore,
they require a high degree of freedom for the encryptors.

2.3. Searchable Encryption

The HDFS maintained by a storage service provider is supposed to be honest but
curious; that is, the cloud server provider honestly performs the storage service for the
users; however, it may try to crack and discover the users’ information and privacy. The
files are stored in the form of ciphertext, which means that its availability is also reduced
when a user wants to locate a specific file in their ciphertext collection stored in the HDFS.
If the collections are decrypted and then searched in the HDFS, users’ data may be leaked
to the service provider. If the user first downloads their entire ciphertext collection and
then decrypts it, it will cause excessive bandwidth usage and computational overhead.
This leads to searchable encryption, a method of searching ciphertext with ciphertext, first
proposed by Song et al. [11]. Searchable encryption has been widely researched in the
context of cloud storage, especially concerning the destruction caused by encryption and
the flexibility of searching [12].

In terms of practicality, Golle first established a searchable encryption scheme based
on an inverted index using the Bloom filter in 2003 [13]. In 2011, Curtmola first proposed a
semantically secure anti-indistinguishable chosen keyword attack (IND-CKA) ciphertext
retrieval scheme [14]. Kamara officially put forward the dynamic ciphertext retrieval
scheme in 2013 [15]. The dynamic searchable encryption system introduced forward and
backward security for the keywords that users have searched. Forward security requires
that the cloud cannot learn that newly added documents contain keywords that users have
searched. Backward security requires that the cloud cannot learn that the deleted files
contain keywords that have been searched for by users.

2.4. Comparison and Analysis of Typical Schemes

With the increase in functional diversity and security, the design of the ciphertext
retrieval scheme will bring a certain degree of communication and computing overhead.
Table 1 shows a comparison of a typical technical route of encrypted storage and secure
data sharing. We can see that a fair amount of encrypted storage has been realized based on
attribute-based encryption (ABE) [16,17], broadcast encryption (BE) [18], and homomorphic
encryption (HE) [19]. However, they cannot adapt to large file encryption due to the

Sensors 2023, 23, 8526 4 of 27

computational storage overhead. The remaining schemes [20,21] lack data security sharing
methods and are not suitable for the actual file system scenario [22].

Table 1. Comparison of the technical route of encrypted storage and secure data sharing.

Reference Related Work Encrypted Storage Secure Data Sharing

Guo et al., 2018 [22] Search over encrypted data Edge encryption rather than end
devices None

Zhang et al., 2019 [18] Broadcast encryption with
de-duplication

Emphasizes the de-duplication of
the cloud Based on public key broadcast

Mamta et al., 2021 [16] Blockchain-assisted fine-grained
searchable encryption

Attributed-Based Encryption
scheme

Access structure combined with
Shamir’s Secret Sharing (based on public
keys)

Ning et al., 2022 [20] Dual access control for cloud data Symmetric key encryption None (just anonymity for data owner)

Zhang et al., 2022 [21]
Secure password-protected
encryption key for de-duplicated
cloud storage

Server-aided message-locked
encryption None

Vanin et al., 2023 [19] Blockchain-based end-to-end data
protection

End-to-end homomorphic
encryption Blockchain-based secure sharing

Gupta et al., 2023 [17] Multi-authority access control for
storage

Attribute-based encryption (based
on public key)

Attribute-based access structure (based
on public key)

In terms of practicality, it is necessary to comprehensively consider safety, function,
and efficiency. With the increase in application requirements, the development of ciphertext
retrieval has also shown diversity, for example fuzzy keyword search, searchable encryption
based on order-preserving or order-revealing encryption to support the range query, the
use of homomorphic algorithms to realize Boolean search to improve security, realizing
multi-keyword ciphertext retrieval based on vector space, retrieving results with relevance
ranking by considering the correlation of ciphertext keywords, and so on [23–28]. The
above schemes all assume that the cloud server is “honest but curious”. Further, under the
assumption that the cloud server is malicious, the cloud service provider may tamper with
the search results driven by interests. In response to this risk, verifiable-based encryption
schemes could verify the correctness and integrity of the cloud storage files [8,29–31].

In addition to ciphertext retrieval, private information retrieval (PIR) and oblivious
random access machines (ORAMs) support privacy-preserving searching [32,33], but they
are fundamentally different from searchable encryption. Private information retrieval
includes the sender and the receiver. The sender holds the data, and the receiver holds
the index; thus, the sender can let the receiver know the specific data without obtaining
any additional information. However, the stored data are in plaintext, and therefore
confidentiality cannot be guaranteed. ORAMs can be used to support all functions of
ciphertext retrieval, where the server only knows the size of the file set, thus providing a
higher security level. Furthermore, reducing the communication and storage overhead is a
difficult problem.

Public key searchable encryption (PSE) adopts asymmetric cryptography [34], which
is suitable for the scenario where the sender shares their outsourced data with the receiver
in the cloud. Boneh put forward the first public key searchable encryption scheme in 2004.
Because public key searchable encryption is inherently suitable for shared scenarios, it
is easier to expand to many functions compared to the symmetric type, including multi-
keyword queries, equality queries, range queries, and subset queries [23–28]. Meanwhile,
most public key searchable encryption systems are designed based on bilinear pairing,
which is less efficient than the symmetric type; furthermore, its design mostly focuses on
the text file scenario, lacking the design of complex data structures.

In the construction of public key searchable encryption, the sender generates a differ-
ent encrypted keyword index for the receiver based on random numbers, which can easily
maintain forward and backward security. However, the adversary can easily obtain the
receiver’s public key to become the sender, then they can carry out subsequent keyword
guessing attacks (KGAs) [35]. Countermeasures include authorizing the cloud, preventing
the cloud from carrying out keyword guessing attacks based on indistinguishable confu-

Sensors 2023, 23, 8526 5 of 27

sion and signcryption. Furthermore, fuzzy keyword search, an independent entity server
that assists users in generating the index, can also prevent KGAs. Regarding public key
management, public key infrastructure (PKI) or key generation center (KGC)-based cer-
tificateless cryptographic systems can be adopted [18]. With the development of quantum
computers, public key searchable encryption schemes based on quantum cryptography are
also a research hotspot.

The combination of PSE and other cryptographic techniques mainly includes identity-
based encryption (IBE), functional encryption, differential privacy, and homomorphic
encryption [19,36,37]. The first PSE proposed by Boneth is based on IBE [38]. With the
identity as the keyword, its future direction may be searchable encryption with anonymous
identity. Function encryption supports restricted key use, and therefore the receiver can only
obtain the file results processed by a specific function without revealing other information.
In addition, the characteristics of homomorphic encryption can support SE, but both
homomorphic and functional encryption are limited by the excessive computational and
storage overhead [19].

2.5. Requirement Analysis and Our Contributions

According to the above situation and security risks, big data security protection needs
to meet the following requirements:

(1) Key resource control: the keys stored and managed in a centralized way need effective
access control (authentication).

(2) Normalized description of operational semantics: Access control policies need nor-
malized description, authentication, and unified management functions.

(3) Fine-grained access control: mechanisms should have fine-grained access control for
files and keys to protect who and when in what scenario, from what equipment, via
what network, through what operation, and accessing what data.

Specifically, our contributions are as follows:

• We propose a user-friendly encrypted storage scheme named EStore based on our
previous work [39], which mainly consists of file encryption and ciphertext retrieval.
In EStore, users protect keywords and file data by encryption when outsourcing. The
scheme ensures that only authorized users can reconstruct readable data from cipher-
text; furthermore, the scheme supports hierarchical encryption to enhance security.

• We combine ciphertext computing, including searchable encryption and file encryp-
tion, with a distributed file system, designing reasonable key distribution and deriva-
tion mechanisms to support the application of secure sharing and exchange of cipher-
text data.

