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Abstract: The outreach of healthcare services is a challenge to remote areas with affected popula-

tions. Fortunately, remote health monitoring (RHM) has improved the hospital service quality and 

has proved its sustainable growth. However, the absence of security may breach the health insur-

ance portability and accountability act (HIPAA), which has an exclusive set of rules for the privacy 

of medical data. Therefore, the goal of this work is to design and implement the adaptive Autono-

mous Protocol (AutoPro) on the patient’s remote healthcare (RHC) monitoring data for the hospital 

using fully homomorphic encryption (FHE). The aim is to perform adaptive autonomous FHE com-

putations on recent RHM data for providing health status reporting and maintaining the confiden-

tiality of every patient. The autonomous protocol works independently within the group of prime 

hospital servers without the dependency on the third-party system. The adaptiveness of the proto-

col modes is based on the patient’s affected level of slight, medium, and severe cases. Related ap-

plications are given as glucose monitoring for diabetes, digital blood pressure for stroke, pulse oxi-

meter for COVID-19, electrocardiogram (ECG) for cardiac arrest, etc. The design for this work con-

sists of an autonomous protocol, hospital servers combining multiple prime/local hospitals, and an 

algorithm based on fast fully homomorphic encryption over the torus (TFHE) library with a ring-

variant by the Gentry, Sahai, and Waters (GSW) scheme. The concrete-ML model used within this 

work is trained using an open heart disease dataset from the UCI machine learning repository. Pre-

processing is performed to recover the lost and incomplete data in the dataset. The concrete-ML 

model is evaluated both on the workstation and cloud server. Also, the FHE protocol is imple-

mented on the AWS cloud network with performance details. The advantages entail providing con-

fidentiality to the patient’s data/report while saving the travel and waiting time for the hospital 

services. The patient’s data will be completely confidential and can receive emergency services im-

mediately. The FHE results show that the highest accuracy is achieved by support vector classifica-

tion (SVC) of 88% and linear regression (LR) of 86% with the area under curve (AUC) of 91% and 

90%, respectively. Ultimately, the FHE-based protocol presents a novel system that is successfully 

demonstrated on the cloud network. 

Keywords: remote healthcare (RHC); federated protocol; fully-homomorphic encryption; cloud 

computing; heart diseases 

 

1. Introduction 

The healthcare system is one of the high-priority factors for the country’s progress. 

Recently, the outburst of many contagious chronic diseases has highly affected major 

Citation: Sheu, R.-K.; Lin, Y.-C.; 

Pardeshi, M.S.; Huang, C.-Y.; Pai,  

K.-C.; Chen, L.-C.; Huang, C.-C. 

Adaptive Autonomous Protocol for 

Secured Remote Healthcare Using 

Fully Homomorphic Encryption 

(AutoPro-RHC). Sensors 2023, 23, 

8504. h�ps://doi.org/ 

10.3390/s23208504 

Academic Editor: Isabel De la Torre 

Díez 

Received: 6 September 2023 

Revised: 11 October 2023 

Accepted: 11 October 2023 

Published: 16 October 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Swi�erland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

A�ribution (CC BY) license 

(h�ps://creativecommons.org/license

s/by/4.0/). 



Sensors 2023, 23, 8504 2 of 32 
 

 

economies all around the world. Therefore, the use of IoT remote healthcare devices, also 

known as smart healthcare, has been beneficial to the population at all the age groups 

without a need to physically a�end the hospital and visit emergency services [1].  

However, the popularity of using various body-worn IoT devices has increased the 

risk of confidentiality and integrity loss which is risky for the social well-being of the pa-

tient [1,2]. To overcome such challenges, fully homomorphic encryption (FHE) is intro-

duced in the medical healthcare context to provide secured healthcare services for im-

proved healthcare service quality and contribution towards society [3]. The patient, as the 

end-user, will be freed from such an FHE system installation as it will be implemented on 

the middleware system/cloud. The purpose of FHE is to perform analytical functions over 

the encrypted data and provide solutions for the query request by the authorized user. 

The scope of this work is to ascertain the prediction of the critical condition or health is-

sues within the remote patient equipped with healthcare sensors to be evaluated by the 

doctors in the hospital. The motivation is thought from “How can the affected remote 

patient’s data confidentiality be preserved for HIPAA compliance?” [4]. A similar problem 

is discussed by Sendhil R. and Amuthon A. for privacy preservation in the healthcare data 

exchange, which is further a�empted to be implemented on the cloud but suffers major 

drawbacks [4–6]. Therefore, we have designed an FHE protocol that is demonstrated to 

be working using cloud computation as well as on a local workstation system. The recent 

FHE research works in the medical field are compared with our proposed AutoPro 

healthcare protocol, as given in the above Table 1. The FHE algorithms used in Table 1 

comparison are different and include DCNN, K-means, Gorti’s/Carmicheal’s scheme, sim-

ple FHE, and TFHE. The detailed objectives set for this work before the design and imple-

mentation are given below. The health insurance portability and accountability act 

(HIPAA) is used to protect patient’s health data sensitivity and consent-based disclosure. 

The HIPAA privacy rule is implemented as the protected health information (PHI) and 

the security rule is its subset of information. Communication with the patient while infor-

mation transmission consists of a subset of protected information or electronic-PHI (e-

PHI). 
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Table 1. Comparison of recent medical FHE algorithms. 

Reference Paper 
Medical Data 

Category 
Processing Platform Dataset 

Data Pre-Processing/ 

Protocol 
FHE Algorithm Evaluation 

Zhang Li et al. 

(2022) [7] 
Skin Lesion Federated Learning 

HAM10000 (Dermato-

scopic Images) 

Masking scheme and the secure 

multi-party computation 

Dropout-tolerable 

scheme including 

DCNN 

Accuracy and 

communication cost 

graphs. 

Zhang P. et al. 

(2022) [8] 
Breast Cancer Data Cloud Computing 

Wisconsin Breast Cancer 

Data 

Secure squared Euclidean, 

comparison, minimum, and average 

protocols 

Secure multi-party k-

means clustering 

algorithm 

Protocol computation and 

communication time, and 

efficiency cost graphs. 

Kumari K.A. et 

al. (2021) [9] 

Obstructive Sleep 

Apnea Data 

Activity Tracker 

Device and 

Comput-ational 

Node 

Fitness Tracker Dataset 
Reduce data depth and cipher text 

errors 

Gorti’s enhanced 

encryption scheme 

and Carmichael’s 

encryption scheme 

Apnea-hypopnea index 

(AHI) for mild, moderate, 

and severe outcomes. 

Computation of E/D time 

and scheme comparison. 

Shaikh M.U. et 

al. (2021) [10] 

Arrhythmias by 

ECG 
Cloud Computing 

MIT-BIH Arrhythmia 

Database 

QRS complex, Pan, and Tompkins 

algorithm 
Simple FHE scheme 

Sensitivity, prediction, and 

detection error rate. 

AutoPro-RHC 
Heart Disease 

Detection 

Adaptive 

Autonomous 

Protocol (AutoPro) 

UCI Heart Diseases 

Dataset 

A novel secured multi-party 

computation protocol with AutoPro 

job scheduling 

Fast fully 

homomorphic 

encryption over the 

Torus (TFHE) library 

Recall, F1-score, accuracy, 

and results prediction. 

E/D: Encryption/Decryption, ECG: Electrocardiogram. 
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The HIPAA security rule covers (a) the information by ensuring confidentiality, in-

tegrity, and availability; (b) knowledge about securing the e-PHI data; (c) avoidance of 

impermissible use; and (d) workforce compliance co-operation. Therefore, AutoPro-RHC 

helps to serve by ensuring the security rule of HIPAA compliance. The AutoPro-RHC ob-

jective of designing a novel secure communication protocol using a federated system, 

which processes only FHE data, is aligned with HIPAA compliance. 