• Our performance evaluation and security analysis shows that EStore is secure, inex-
pensive and efficient. The application of encryption and index construction before
files are uploaded guarantees confidentiality. The key derivation mechanism removes
the need to manage a large number of keys, which is more efficient and safer.

The rest of the paper is organized as follows: In Section 2, we present the system model
and threat model. In Section 3, the protocol designs are demonstrated, and the designs of
the main cryptographic algorithms are outlined in Section 4. Then, we evaluate the system
performance and analyze system security in Section 5. Finally, we draw our conclusions in
Section 6 and discuss the future directions of the research in Section 7.

3. The System Model and Threat Model
3.1. System Model

Considering the requirements analyzed above, the cloud service providers are sup-
posed to be “honest but curious”. Based on the principle of responsibility separation, we
separated the key management and handed it over to a trusted center for management.
This may be a company who rent for cloud storage but manage the key center on their own

Sensors 2023, 23, 8526 6 of 27

to minimize data leakage. The encrypted storage system model is shown in Figure 1. It
depicts three entities: the storage provider, identity manager, and users.

Figure 1. Encrypted storage system model.

1. The storage provider queries the identity manager for their public key certificate,
verifying the authorization token issued by the identity manager. Furthermore, it
provides storage and search services for the users.

2. The identity manager is a trusted third party, they authorize the users’ identities
when registering and authenticate users when they log in. Furthermore, the identity
manager also distributes relevant keys in the user registration, authentication, and file
sharing, providing their public key for the storage provider to verify their issued token.

3. Users initiate registration and authentication with the identity manager, receiving the
corresponding keys from the identity manager. When uploading and downloading,
the users use their file keys to encrypt the plaintext and decrypt the ciphertext, use
their searchable encryption keys to generate a cipher index when uploading, and
generate encrypted search tokens when searching.

Here, we briefly describe how the model works. In a typical file system, different users
collaborate with each other with the help of a storage provider; that is, when user A sends
files to user B, the cloud will automatically back up the files for participants to download.
This means that the shared files are out of the user’s control, and the data can be stolen by
the storage provider; therefore, the users need to encrypt the files before uploading them.
Meanwhile, users need to generate a ciphertext index and upload it with the encrypted files
for the subsequent secure search. The related encryption and search keys are obtained after
the user registers and authenticates with the identity manager. If the user authenticates
successfully, they will receive a token with the signature of the identity manager; this can
be verified by the storage provider using the issuer’s public key.

3.2. Threat Model

To better demonstrate the threat analysis, we divided the threats into two categories
as follows: internal adversary and external adversary. They may obtain access rights from
the users and storage provider, respectively.

Sensors 2023, 23, 8526 7 of 27

An internal adversary is a legitimate participant in our system model who performs
their own behavior according to the preset rules. However, they may be driven by alternate
interests, trying to obtain the rights of other participants based on the existing rights,
including data, behavior privacy, etc.

For example, the storage provider is supposed to be semi-trusted and provide users
with storage services as agreed; however, they might attempt to steal the users’ data and
analyze their search behavior privacy. Furthermore, a legitimate user may try to steal other
users’ data and privacy based on their own authority, which is beyond their privilege.

An external adversary mainly refers to man-in-the-middle attacks in communication
between entities. Such an adversary may intercept and decipher the transmitted informa-
tion; furthermore, they may impersonate legitimate entities to communicate, steal data,
and send fake messages.

To ensure the security and efficient in a distributed file system, a user-friendly en-
crypted file system scheme should achieve the following goals:

Function:The identity manager can provide registration and authentication for users.
Users can protect their uploaded data and directly query their ciphertext.

Security: The identity manager can control the identity and access behavior of users.
Users can collaborate safely, not worrying about storage leakages or transmission leakages.

Efficiency: the protection measures will not significantly increase the overhead, in-
cluding the computation and storage overhead of the client and the cloud storage provider.

3.3. System Architecture

Encrypted storage has been widely studied, such as semantically extensible searchable
encryption for encrypted storage [40], retrieval schemes in edge computing [29], attribute-
based encryption for the HDFS [10], and key management structure [41]. However, previ-
ous work has only focused on specific points, and we are not aware of a systematic design
for actual big data platforms.

EStore improves the ability of existing file systems [10,29]; further, we took into
account both the confidentiality and usage of data, and we performed a system evaluation
to provide a higher practical reference value than other schemes [17,19,21].

Our scheme mainly provides data encryption protection, ciphertext search, and secure
data sharing for users, and encryption protection guarantees that users can totally control
and change the encryption keys, so as to generate encrypted indexes together with files then
upload them to the cloud server, like a “key–value” pair. The ciphertext search guarantees
that users can generate encrypted search tokens for the server to locate the position of
encrypted file. Secure data sharing means one user can directly share their file with another
as long as their attribution is in accordance with the access control strategy.

The structure of the encrypted storage system is shown in Figure 2. It mainly includes
the key management subsystem, client subsystem, and encrypted file storage system.

• The key management subsystem (regard as a trusted third party) provides search
keys, authentication keys and matter keys for the clients when users register and
authenticate. In the process of file sharing, key management securely distributes file
keys to the shared users and endorses their cooperative behaviors.

• The client performs encryption before uploading and decryption after downloading
the files. The client uploads the encrypted files together with a cipher index list,
which is used for location in the storage provider. When the user executes sharing
operations, they deliver the encryption key to the client of the shared user through
a secure channel and notifies to receiver through the key management subsystem
(endorsement). The shared user needs to confirm the notification and update their
ciphertext keyword index list on the storage system.

• The encrypted file storage system (storage provider) obtains the public key and
retrieves the key from the trusted third party, maintaining an encrypted index list for
the users. It also provides the user with storage, updates and queries of their ciphertext.

Sensors 2023, 23, 8526 8 of 27

Key management sub-system Client sub-system

Encrypted file storage system

Master key
management

module

Search key
management

module

File key
authorization

module

Secure key
storage module

Authentication
module

Upload-download
module

File retrieval
module

Crypto-algorithm
module

Local key
management

module

Cipher file system processing layer

Cipher index
matching module

Cipher index
dynamic update

module

Cipher index process interface

upload/download interface

Hadoop distributed file system

File sharing
module

Meta-data management Storage node Storage node Storage node

Figure 2. System architecture.

4. Protocol Design
4.1. Design Goal

In addition to the above functions, security, and efficiency mentioned in the threat
model, our design goal focuses on the whole life cycle of data, shown in Figure 3.

Figure 3. Macro security perspective of the protocol design.

We divided the whole life cycle of data into generation, transmission, storage, process-
ing, and usage; each phase has the requirements of confidentiality, integrity, identification,
availability, and non-repudiation. Further, we designed six protocols to cover the users’
safe and friendly use of the file system as follows:

Sensors 2023, 23, 8526 9 of 27

Registration: The identity manager registers the users’ identity and assigns the relevant
keys to the users based on the security parameters.

Authentication: Authentication guarantees the users’ access to their own identities
and keys.

Upload: The client ensures that the uploaded file has been fully encrypted and the
corresponding ciphertext index is established.

Ciphertext retrieval: Ciphertext retrieval ensures that the user-input keywords are not
leaked.

Download: Downloading ensures the received ciphertext can be correctly decrypted.
Secure sharing: Secure sharing ensures accurate authorization of the file keys and

encrypted files.
Table 2 shows the notations and descriptions used in our protocols.

Table 2. Notations and descriptions.

Notation Description

userID User ID

FK File key

fileID File ID

VCode Verify code

pwd User password

(sk,pk) Secret key and corresponding public key pair

msg Message

Ek(msg) Encrypt msg using k

‖ Concatenation

H Hash function H: 0, 1∗ → Zp

Sign Sign stands for signing all the previous information

lk Level key

RK Root key

r Random number

sm2/sm3/sm4 Correspond to asymmetric/hash/symmetric type of commercial cryptography

4.2. User Registration Protocol

Figure 4 shows the user registration protocol.