1.1. Objectives 

1. Construction of a pre-processing algorithm for the open dataset. 

Use of an open dataset shows the adaptability of the designed algorithm to the inter-

national standards. Applying a pre-processing algorithm can overcome the missing data 

and incomplete data problems. The selection of necessary features is important to provide 

efficient results and reduce the overhead on the computational costs. The FHE algorithm 

is designed to process the encrypted data and evaluate the necessary features as per the 

medical examiner’s requirements. FHE is known for preserving the confidentiality and 

integrity of encrypted data, thus making it an ethical evaluator with the HIPAA compli-

ance and GDPR regulations [1]. Nevertheless, the designed system must be efficient on 

the target platform for the lightweight scheme to be utilized; 

2. Design of a novel secure communication protocol for autonomous servers. 

The problem of coordination amongst different prime and local hospital servers is 

solved by the adaptive autonomous protocol. The AutoPro is designed to effectively coor-

dinate between prime hospitals to execute FHE computations by utilizing the local hospi-

tal’s patient data from the group of authorized hospitals. The test set of patients is taken 

in the encrypted form and the results are communicated in return after the approval by 

the respective hospital’s medical examiner. The model is evaluated on both platforms of 

the workstation as well as on cloud instances as a multi-party communication protocol. 

Therefore, the private dataset and FHE models of the prime hospitals are confidential 

within the network. 

3. To demonstrate the working of AutoPro-RHC protocol in the cloud computing. 

The AutoPro eliminates the dependency on the third-party systems of an authentica-

tion server (AS) and ticket-granting server (TGS). Also, the FHE system is designed to 

provide homomorphic machine learning-based evaluation with the patient’s data end-to-

end encrypted; no private key sharing is required within this protocol. Successively, Au-

toPro job scheduler dynamically adapts to the severity of the patient conditions in the 

AWS cloud. The flowchart given provides a stepwise process performed by this protocol 

in the cloud. The protocol steps are also given exclusively for the detailed analysis. 

Whereas, the two algorithms provide the federated system operations and utilize FHE 

functions for the remote healthcare protocol. 

4. Evaluation of the performance of the multiple datasets and different FHE-ML algo-

rithms. 

AutoPro-RHC experiments use three different open heart disease datasets as Cleve-

land, Hungary, and V.A. as well as four FHE-ML algorithms as linear regression, support 

vector machines (SVM), eXtreme gradient boosting (XGB), and a decision tree. In the be-

ginning, three different datasets are used for training on three different prime servers. 

Successively, the patient’s record is evaluated by FHE-ML algorithm-based prime servers 

which are later shared with the medical examiner for approval. Ultimately, the implemen-

tation of machine learning and FHE-ML on workstations and the cloud for comparison 

provides a complete evaluation analysis. Thus, to determine optimal performance, the 

AutoPro-RHC protocol is evaluated on different open datasets and demonstrated. 
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1.2. Applications 

Remote patients constitute a major population outside hospital proximity with dif-

ferent categories of disease. Every patient is usually affected by a different category of 

disease. Patients affected with single or multiple diseases can be monitored regularly for 

checkups with the respective sensor devices. Therefore, as a mobile device with a wrist 

sensor is used in this work for FHE-based heart disease evaluation, the following similar 

fashion devices can be utilized for the respective diseases: 

1. Glucometer for Diabetes Monitoring: One of the chronic health conditions known as 

diabetes is measured by excessive sugar in the blood due to incapability to produce 

insulin in the human body. As the blood sugar is converted into energy by insulin, 

absence of it may lead to severe health problems such as vision loss and heart and 

kidney diseases. The glucometer is used to test the blood sugar level and report the 

reading to the remote hospital; 

2. Blood Pressure Cuff: A prominent method to check a patient’s health is by heart rate 

and blood flow for the blood pressure checkup. The artery motions are transmi�ed 

in real time by the blood pressure cuff which indicate the possibility of hypertension, 

heart failure, kidney problems, and diabetes. The blood pressure cuff is applied on 

the upper arm to measure for pressure monitoring; 

3. Pulse Oximeter for COVID-19: The pulse oximeter is a multi-purpose device that can 

measure low blood oxygen level(SpO2), lung functioning, and heart rate in bar graph 

form. The chronic conditions for heart/lung issues includes pneumonia, asthma, and 

COVID-19 monitoring. This device is easily a�ached to the patient’s finger as a non-

invasive clip; 

4. Electrocardiogram (ECG) + Stethoscope for Cardiac Conditions: The heart functions 

are captured by ECG whereas the heart, lung, and bowel sounds are captured by 

stethoscope. The occurrence of cardiac conditions includes arrhythmias or coronary 

artery disease. This device is placed on the patient’s chest to virtually monitor heart 

and lung sounds for cardiac assessment. 