1. User initialization and registration: The user’s background client first generates a
public key (pk) and a secret key (sk). The user manually enters the userID, verification
code, and password, of which the verification code can be initialized in batches by the
administrator in advance.

2. Initiate the request: The user computes the message (msg=Epwd(sk)‖pk‖Veri f yCode‖
Time‖Sign, Sign = Esk(Hash(Epwd(sk)‖pk‖Veri f yCode‖Time))) then sends the mes-
sage to the key management server for registration.

3. Verify and register: The key management center verifies the signature and registration.
The parameters Epwd(sk), pk, Epk(LK), and Epk(RK) are saved, where RK (32 bytes) is
the user’s root key generated by the key management server. The user status is then
changed to an active status.

4. The registration result is returned to the user.

Sensors 2023, 23, 8526 10 of 27

User
Key Management

Server

2.reqReg{userId,pk,Vcode,esk}

1.initialization{(pk,sk),esk}

3.verify and register

5.determine user type,
distribute level key

4.regResult

Figure 4. User registration protocol.

4.3. User Authentication Protocol

Figure 5 shows the user authentication protocol.

1. Request for stored information: The user first sends their ID to obtain the stored
information, including esk (esk = Epwd(msk‖sk)), pk, tag, lk (level key), r (random
number), token, etc.

2. Decrypt and request authentication: The user decrypts the stored information, ob-
taining the msk and sk, then they compute msg = ID‖Time‖Sign and initiate the
authentication request.

3. Verify and return the result: The authentication server verifies the user’s signature
and distributes the access token; the token’s validity can then be configured.

Sensors 2023, 23, 8526 11 of 27

user
Key

Management
Server

1.UserID

5.Verify，distribute access token
{esk,pk,UserL,lk,r,token}

2.login Ciphertext
{esk,pk,UserL,lk,r,token}

4.ReqAuthen

6.RetResult and token
{esk,pk,UserL,lk,r,token}

3.Decrypt and signature

Figure 5. User authentication protocol.

4.4. File Upload Protocol

The file upload protocol is shown in Figure 6. At this stage, the user has already logged
in, and they have a user profile, which includes rk, pk, sk, lk, etc.

1. Request for partial key: The user extracts the file ID and requests the partial key to
the file.

2. Encrypt and upload: The user generates the file key (filekey) using lk, r, and the file
ID combined with the sm3 hash function. They then encrypt the file and generate the
file index, combining the message and upload after the signature. The server returns
an “Ok” message if the update is successful.

User
Key

Management
server

1.ReqFileKeypart

2.generate and return FileKeypart

4.encryted index and file
{userId,fileld,FileName，fileLevel}

5.Code:result

Storage
Server

3.generate encryption key，
index and encrypt

Figure 6. File upload protocol.

Sensors 2023, 23, 8526 12 of 27

4.5. Ciphertext Search Protocol

The ciphertext search protocol is shown in Figure 7.

1. Client search and request: The user enters a keyword w, and then the client back-
ground generates the search token t = (E(w), k) = (πK3(w), fK2(w)) and initiates a
search request to the search server.

2. Server search: The search server uses the search token t to find the first node’s position
and key k0; after this, the server can extract all identifiers of the keyword one by one
and return the results to the user.

User Storage
Server

3.search and match

1.input keyword，
generate searchToken

2.SearchReq{userId，token}

4.ReturnResult

Figure 7. Ciphertext search protocol.

4.6. File Download Protocol

The file download protocol is shown in Figure 8.

1. File download: The client initiates the download request to the file storage system
and downloads the file.

2. File decryption: If the file is first shared from other users, the client uses their root
key, CA (shared key), file level, and file ID to derive the file key (FK). Otherwise, the
client uses their master key, level key, and file ID to compute the encryption key (FK).
Finally, the client decrypts the file, and the details are shown in the following key
management algorithm and file classification encryption/decryption algorithm.

Sensors 2023, 23, 8526 13 of 27

User key management
server

1.ReqFile

2.ReturnFile

3.ReqFilekey

4.ReturnFilekey

storage server

5.Compute Filekey，
decrypt

Figure 8. File download protocol.

4.7. File Secure Sharing Protocol

The file securing sharing protocol is shown in Figure 9.

1. Active sharing: User A randomly selects another user (suppose B) they want to share
with, clicking the file with keywords. User A’s client background will compute the
file key and initiate the share operation. A notification will be sent to user B.

2. Receive sharing: After receiving the notification, user B will click the confirm but-
ton, and their client background will refresh their own index to finish the receiving
operation.

UserA Key Management
server

1.ReqShare
{userAId,token,filename,
userBId,keyword,partK,

fielId,fileL}

4.IndexUpdate

3.IndexUpdateInf
{userBId,filename,filehash,id,time

type,userAId,keyword,target,
fielname,fileL}

6.ShareResult

storage server

2.Key Sharing

UserB

5. updateResult

Figure 9. File secure sharing protocol.

5. Main Cryptographic Algorithm
5.1. Key Management Algorithm

The logic of key management is shown in Figure 10. Suppose SKE is a symmetrical
encryption algorithm including initialization, encryption, and decryption; Hash is a one-
way trapdoor function, and the steps of key derivation related to file encryption/decryption
are as follows:

1. Initiation: The key management center (KMC) generates the public parameter param
and master key MK.

Sensors 2023, 23, 8526 14 of 27

2. Registration: User Ui initiates registration with their identity and attributions, and
KMC computes the root key RK for the users to issue a certificate including the
corresponding public key PK for the user. Furthermore, the KMC issues a grade key
LKu (u = 1, 2, 3) to the user according to their grade level. The level keys are divided
into different hierarchies from top to bottom, a first-level key generates a second-level
key through a pseudo-random function Rand by computing LK2 = Hash(LK1|2), and
a third-level key can be obtained in the same way by computing LK3 = Hash(LK2|3),
of which |means concatenation.

3. File key derivation: Files belonging to users have different security divisions, which
means the files need to be differentiated when uploaded. A file key FK can be com-
puted by FK = Hash(RK| f ilename|LKu), u = 1, 2, 3, corresponding to its authorized
level. Furthermore, the secret key SK for ciphertext retrieval can be computed by
SK = Hash(RK|nonce), of which nonce is a random string. Finally, the background of
the client computes CK = Encrypt(FK, hash(password)) and stores CK as a credential
in the key management system, wherein the password is set manually.

1st class user key
LK1

2st class user key
LK2

3st class user key
LK3

1st class file key
FK1=Hash(RK|filename

|LK1)

2st class file key
FK2=Hash(RK|filename

|LK2)

3st class file key
FK3=Hash(RK|filename

|LK3)

file name

file key
FK

Figure 10. The logic of key management.

5.2. File Hierarchical Encryption/Decryption Algorithm

Our scheme uses a digital envelope to secure the key transmission, and the confi-
dentiality of the file is guaranteed by symmetric encryption, while the key of symmetric
encryption is guaranteed by public key encryption. Furthermore, the index of the encrypted
file is processed by searchable encryption. We take the national algorithm of China, SM2,
as an example to demonstrate the efficiency.

For example, a user has a file with security level X. They first calculate the file key as
is shown in the key management algorithm (FKXu = Hash(Rk| f ilename|LKu)). Then, they
encrypt file A with file key FKXu by computing CF = Enc(FileX, FK = FKXu).

Finally, the client background encrypts the file key with the user’s password key
K = hash(password) by computing CK = Enc(FKXu) and stores C = (CF, CK) in the HDFS.