1.3. Literature Survey 

An IoT healthcare device used for monitoring patients’ health is secured by some-

what homomorphic encryption, as presented by V. Subramaniyaswamy et al. [11]. A 

smartwatch captures the user’s health information which is encrypted with a dynamic key 

and then permuted data are processed with block encryption as a homomorphic function 

before storing on the cloud and later evaluated for performance. A scalable homomorphic 

encryption algorithm for cancer-type prediction is demonstrated by E. Sarkar et al. [12]. 

The genetic information dataset is used to predict cancer type from a novel logistic regres-

sion model using fast matrix multiplication for high dimensional features. Inference to 

encrypted data by privacy preserving is presented by S. Sayyad et al. [13]. This work uses 

a simple neural network with the HELib algorithm on MNIST and heart disease datasets 

for evaluation. The privacy-preserving CNN models with BFV homomorphic encryption 

are demonstrated by F. Wibawa et al. [14]. A secure multi-party protocol is used for deep 

learning model protection at each client/hospital, which collaborates by federated learn-

ing and evaluates by aggregating servers. A medical resource-constrained mobile device 

used for private decision tree-based disease detection is presented by S. Alex et al. [15]. 

An energy-efficient FHE compatible rivest scheme is proposed that works within the user 

edge device and in the cloud for the homomorphic operations. A secure two-party com-

putation for cancer prediction using homomorphic encryption is demonstrated by Y. Son 

et al. [16]. A gated recurrent unit (GRU) model is used to secure and compute over the 

encrypted data for homomorphic encryption to predict end-to-end recurrence. Privacy 

preservation for precision medicine using machine learning is presented by W. Briguglio 

et al. [17]. A machine learning encryption framework is proposed to work between client-

server models with genomics datasets. A multiple-feature pre-processing classifier is used 
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with three different HE-compatible classifiers. A genetic algorithm (GA) for augmented 

ensemble learning for FHE is demonstrated by D. Dumbere et al. [18]. The designed model 

consists of configuration se�ings, the evaluation of best configuration by GA, a training 

set for machine learning, a classifier pool of different CNN models, instance matching, 

and FHE evaluation for encrypted email spam filtering. Detection of COVID-19 by FHE 

in the federated system is presented by F. Wibawa et al. [19]. A secure multi-party com-

putation protocol is used in a centralized federated system for protecting the aggregation 

of an encrypted CNN model weight matrix for the patient’s personal medical data.  

Sharing informatics for integrating biology and the bedside (I2B2) aggregate medical 

data, secured by FHE in the cloud, is demonstrated by J. Raisaro et al. [20]. The model 

consists of a public key encrypted I2B2 dataset stored on a cloud server in encrypted form 

and a shared key in the proxy server with an exclusive crypto engine and interacting with 

the client app. The database extract, transform, and loading (ETL) concepts are used for 

interactions in this process. An FHE-secured query system for a medicine side effect 

search is presented by Y. Jiang et al. [21]. In case of an un-trustable cloud server, a client-

side server as middleware is added which keeps the public keys that take queries from 

the client terminal, encrypts it, and performs transactions on the cloud database server. 

The server helps to perform the medicine side effect search using FHE. Secure medical 

cloud computing using FHE is demonstrated by O. Kocabas et al. [22]. The patient’s car-

diac health medical data for long QT syndrome (LQTS) detection is stored on the cloud in 

encrypted form and is evaluated by a medical examiner with HElib for the purpose of 

remote health monitoring. Securing deep neural network models by privacy-preserving 

machine learning (PPML) with FHE is presented by JW Lee et al. [23]. A ResNet-20 model 

with RNS-CKKS in FHE is implemented with bootstrapping on the CIFAR-10 dataset with 

approximate methods to evaluate non-arithmetic functions used with ReLU and softmax. 