In the decryption phase, the user decrypts the file key by computing FKXu = Dec(CK, K).
Then, they can restore file key FKXu corresponding to their authorization and compute
Dec(CF, FKXu) to obtain the file.

5.3. Searchable Encryption Algorithm

The core of the ciphertext search protocol is to locate the unique identifications of the
files through keywords, so as to provide users with download links. The key to accurate
positioning lies in how to construct the ciphertext index. Figure 11 shows the structure of
our search index I = (A, T) maintained by the server, which includes Table A and Table

Sensors 2023, 23, 8526 15 of 27

T for a keyword w; the server establishes the mapping of the keyword to several files
(including this keyword), which is called Table A. Suppose the files’ unique identifiers are
DB(w) = (id1, id2, ..., idn). Then, the linked list Li = N1, N2, ..., Nn is constructed based on
these files DB(w), each node Ni = idi‖ki+1‖ including the current file identifier idi, key ki+1
to encrypt the next node Ni+1, and the node Ni itself encrypted by key ki, which is stored in
previous node Ni−1. The position of the first node and its encryption key k0 are encrypted
and stored in the constructed Table T, which is also in the form of a key–value pair.

Figure 11. Structure of the search index.

6. Deployment and System Test
6.1. Deployment

The test environment includes two Windows terminals and five Linux servers (shown
in Figure 12), and these devices are connected through the network. The Windows terminals
are used to deploy the client subsystem, two Linux servers are used to deploy the key
management subsystem and storage service subsystem, and the remaining three Linux
servers are used to deploy the HDFS to provide a distributed storage resource pool.

The environment simulates the typical-use environment of the file system, where users
can access the storage service through the client subsystem (including client software and
software development kit), and the key management subsystem supports user management
and related key management. Its corresponding configuration is shown in Table 3.

Storage sub-system

Key management sub-system

Client sub-system

HDFS distributed
storage

User management
(key distribution)

Ciphertext Index update and search

Ciphertext upload and download
Client sub-system

Figure 12. Deployment of the cipher search system.

Sensors 2023, 23, 8526 16 of 27

Table 3. Resource configuration.

Hardware Requirements Configuration Usage

One server for key management CPU: Intel(R) Xeon(R) Gold 5218 CPU@2.30GHz. Operating sys-
tem: Ubuntu16.04 LTS Deployment of key management system

One server for storage service CPU: Intel(R) Xeon(R) Gold 5218 CPU@2.30GHz. Operating sys-
tem: Ubuntu16.04 LTS

Deployment of storage service subsys-
tem

Three servers for distributed stor-
age resource

CPU: Intel(R) Xeon(R) Silver 4210 CPU@2.20GHz. Operating
system: Ubuntu16.04 LTS

Deployment of HDFS, providing dis-
tributed storage resource

Two clients CPU: Intel(R) Core(TM)i7-6700 CPU@3.40GHz. Operating system:
Windows 10 Deployment of the client

6.2. System Loss Test

In order to compare the loss of the system caused by the increase in the system
overhead after the addition of the protection measures, we tested the average upload speed
of files uploaded through the SDK of the client (V) and the average upload speed of files
uploaded directly through the HDFS API (V0).

We prepared a group of samples of typical files of different sizes, that is, randomly
generated files of 1 MB, 5 MB, 10 MB, 20 MB, 40 MB, 50 MB, 70 MB, and 100 MB; the total
size of each group of file samples is no less than 1 GB. We tested the data upload efficiency
with protection measures (including ciphertext computing) and called the client SDK to
upload the sample groups of different sizes. Each test uploads all files in the same group,
and we recorded the total file size and time of the upload; furthermore, we calculated the
upload velocity of the sample group.

For comparison, we directly called the API of the HDFS to upload the above test
samples of different sizes (without protection measures). Similarly, we recorded the total
file size and time and then calculated the average upload velocity of the sample groups.
Finally, we compared the average upload velocity of calling the client SDK upload and
HDFS API direct uploading.

Figure 13 shows the comparison of the upload rate with the ciphertext computing
and direct uploading. When the file size is less than 50 MB, the upload velocity gradually
increases as the file size increases. When the file size exceeds 50 MB, the upload velocity is
stable at about 11 MB/s as the file size increases, which is related to the network bandwidth
of our equipment. This can be improved by adopting advanced equipment, for example,
gigabit optical fibers. Furthermore, we can see that the direct upload is slightly faster than
uploading with protection measures (ciphertext computing). This is because the client
encryption procedure generates additional calculation overhead, which slows down the
upload velocity. We call this part the system loss after adding the protection measures and
define the loss as in Equation (1), calculating the system efficiency :

V0−V
V0

= 1− V
V0

(1)

Sensors 2023, 23, 8526 17 of 27

Figure 13. Comparison of upload rate with the ciphertext computing and direct uploading.

Table 4 shows the upload velocity of the method with protection measures, direct
uploading, and upload speed ratio. We constructed file data with different sizes but similar
total data amount (1 GB) as test samples to test the upload velocity, for example building
1000 files of 1 MB in size, 200 files of 5 MB in size, or 100 files of 10 MB in size. Although
the file size is different, it is multiplied by the corresponding number to make the total data
amount of each test sample the same (about 1 GB in each column). It can be seen that the
ratio of the upload speed is greater than 70%; that is, the system efficiency loss is less than
30%.

Table 4. Upload velocity and comparison.

File Size 1 M 5 M 10 M 20 M 40 M 50 M 70 M 100 M

V (upload velocity of calling
client SDK) 3.633 MB/s 8.504 MB/s 9.835 MB/s 10.608 MB/s 10.364 MB/s 11.312 MB/s 10.959 MB/s 11.319 MB/s

V0 (direct upload velocity) 3.647 MB/s 8.7 MB/s 10.058 MB/s 10.831 MB/s 10.704 MB/s 11.423 MB/s 11.087 MB/s 11.431 MB/s

V/V0 (average upload speed
ratio) 0.996 0.977 0.978 0.979 0.968 0.99 0.988 0.99

Figure 14 shows the changes in system loss with the increase in file size. Compared
with the unprotected case, the increase in computational overhead for increasing the
protection measures is constant (o(1)); this means the system loss is acceptable and will not
affect the user experience when uploading.

Sensors 2023, 23, 8526 18 of 27

Figure 14. System loss after the protection measures.

6.3. Storage Redundancy Test

In order to compare the redundancy increase in ciphertext storage with ordinary
storage, we uploaded files through the client software development kit (SDK) to obtain
the total size of the ciphertext (S1) and compared the total size of corresponding uploaded
plaintext in the pure HDFS (S0, ignoring the size of the HDFS metadata). Therefore, we can
define the redundancy as Equation (2), this denotes the size increase ratio of the uploaded
data after the protection measures.

S1− S0
S0

=
S1
S0
− 1 (2)

Table 5 shows the storage size of the ciphertext, plaintext, and their comparison, while
Figure 15 shows the comparison of the direct upload size and ciphertext size. Similarly,
we constructed file data of different size but a similar total amount (about 1 GB) as test
samples to test and compare the storage size. For example, building 1000 files of 1 MB in
size, 200 files of 5 MB in size, or 100 files of 10 MB in size. Although the file size is different,
it is multiplied by the corresponding number to make the total data amount of each test
sample the same (about 1 GB in each column). It can be seen that the size increase ratio
of the uploaded data is less than 10% after encryption; that is, the storage redundancy
efficiency loss is less than 10%.

Table 5. Storage size of the ciphertext and plaintext and their comparison.