Securing deep convolutional networks (DCN) with FHE is demonstrated by S. Meftah et 

al. [24]. A new DCN model with low depth and batched neurons is designed to be utilized 

by FHE for be�er performance. Multi-party computations by machine learning for MNIST 

data analyzed with privacy preserving is presented by T. Li et al. [25]. A non-interactive 

system with a multi-layer perceptron model and security protocols are presented with 

secure multi-party schemes to reduce calculations. A multi-key HE (MKHE) system for 

detecting disease-causing genes is demonstrated by T. Zhou et al. [26]. MKHE is combined 

with an encrypted pathogenic gene location function for operating on two location cir-

cuits, namely threshold (TH)-intersection and top gene position, as fixed parameters (Top-

q) to locate polygenic diseases. Federated learning-based PPML with FHE is presented by 

H. Fang et al. [27]. The encrypted gradients are passed by the multiple parties to be com-

bined In the federated learning model with partial homomorphic encryption. Thus, a fed-

erated MLP is implemented to compute backpropagation with gradient exchange. Feder-

ated analytics for multiparty homomorphic encryption (FAMHE) in precision medicine is 

demonstrated by D. Froelicher et al. [28]. FAMHE secures distributed datasets while in-

cluding Kaplan-Meier survival analysis and medical genome evaluation. FHE, with full 

domain functional bootstrapping, is presented by K. Klucznaik et al. [29]. A regev encryp-

tion is used to compute affine functions which drastically reduces errors and performs 

FHE additions and scalar multiplications with high efficiency. Securing enterprises with 

a multi-tenancy environment is demonstrated by P. Dhiman et al. [30]. This work presents 

an enhanced homomorphic cryptosystem (EHC) which works with the BGV scheme for 

key and token generation and is implemented in an enterprise environment having a to-

ken, private, hybrid, and public-key environment. This FHE literature survey analysis is 

shown in the form of the abstract as the Figure 1 for different homomorphic encryption 

types, AI algorithm integration, communication protocols used, key distribution strate-

gies, and applications. 
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Figure 1. Survey for the FHE literature analysis. 

1.4. The Survey Limitations Are Given as Follows: 

 The complete mathematical model is not represented in most of the recent work; 

 The FHE algorithm and libraries used are not specified in the implementation section; 

 The details of every FHE algorithm hyper-parameter tuning are not disclosed; 

 Comparison of machine learning and concrete-ML experiments with different open 

datasets and algorithms used in the protocol. 

2. Materials and Methods 

Figure 2 presents the federated model designed for the implementation of secured 

remote monitoring (SRM). The federated model can be explained in four parts as cloud 

learning, prime institutions with private data training, child institutions for test set sub-

mission, and user’s consisting of the patients and medical examiners. At the start, the pa-

tient shares their encrypted remote sensor’s data with the AutoPro network. Next, in the 

AutoPro network at layer 1, the hospital’s cloud portal with storage and computation is 

present that is used to collect queries as prime and from local hospital servers. Succes-

sively, the queries are resolved with the support from prime hospital servers with results 

and respond back to the requesting hospital by the prime server. The prime hospital serv-

ers consist of their private servers with the FHE algorithm. 
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Figure 2. System model for the AutoPro-RHC protocol. 

The FHE algorithm is trained on the private dataset of that respective national/inter-

national hospital on a regular interval, i.e., weekly/monthly, and then serves for respond-

ing to queries. In layer 2, local hospitals can only submit queries to receive the results from 

the expert’s opinion formed collectively. Here, the dataset is not standardized due to the 

lack of policy and standardization procedures. Ultimately, the output forwarded by the 

source prime/local hospital to the respective medical examiner can receive the patient’s 

current health conditions and can share the approved medical report with them. 