File Size 1 M 5 M 10 M 20 M 40 M 50 M 70 M 100 M

S1 (upload size after en-
cryption) 1020.2 MB 1004.14 MB 1002.08 MB 1001.04 MB 1000.52 MB 1000.42 MB 1050.31 MB 1000.21 MB

S0 (direct upload size) 1000 MB 1000 MB 1000 MB 1000 MB 1000 MB 1000 MB 1050 MB 1000 MB

S1/S0-1 (redundancy) 2.0203% 0.4135% 0.2076% 0.104% 0.0521% 0.0417% 0.0298% 0.0208%

Sensors 2023, 23, 8526 19 of 27

Figure 15. Comparison of the direct upload size and ciphertext size.

Figure 16 further shows that the redundancy gradually decreases with the increase in
file size. This is expected because the file size before encryption is equivalent to that after
encryption, and thus the redundancy is mainly the increase generated by the ciphertext
index, that is, the metadata of the ciphertext. When the uploaded file is small, it may be
equivalent to corresponding ciphertext metadata, and thus the redundancy is high. When
the file size gradually increases, the generated ciphertext index size is unchanged, and thus
the redundancy is reduced. Overall, the redundancy is constant (o(1)) after encryption when
compared with the unprotected case, which is acceptable in the distributed file system.

Figure 16. System redundancy test after the protection measures.

Sensors 2023, 23, 8526 20 of 27

6.4. Search and Encryption Efficiency Test

We consider that the index size of keywords is generally much smaller than the file
itself. Considering that Kb-sized documents have a smaller incremental storage overhead
compared with big files, without loss of generality, we prepared a 100 MB index for
demonstration and tested the time of the search. Figure 17 and Table 6 show that the search
efficiency is more than 4000 Mbps, while Figure 18 and Table 7 show that the encryption
efficiency is relative stable, around 300 Mbps. It can be seen that whether it is searched or
encrypted, even when considering network latency, the efficiency is at the millisecond level
and will not affect the user experience after adding security measures.

Figure 17. Search efficiency of the system.

Figure 18. Encryption efficiency of the system.

Sensors 2023, 23, 8526 21 of 27

Table 6. Search efficiency of different index sizes.

Index Size 100 Mb 200 Mb 400 Mb 1000 Mb

Search efficiency 3.125 Gbps 6.0606 Gbps 12.903 Gbps 30.303 Gbps

Table 7. Encryption efficiency of different index sizes.

File Size 100 Mb 200 Mb 400 Mb 800 Mb 1600 Mb

Encryption efficiency 276.0108 Mbps 304.3091 Mbps 283.6565 Mbps 285.4355 Mbps 294.0944 Mbps

6.5. Security Analysis

Mechanisms such as data encryption, message time stamping, sequence numbers,
and signatures can effectively prevent typical protocol attacks, such as man-in-the-middle
attacks (“MITM attacks”), replay attacks, tampering attacks, and type attacks. We analyze
and demonstrate the security of the protocol against these attacks in the following.

6.5.1. Anti-MITM Attacks

Man-in-the-middle attacks (MITM attacks) mean that the attackers use various means
to find and tamper with normal network communication data between participants. The
participants generally cannot detect such attacks in these process.

There are many types of man-in-the-middle attacks, and there is still room for expan-
sion, such as SMB session hijacking and DNS spoofing. MITM attacks include information
theft, tampering and replay attacks, etc. This section mainly considers the prevention of
information theft, while the other types can be found in subsequent subsections.

We use asymmetric encryption algorithms to encrypt the sensitive information in
protocols between the client, storage services, key management, and other subsystems. For
example, in user registration and authentication, the sender uses the receiver’s public key
PK to encrypt sensitive information in the protocol; only the receiver who has the private
key SK can decrypt it.

Attackers who intercept this communication link can only obtain the ciphertext. Re-
lying on the secret key’s computation complexity, the protocol ensures that the sensitive
information is not leaked. Further, we use HTTPS instead of HTTP to improve the system’s
security and prevent attackers from stealing the protocol content.

6.5.2. Anti-Tampering Attacks

Tampering attacks mean that an attacker intercepts the protocol and tampers with the
messages between the participants, so as to fake their identity or perform illegal operations.

We introduced signatures in the messages between the client, storage service, key man-
agement, and other subsystems. When sending a message, a message digest is generated
for the content, and the sender’s private key is used to generate a message signature. The
receiver uses the sender’s public key to verify the signature after receiving the message. If
the signature fails, the message is discarded. If the content has been tampered with, it will
not pass the verification step, thus effectively preventing the tampering attack.

6.5.3. Anti-Replay Attacks

Replay attacks resend the eavesdropped data to the receiver. In some cases, the
data transmitted are encrypted, ensuring that eavesdroppers cannot obtain the plaintext.
However, if they know the accurate meaning of the data, they can fool the receiving end by
sending the data again without knowing the content of the data. For example, some senders
simply encrypt authentication information and then transmit it. At this time, although
attackers cannot eavesdrop on the passwords, they may intercept the encrypted password
and then replay it, thus achieving successful authentication. For another example, suppose

Sensors 2023, 23, 8526 22 of 27

a message indicates that the user has withdrawn a deposit. Attackers may intercept and
resend this message to steal the deposit.

In the protocol design, we added timestamping and random serial numbers to the
sending message, and the signature mechanism ensures that the content including the
time and serial numbers cannot be falsified. After receiving the message, the receiver first
verifies the signature to ensure that the data have not been falsified. Then, they check
the timestamp. If it is not within a valid time range, it is discarded. If the time is valid,
the user can check whether the message serial number is novel and if a message with a
duplicate “sequence number” has been received, if so, this message will also be discarded.
The receiver only saves recent sequence numbers, which are larger than the effective time
range to ensure the efficiency of the protocol.

6.5.4. Anti-Type Flaw Attacks

Type flaw attacks attack the protocol by using the type of the protocol message domain,
which is not clearly defined, or different domains are expressed in the same way in the
implementation. This can destroy the authentication or secrecy of the protocols.

We take the Otway–Rees protocol as an example, which is a symmetric key protocol
with a trusted third party. Its purpose is to assign a session key to users A and B. The
details of the protocol are described as follows:

1. A→ B: M, A, B, Na, M, A, BKas

2. B→ S: M, A, B, Na, M, A, BKas , Nb, M, A, BKbs

3. S→ B: M, Na, KabKas , Nb, KabKbs

4. B→ A: M, Na, KabKas

Among them, A and B represent the communication subject. S is the trusted third
party, Kab is the session key generated by S, and M represents the number of rounds in
the protocol. Na and Nb are random numbers used to ensure the freshness of the message
through an inquiry/response mechanism. Kas and Kbs are shared keys of A, B, and S.

One of the type flaw attacks is as follows:

1. A→ B: M, A, B, Na, M, A, BKas

2. B→ IS: M, A, B, Na, M, A, BKas , Nb, M, A, BKbs

3. IS→ B: M, Na, M, A, BKas , Nb, M, A, BKbs

4. B→ A: M, Na, M, A, BKas

Among them, IS means that the attacker is impersonating server S. Since Na, M, A, BKas

is processed as a binary string, the attacker uses M,A,B to impersonate Kab, which makes
the receiver think that the binary string M,A,B is the session key Kab, resulting in key
leakage, and destroys the authentication of the protocol. In addition to directly using
messages in one round of protocols, type flaw attacks can be implemented in parallel
sessions of protocols.

There are two main ways to prevent type flaw attacks. One is to avoid similar types
of encrypted messages in protocol design, such as changing the order of each field in the
ciphertext to ensure that different encryption components have different forms. Another is
to add additional information to the encrypted message to identify the type of each part
of the message, which was proposed by J. Heather et al. [42]. The additional identifiable
information is called a tag.

In our scheme, we use the RESTful API to realize communication between the client,
key management, and cipher search server, and message data are in the JSON format, with
key–value pairs.