Figure 3 presents the flowchart for the AutoPro-RHC process. At the start, the sensor 

device initiates the medical reporting of a remote patient at a given interval of time. If the 

data are corrupted, the process is then terminated. Otherwise, the remote patient’s data 

are encrypted and sent to the respective local/prime hospital where the remote patient is 

registered. If the remote patient is registered at a local hospital, then their encrypted data 

are immediately forwarded to the federated cloud server. Otherwise, the prime hospital 

first sends the remote patient’s encrypted data to the cloud and starts FHE computation 

based on the training of the current prime hospital’s data. If the cloud service queue is full 

due to many requests of compute intensive FHE computations, then the process has to 

wait until the service queue slot availability. Next, the cloud will send a copy of the pa-

tient’s encrypted data to all prime hospital servers to perform FHE computation and pro-

vide prediction based on their respective data. Later, the results are returned back by all 

the prime hospitals to the federated cloud server to perform grouping of the results, which 

is then returned back to the requesting patient. The patient will later consent and share 

the results with the hospital’s medical examiner who will approve and return the final 

report with the patient. 
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Figure 3. Flowchart for the AutoPro-RHC. 

Figure 4 the AutoPro job scheduler decides the scheduling of the patient’s data eval-

uation based on the recent heart conditions. The mode value is selected by first obtaining 

the highest value from the TestSet data submission of the patient and then, based on age, 

the heart rate can be selected as severe, moderate, and slightly affected for the modes 1, 2, 

and 3, respectively. Subsequently, in the processed version of the UCI dataset, the disease 

presence is already given in the feature column of the severity level for existing heart dis-

ease. 

 

Figure 4. AutoPro job scheduler. 
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In case of Mode = 1, the critical care is reserved for the patients with severe heart 

conditions. Thus, severe heart conditions can increase the mode value to 1 and can sched-

ule the results evaluation time to the hospitals alert/notice. Therefore, the scheduler used 

by the AutoPro job network is for parallel processing by all of the prime hospital servers, 

as shown in Figure 4a. Successively, the Mode = 2 with special care is reserved for the 

patients with mildly affected heart conditions. Thus, the scheduler used by the AutoPro 

network is the relay based scheduler, as shown in Figure 4b, which forwards the patients’ 

data as TestSet with results to the successive hospital prime server. Similarly, the Mode-3 

with general care is allo�ed for the patient’s with slightly affected heart conditions. The 

scheduler used by the AutoPro network is the buffer based time synchronization where a 

buffer with less than or equal to 10 patients TestSet [10] is forwarded every 1~5 min to the 

successive server for processing, as shown in Figure 4c. Ultimately, all the results are gath-

ered back to the initiating prime server. 

2.1. Protocol and Flowchart Design 

The FHE protocol process can be given as communication between the remote pa-

tient, federated network, and the medical examiner interaction process: 

1. The remote patient initiates the process by sending encrypted sensor data at time � 

to the respective prime/local hospital with the user’s public key ���. The prerequisite 

is that the patient needs to be registered within the respective hospital for the treat-

ment; 

������������� →  ��������������(������(�����������[�])) 

2. The prime/local hospital uploads the encrypted data to the federated cloud server for 

processing by Algorithm 1 in the federated cloud. The modes for severe, mild, and 

slightly infected are given as Mode 1, 2, and 3, respectively. In the case of slightly 

infected cases, a batch of jobs are transferred in the form of relay between the servers 

as TestSet[n]; 

�������������� →  ���������������(�������[]) 

If (TestSet(Mode) == 1) 

�����������1. ���(�������, 1)  →  �����������2. ���(�������, 1)
&& �����������3. ���(�������, 1)

ElseIf (TestSet(Mode) == 2) 

�����������1. ���(�������, 2)  →  �����������2. ���(�������, 2) 
�����������2. ���(�������, 2)  →  �����������3. ���(�������, 2) 

ElseIf (TestSet(Mode) == 3) 

�����������1. ���(�������[�],3)  →  �����������2. ���(�������[�], 3) 
�����������2. ���(�������[�], 3, �������2)  

→  �����������3. ���(�������[�], 3, ������2, ������3) 
Else 

(“������� �������”) 

3. The AutoPro then shares the patient’s encrypted data copy for evaluation to the re-

spective trained FHE server model given in Algorithm 2. The encrypted results are 

then grouped by the receiving prime server and communicated back to the patient; 



Sensors 2023, 23, 8504 11 of 32 
 

 

��������� = � �����������. ���(�������[�])

�

�

  

������������� ←  ��������� 

4. The patient decrypts the results with his private key ��� and can inspect the confi-

dential results; 

������������� ←  ������� = ������
(���������) 

5. If the remote patient forgets/delays to share results with the medical examiner, then 

they receives a reminder from the hospital server. The hospital prime/local server 

stores the patient’s history and progress at regular intervals to remind them of the 

test reports; 
HospitalReminder() 
If (CurrentDate == StartofWeek()) 
 For(∀ ���������������) 
   SendReminder(“Your results evaluation is pending.”) 

if(HospitalReminder) 

Alert(”Your results evaluation is pending. ”) 

6. The patients who are keen to evaluate the report by the medical examiner with/with-

out a reminder from the hospital send the message with their public key for identifi-

cation and then encrypt the results with the hospital public key ��� and forward it; 

������������� →  ��������������(���, ������
(�������)) 

7. The medical examiner then evaluates the report by decryption using his private key 

���, averages the results, and provides further prescription on the current patient’s 

status; 

ProcessResults(��������� ���, ������ ������
(�������)) 

 MedicalExaminer← ������
(�������) 

 EvaluatedReport = �������������������(�������) 
 Report = ������

(���������������) 

 Return Report 

      ��������������� →  ���������������� = ������
(������

(�������)) 

8. The evaluation is then communicated back to the patient by encryption with their 

public key ���; 

������������� ← ������
(����������������) 

9. Therefore, the patient is kept informed securely about their health status with the 

report decrypted by ���. 

������������� ← ������
�������

(����������������)�  

2.2. Algorithm Description 

Algorithm 1 presents the process for the federated system. This algorithm is executed 

on the cloud server to provide services to the patients and medical examiners using Au-

toPro-RHC. In step 1, the input taken is FederatedQueue which determines the size of the 

cloud server queue assigned to every local/prime hospital for job requests. In step 2, the 

PrimeServer specifies the group of prime server addresses {PS1, PS2, …, PSN} that are 
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needed to execute the FHE algorithm on their private dataset. In step 3, the LocalServer is 

the group of approved hospital servers that can make requests for the TestSet evaluation 

by the cloud server. In step 4, the AuthorizedServer is given as all the servers local/prime 

involved within this model. In step 5, TestSet[n] is the group of test requests sent by an 

authorized hospital’s server. In step 6, the output given by this algorithm is the ResultSet[] 

which is returned as the successful processing of the job request by the authorized servers. 

In step 7, all the variables used within this algorithm are initialized to NULL. In step 8, 

the global variable is declared as NULL, which can be used consistently across the code 

structure. In step 9, the event needs to assign a value that can be either 0 for weekly train-

ing or 1 for monthly training of the prime servers for the FHE evaluation with recent train-

ing data. In step 10, the if condition checks whether the current day is equal to the event 

day. In step 11, if the condition is true then the signal variable is compared with the prime 

server group to determine whether all the prime servers are trained for this event. In step 

12, if the previous condition is true then the message is printed as prime servers are up-

dated with training. In step 13, if the prime systems are considered to be in the training 

stage then are displayed with a message given in step 14. In step 15, all the prime servers 

are instructed for recent training by the remote procedure call which is counted as true (1) 

in step 16 for every successful signal value. In step 17, the TestSet[] is received from all the 

authorized servers requesting federated cloud service. In step 18, the condition checks 

whether the TestSet[] has requests pending and then in step 19, whether the Federat-

edQueue size allo�ed to that particular authorized server is full or not is checked. In step 

20, if the condition is true then whether the TestSet[] belongs to the prime server’s request 

is checked and then, except for that prime server, the request is forwarded to other prime 

server as it is already processing it. Next, the results of the other prime server’s FHE com-

putation are processed in step 21. Whereas, the results of the requesting prime server are 

added after availability in step 22. In step 23, the TestSet[] is forwarded to all the prime 

servers for FHE computation and stored in the ResultSet[] in step 24. In step 25, if the 

federated queue is full for that respective prime server then it is displayed for the request 

stage in the wait queue of the cloud server in step 26. Ultimately, in step 27, the TestSet[] 

is returned to the respective authorized servers. 