The cipher search protocol is an example, as shown in Figure 19. Data field information
is explicitly added to the message header and body, which is equivalent to adding message
tags. At the same time, we encrypt the sensitive information in the message, and the request
parameters of the user’s private key are signed so attackers cannot perform type attacks.

Sensors 2023, 23, 8526 23 of 27

Client Storage service sub-system

URL=http://192.168.2.4:8011/searchByKeyword；

Sign Object
signObj={userId:"xxxx",searchToken:"xxxxxxxx",time:"xxxxxxxx
", msgNo:"xxxxxxxx"}

Signature sign=signature(signObj, skc)；

Message body: msgjson=signObj+sign

Request parameter：

{userId:"xxxx",searchToken:"xxxxxxxx",time:"xxxxxxxx",
msgNo:"xxxxxxxx",sign:"xxxxxxxx"}

1)Create client: httpClientBuilder=httpClients.crateDefault();
httpClient=httpClientBuilder.build();

2)initialize request procedure using URL:
httpPost=new HttpPost(url);

3)Add transmit json parameter:

 new s=StringEntity(msgjson,“UTF-8”)

httpPost.setEntity(s);

4)execute request:
HttpClient.execute(httpPost);

5)receive response and parse.

1)receive http request；

2)receive msgjson package and parse corresponding
field information

userId, esk, pk, eVerifyCode, time, msgNo, sign；

3)Reload json package of signObj according to the
order : userId+esk+pk+eVerifyCode+time+msgNo

signObj={userId:"xxxx",searchToken:"xxxxxxxx",time:"xx
xxxxxx", msgNo:"xxxxxxxx"}

4)verigy the new reload signObj package:

verify(signObj)；

5)Signature passed, execute the activation request.

6) generate the sign object for the response request:
resSignObj
={resultCode:"200",{json object}};

7)sign resSignObj sign1；

8)construct resMsgJson={resultCode: "200",
content:"xxxxxxxx",sign1:"xxxxxxxx",
time:"xxxxxxxx",msgNo:"xxxxxxxx"}

9）response to user activation request.

HttpRestful post
Request server search the

keywords

Response HttpRestful post
request

Return search result to client

Figure 19. Realization of thecipher search protocol.

6.5.5. Anti-Internal Adversaries

Our scheme supports users to store the ciphertext and directly query the ciphertext
on the distributed file system. The cloud storage provider cannot know the user’s search
keywords or the stored plaintext. The scheme allows the data owner to directly share
their cloud-stored ciphertext data with others while ensuring data confidentially to service
providers. Meanwhile, searchable encryption ensures that the storage provider cannot
analyze the file content from user behavior associations. Users can completely master their
cloud-stored ciphertext through private keys, and the storage end can only provide services
according to the preset rules and not steal the users’ data.

6.6. Advantage Analysis

We chose a symmetric-based fine-grained encryption algorithm to deal with massive
files compared with the research based on public key encryption. Attribute-based encryp-
tion (ABE) is a derivation of public key encryption, such as schemes based on elliptic curve
cryptography (ECC) [17,43,44] or the RSA algorithm [45,46]. Their key lengths are different
at the same security level according to the National Institute of Standards and Technology
(NIST) [47]; for example, a 112-bit symmetrical encryption key has the same strength as a
2048-bit RSA key or a 224-bit ECC key, and thus our strategy is better than others in terms
of security and key length.

Table 8 shows a comparison between our EStore and other schemes in terms of fine-
grained encryption, fine-grained access control, collaboration, application of big data
scenarios, and assumed attacker models. We comprehensively considered the use of a
distributed file system, including the confidentiality of storage, accurate authorization,
and secure cooperation between users. EStore improved the ability of the existing file
system [2,6,7]; further, we took into account both the confidentiality and usage of data
and carried out a system evaluation, which has higher practical reference value than other
schemes [17,19,21].

Sensors 2023, 23, 8526 24 of 27

Table 8. Comparison with previous work (X indicates that the scheme has the corresponding
technical capability or adapt to the scene, while the × indicates the opposite).

Author Fine-Grained
Encryption

Fine-Grained
Access Control

Active Secure Shar-
ing/Collaboration

Big Data Scenario
(Massive Large File
Processing)

Assumed Attacker Models

Diaz et al., 2016 [6] × × × X External adversary

Song et al., 2017 [7] × × × X External adversary

Gupta, M et al., 2017 [2] × X × X External adversary

Zhang et al., 2022 [21] × × × X External adversary and internal adversary

Vanin et al., 2023 [19] × × X × External adversary and internal adversary

Gupta, R et al., 2023 [17] × X X × External adversary

Ours (EStore) X X X X External adversary and internal adversary

7. Conclusions

In this paper, we propose a user-friendly encrypted storage scheme, named EStore,
based on a distributed file system. Based on the analysis and surveys, we present the
highlights as follows:

• We propose an encrypted storage model and architecture for a distributed file system
against data leakage, named EStore. We also point out internal and external threats
towards the life cycle of data.

• To enable EStore, we designed a fine-grained encryption/decryption algorithm and
further designed a searchable encryption algorithm interface to support “direct search
on the ciphertext”; in addition, from the perspective of the data life cycle, we imple-
mented six protocols to support the secure usage for a distributed file system.

• Further, we carefully designed key distribution in detail to guard against various ad-
versaries. We also conducted a systematic security analysis to point out the feasibility
of our scheme.

• Finally, we evaluated the computation overhead and storage redundancy brought
about by encrypted storage. The additional calculation overhead and storage redun-
dancy shows that the price brought about by encryption is acceptable compared with
data security. Furthermore, EStore can be easily realized based on a distributed file
system in real scenarios.

To the best of our knowledge, EStore is the first encrypted storage scheme based on a
distributed file system, and it can efficiently improve the security level, accurately process
fine-grained encryption, and enable secure data sharing. The evaluation demonstrates that
the scheme can guarantee the storage security and utilization with a minimum price, which
is of great significance to the safe use of big data platforms.

8. Future Work

Cloud-based data storage has become a paradigm, and its security has far-reaching
implications. In the future, we will also investigate other key technologies related to
encrypted storage such as secure multi-party, federated learning, and fully homomorphic
encryption. We briefly evaluated these technologies shown in Table 9, including their
protect phase, strength, and applications. We also noticed that EStore may be improved
when combined with other key technologies in the context of data outsourcing. In particular,
fully homomorphic encryption (FHE) has a better protective effect on the data process and
can adapt to various computing paradigms. Applying FHE in EStore may resist internal
attacks brought about by administrators defined as “honest but curious”, which is also an
interesting direction for enhancing EStore.

We will continue by exploring more security methods to solve new challenges in future
work. First, we will look for an efficient and practical homomorphic encryption method to
protect cloud storage. In addition, simplifying the searchable encryption and achieving a
better balance between security and efficiency should be considered carefully. We will also
attempt to apply our ideas to other scenarios where storage and management need to be

Sensors 2023, 23, 8526 25 of 27

protected. For example, P2P networking-based inter-planetary file systems (IPFSs) have
become a new trend in the information age. Therefore, exploring the security of the new
distributed storage paradigm will have a profound impact on encrypted storage. However,
ensuring the balance of security and efficiency will remain a challenge.

Table 9. Key technology evaluation (? represent intensity, and the more ?, the stronger the indicator,
and the less ?, the weaker it is).

Key Technologies Process
Protection

Result
Protection

Computation
Protection Precision Hardware

Dependence Scenarios/Patterns Actual Used Scene

Secure
multi-party
computation

? ? ? ? ? None ?? ? ? ? ? ? None Any computa-
tion/decentralization

Auction, salary statistics,
key management

Federated
learning ? ? ? None ? ? ? ? ? ? ? ? None Machine learning

modeling/centralization

Key management, federal
learning in the financial
field

Confidential
computation ? ? ? None ? ? ? ? ? ? ? ? ? ? Yes Any computa-

tion/decentralized
Key management, joint
modeling, blockchain

Differential
privacy None Yes ? ? ?? ? ? ? None Any computa-

tion/centralization Google Gboard

Local differential
privacy ? ? ?? Yes ? ? ?? ?? None

Data
statistics/decentralization
and centralization

Google Chrome/iPhone

Fully
homomorphic
encryption

? ? ? ? ? None ? ? ? ?? None Any computa-
tion/centralization Unknown

Author Contributions: Y.C. designed the scheme in detail, including the system architecture, protocol
design, matching of cryptography algorithms and security analysis, and also wrote the manuscript.
G.D. guided the methodology in the scheme design; he is also responsible for the project adminis-
tration. C.X. guided the methodology in the scheme design, including the system model, protocol
design, and security analysis. Y.H. designed the computer programs, validated the design, and
performed the data analysis. Y.Z. participated in the system architecture design and conceived the
idea of the experiment. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Sichuan Province’s Key Research and Development Plan
“Research and Application of Ciphertext Computing for Multi-data Sources” Project (2023JDRC0078).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript;
or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

POSIX Portable Operating System Interface
KMS Key management system
ACL Access control list
HDFS Hadoop distributed file system
PSE Public key searchable encryption
ORAM Oblivious random access machine
PIR Private information retrieval

References
1. Colombo, P.; Ferrari, E. Access control in the era of big data: State of the art and research directions. In Proceedings of the

23rd ACM on Symposium on Access Control Models and Technologies, Indianapolis, IN, USA, 13–15 June 2018; ACM Press:
New York, NY, USA, 2018; pp. 185–192

2. Gupta, M.; Patwa, F.; Sandhu, R. POSTER: Access control model for the hadoop ecosystem. In Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies, Indianapolis, IN, USA, 21–23 June 2017; ACM Press: New York, NY,
USA, 2017; pp. 125–127.

3. Awaysheh, F.M.; Alazab, M.; Gupta, M. Next-generation big data federation access control: A reference model. Future Gener.
Comput. Syst. 2020, 108, 726–741. [CrossRef]

http://doi.org/10.1016/j.future.2020.02.052

Sensors 2023, 23, 8526 26 of 27

4. Ugobame, U.U.; Schneider, K.A.; Hosseinzadeh, K.S. Blockchain access control ecosystem for big data security. In Proceedings
of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data, Halifax, NS, Canada, 30 July–3
August 2018; IEEE Press: Piscataway, NJ, USA, 2018; pp. 1373–1378.

5. Chen, L.; Huang, J.; Wang, R. Overview on security issues and solutions of Hadoop big data platform. Comput. Syst. Appl. 2018,
27, 1–9.

6. Diaz, A.F.; Blokhin, I.; Ortega, J. Secure data access in Hadoop using elliptic curve cryptography. In Proceedings of the
International Conference on Algorithms and Architectures for Parallel Processing, Granada, Spain, 14–16 December 2016;
pp. 136–145.

7. Song, Y.; Shin, Y.S.; Jang, M. Design and implementation of HDFS data encryption scheme using ARIA algorithm on Hadoop. In
Proceedings of the IEEE International Conference on Big Data and Smart Computing, Jeju, Republic of Korea, 13–16 February
2017; pp. 84–90.

8. Premkamal, P.K.; Pasupuleti, S.K.; Alpjpmse, P.J.A. A new verifiable outsourced ciphertext-policy attribute based encryption for
big data privacy and access control in cloud. J. Ambient Intell. Humaniz. Comput. 2019, 10, 2693–2707. [CrossRef]

9. Han, D.Z.; Pan, N.N.; Li, K.C. A Traceable and Revocable Ciphertext-Policy Attribute-based Encryption Scheme Based on Privacy
Protection. IEEE Trans. Dependable Secur. Comput. 2022, 19, 316–327. [CrossRef]

10. Kapil, G.; Agrawal, A.; Attaallah, A. Attribute based honey encryption algorithm for securing big data: Hadoop distributed file
system perspective. PeerJ Comput. Sci. 2020, 6, e259. [CrossRef]

11. Song, D.X.; Wagner, D.; Perrig, A. Practical Techniques for Searches on Encrypted Data. SP ’00: The 2000 IEEE Symposium on Se-
curity and Privacy. 2000; pp. 44–55. Available online: https://people.eecs.berkeley.edu/~dawnsong/papers/se.pdf (accessed on
16 October 2023).

12. Li, X.; Tong, Q.; Zhao, J. VRFMS: Verifiable Ranked Fuzzy Multi-keyword Search over Encrypted Data. IEEE Trans. Serv. 2023, 16,
698–710. [CrossRef]

13. Goh, E.J. Secure Indexes, 2003/216 [EB/OL]. IACR ePrint Cryptography Archive, 2003. Available online: http://eprint.iacr.org/
2003/216 (accessed on 1 September 2023).

14. Curtmola, R.; Garay, J.; Kamara, S. Searchable symmetric encryption: Improved definitions and efficient constructions. J. Comput.
Secur. 2011, 19, 895–934. [CrossRef]

15. Kamara, S.; Papamanthou, C. Parallel and dynamic searchable symmetric encryption. In Proceedings of the LNCS 7859: 17th
Financial Cryptography and Data Security, Okinawa, Japan, 1–5 April 2013; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 258–274.

16. Mamta; Gupta, B.B.; Yamaguchi, S. Blockchain-Assisted Secure Fine-Grained Searchable Encryption for a Cloud-Based Healthcare
Cyber-Physical System. IEEE-CAA J. Autom. Sin. 2021, 8, 1877–1890. [CrossRef]

17. Gupta, R.; Kanungo, P. Secured and Privacy-Preserving Multi-Authority Access Control System for Cloud-Based Healthcare Data
Sharing. Sensors 2023, 3, 2617. [CrossRef]

18. Zhang, J.H.; Ou, P.R. Privacy-Preserving Multi-Receiver Certificateless Broadcast Encryption Scheme with De-Duplication.
Sensors 2019, 8, 3370. [CrossRef]

19. Vanin, F.N.D.; Policarpo, L.M. A Blockchain-Based End-to-End Data Protection Model for Personal Health Records Sharing: A
Fully Homomorphic Encryption Approach. Sensors 2023, 23, 14. [CrossRef] [PubMed]

20. Ning, J.T.; Huang, X.Y. Dual Access Control for Cloud-Based Data Storage and Sharing. IEEE Trans. Dependable Secur. Comput.
2022, 19, 1036–1048. [CrossRef]

21. Zhang, Y.; Xu, C.X.; Cheng, N.; Shen, X.M. Secure Password-Protected Encryption Key for Deduplicated Cloud Storage Systems.
IEEE Trans. Dependable Secur. Comput. 2022, 19, 2789–2806. [CrossRef]

22. Guo, Y.T.; Liu, F.; Cai, Z.P.; Xiao, N.; Zhao, Z.M. Edge-Based Efficient Search over Encrypted Data Mobile Cloud Storage. Sensors
2018, 4, 1189. [CrossRef] [PubMed]

23. Xia, Z.H.; Wang, X.H.; Sun, X.M. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE
Trans. Parallel Distrib. Syst. 2015, 27, 340–352. [CrossRef]

24. Yu, J.D.; Lu, P.; Zhu, Y.M. Toward secure multikeyword top-k retrieval over encrypted cloud data. IEEE Trans. Dependable Secur.
Comput. 2013, 10, 239–250. [CrossRef]

25. Xu, J.; Zhang, W.M.; Yang, C. Two-step-ranking secure multi-keyword search over encrypted cloud data. In Proceedings of the
2012 International Conference on Cloud and Service Computing, Shanghai, China, 22–24 November 2012; pp. 124–130.

26. Wang, B.; Yu, S.C.; Lou, W.J. Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. In Proceedings of
the IEEE Conference on Computer Communications (INFOCOM 2014), Toronto, ON, Canada, 27 April–2 May 2014; pp. 2112–2120.

27. Gui, R.W.; Yang, L. An Order-Preserving Encryption Scheme Based on Weighted Random Interval Division for Ciphertext
Comparison in Wearable Systems. Sensors 2022, 10, 7950. [CrossRef]

28. Cash, D.; Grubbs, P.; Perry, J. Leakage-abuse attacks against searchable encryption. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 668–679.

29. Fan, K.; Yin, J.; Zhang, K.; Li, H.; Yang, Y.T. EARS-DM: Efficient Auto Correction Retrieval Scheme for Data Management in Edge
Computing. Sensors 2018, 11, 3616. [CrossRef]

http://dx.doi.org/10.1007/s12652-018-0967-0
http://dx.doi.org/10.1109/TDSC.2020.2977646
http://dx.doi.org/10.7717/peerj-cs.259
https://people.eecs.berkeley.edu/~dawnsong/papers/se.pdf
http://dx.doi.org/10.1109/TSC.2021.3140092
http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2003/216
http://dx.doi.org/10.3233/JCS-2011-0426
http://dx.doi.org/10.1109/JAS.2021.1004003
http://dx.doi.org/10.3390/s23052617
http://dx.doi.org/10.3390/s19153370
http://dx.doi.org/10.3390/s23010014
http://www.ncbi.nlm.nih.gov/pubmed/36616613
http://dx.doi.org/10.1109/TDSC.2020.3011525
http://dx.doi.org/10.1109/TDSC.2021.3074146
http://dx.doi.org/10.3390/s18041189
http://www.ncbi.nlm.nih.gov/pubmed/29652810
http://dx.doi.org/10.1109/TPDS.2015.2401003
http://dx.doi.org/10.1109/TDSC.2013.9
http://dx.doi.org/10.3390/s22207950
http://dx.doi.org/10.3390/s18113616

Sensors 2023, 23, 8526 27 of 27

30. Liu, Z.L.; Li, T.; Li, P.; Jia, C.F.; Li, J. Verifiable searchable encryption with aggregate keys for data sharing system. Future Gener.
Comput. Syst. 2018, 78, 778–788. [CrossRef]

31. Wang, B.; Fan, X. Lightweight Verification for Searchable Encryption. In Proceedings of the 17th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and
Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 932–937.

32. Vithana, S.; Banawan, K.; Ulukus, S. Semantic Private Information Retrieval. IEEE Trans. Inf. Theory 2021, 68, 2635–2652.
[CrossRef]

33. Asharov, I.; Komargodski, W.K.; Lin, K.; Nayak, E.; Peserico, E.; Shi, E. OptORAMa: Optimal oblivious RAM. In Proceedings of
the Advances in Cryptology—EUROCRYPT 2020, Zagreb, Croatia, 10–14 May 2020; pp. 403–432.

34. Boneh, D.; Di, C.G.; Ostrovsky, R. Public key encryption with keyword search. In Proceedings of the CRYPTO 2004: International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2–6 May 2004; Springer:
Interlaken, Switzerland, 2004; pp. 506–522.

35. Miao, Y.B.; Tong, Q.Y. Verifiable Searchable Encryption Framework Against Insider Keyword-Guessing Attack in Cloud Storage.
IEEE Trans. Cloud Comput. 2022, 10, 835–848. [CrossRef]

36. Kim, J. Backward Compatible Identity-Based Encryption. Sensors 2023, 23, 4181. [CrossRef] [PubMed]
37. Ren, H.; Li, H.W. Privacy-Enhanced and Multifunctional Health Data Aggregation under Differential Privacy Guarantees. Sensors

2016, 9, 1463. [CrossRef] [PubMed]
38. Boneh, D.; Franklin, M. Identity-based encryption from the weil pairing. In Proceedings of the CRYPTO 2001: 21st Annual

International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2001; pp. 213–229.
39. Chen, Y. Searchable encryption system for big data storage. In Proceedings of the International Conference of Pioneering

Computer Scientists, Engineers and Educators, Taiyuan, China, 17–20 September 2021; pp. 139–150.
40. Chen, L.; Xue, Y.; Mu, Y. CASE-SSE: Context-aware Semantically Extensible Searchable Symmetric Encryption for Encrypted

Cloud Data. IEEE Trans. Serv. Comput. 2023, 16, 1011–1022. [CrossRef]
41. Jin, W.; Yu, M.J.; Li, F.H. High-performance and high-concurrency encryption scheme for Hadoop platform. J. Commun. 2019, 40,

29–40.
42. Heather, J.; Lowe, G.; Schneider, S. How to Prevent Type Flaw Attacks on Security Protocols. J. Comput. Secur. 2003, 11, 217–244.

[CrossRef]
43. Qin, X.; Huang, Y.; Yang, Z.; Li, X. A Blockchain-based access control scheme with multiple attribute authorities for secure cloud

data sharing. J. Syst. Archit. 2021, 112, 101854. [CrossRef]
44. Sammy, F.; Vigila, S. An efficient blockchain based data access with modified hierarchical attribute access structure with CP-ABE

using ECC scheme for patient health record. Secur. Commun. Netw. 2022, 2022, 8685273. [CrossRef]
45. Zuo, Y.; Kang, Z.; Xu, J.; Chen Z. BCAS: A blockchain-based ciphertext-policy attribute-based encryption scheme for cloud data

security sharing. Int. J. Distrib. Sens. Netw. 2021, 17, 1550147721999616. [CrossRef]
46. Athanere, S.; Thakur, R. Blockchain based hierarchical semi-decentralized approach using IPFS for secure and efficient data

sharing. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1523–1534. [CrossRef]
47. NIST. 2023. [EB/OL]. Available online: https://csrc.nist.gov/publications/ (accessed on 21 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.future.2017.02.024
http://dx.doi.org/10.1109/TIT.2021.3136583
http://dx.doi.org/10.1109/TCC.2020.2989296
http://dx.doi.org/10.3390/s23094181
http://www.ncbi.nlm.nih.gov/pubmed/37177384
http://dx.doi.org/10.3390/s16091463
http://www.ncbi.nlm.nih.gov/pubmed/27626417
http://dx.doi.org/10.1109/TSC.2022.3162266
http://dx.doi.org/10.3233/JCS-2003-11204
http://dx.doi.org/10.1016/j.sysarc.2020.101854
http://dx.doi.org/10.1155/2022/8685273
http://dx.doi.org/10.1177/1550147721999616
http://dx.doi.org/10.1016/j.jksuci.2022.01.019
https://csrc.nist.gov/publications/

	Introduction
	Related Work
	Access Control
	Encrypted Storage
	Searchable Encryption
	Comparison and Analysis of Typical Schemes
	Requirement Analysis and Our Contributions

	The System Model and Threat Model
	System Model
	Threat Model
	System Architecture

	Protocol Design
	Design Goal
	User Registration Protocol
	User Authentication Protocol
	File Upload Protocol
	Ciphertext Search Protocol
	File Download Protocol
	File Secure Sharing Protocol

	Main Cryptographic Algorithm
	Key Management Algorithm
	File Hierarchical Encryption/Decryption Algorithm
	Searchable Encryption Algorithm

	Deployment and System Test
	Deployment
	System Loss Test
	Storage Redundancy Test
	Search and Encryption Efficiency Test
	Security Analysis
	Anti-MITM Attacks
	Anti-Tampering Attacks
	Anti-Replay Attacks
	Anti-Type Flaw Attacks
	Anti-Internal Adversaries

	Advantage Analysis

	Conclusions
	Future Work
	References