Algorithm 1: AutoPro Job Distribution Algorithm 

1. Input: FederatedQueue, Size of federated queue on cloud server. 
2.        PrimeServer, Physical address of each prime server  
                                 {PS1, PS2 …, PSN}. 
3.       LocalServer, Physical address of each local server  
                                 {LS1, LS2, …, LSN}. 
4.        AuthorizedServer, ∀ (PrimeServers ⋃ LocalServer). 
5.        TestSet[], A group of recent remote health patients data sent by 

                           authorized hospital’s server. 
6. Output: ResultSet[], Prediction for the TestSet[] send by the 

                                   AuthorizedServer.   
7. Initialize (FederatedQueue, PS1, PS2, …, PSN, LS1, LS2, …, LSN,  

                 TestSet[], Signal) = ∅ 
8. Global ResultSet[]=∅ 
9. Event = Value  # Assign 0 = Start of Week or 1 = Start of month. 
10. If (CurrentDate == Event) 
11.       If Size(Signal) ==Size(PrimeServer) 
12.             Print “All prime servers are in ready state” 
13.       Else 
14.             Print “Prime server is still under training”   

            # Wait until ∀ PrimeServer’s are trained.  
15.             For ∀ PrimeServer 
16.            Signal + = RPC (Train PrimeServer)   

                    # Training with updated data. 
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17. TestSet[]=JobRequest(AuthorizedServers) 
18. If(TestSet[]!=NULL) 
19.       If(∀ PrimeServerQueue!=FULL) 
20.             If TestSet[] ϵ PrimeServer 
21.                    ResultSet[] = ∑ �����������. ���(�������[])���

�  
22.                    ResultSet[] += ������������. ������ 
23.             Else 
24.                     Wait(QueueAvailability) 
25.                     ResultSet[] = ∑ �����������. ���(�������[])�

�  
26.       Else 
27.             Print “Request in wait queue of the cloud server” 
28. Return ResultSet[] 

The Algorithm 2 for RHM-FHE consists of the following steps: Step 1 is an input of 

RemoteDataset[] as the open dataset used for training the FHE algorithm with heart dis-

ease. In step 2, Labels[] are the shortlisted features that will be used for the FHE algorithm 

as an input. In step 3, the TestSet[] is the recently collected remote patient’s health data for 

the purpose of health status evaluation. In step 4, the output given by this algorithm is 

candidateSet[], which is the prediction results by different FHE algorithms using a deci-

sion tree, logistic regression, SVM, and XGBoost. In step 5, the FHE algorithm time speci-

fies the execution time required for the algorithm on the respective platform. In step 6, all 

the variables are initialized to NULL. In step 7, the remote dataset is divided into two 

parts of DTrain and DTest by an 80-20 ratio with the selected labels, respectively. In steps 

8–9, the DTrain and DTest are normalized with the min–max normalization method for 

preprocessing of data within the range [0,1], respectively. In step 10, the FHE algorithm is 

trained with DProcessedTrain and DProcessedTest by using a fast fully homomorphic encryp-

tion over the torus (TFHE) library with a ring-variant of the GSW [31,32]. In step 11, the 

DQueue stores the 10 patient’s test data TestSet received from the cloud server. Next, in 

step 12, if the DQueue data received are consistent then a message is printed that the re-

ceived data are consistent and ready to be processed in step 13. In step 14, due to the 

received corrupted data, respective message is printed and the algorithm is terminated by 

the exit function in step 15. In step 16, the for loop is initiated to loop until the size of the 

TestSet patient’s data received. In steps 17–20, the candidateSet1, candidateSet2, candi-

dateSet3, and candidate Set4 stores the FHE health status prediction results by the FHE 

algorithms of concrete-ML by decision tree, logistic regression, SVM, and XGBoost for the 

10 patient’s remote data, respectively. Therefore, in step 21, the prediction results received 

from the previous candidateSet’s for different FHE algorithms are printed. In step 22, the 

time required for all four FHE algorithms is printed for analyzing the execution time. In 

step 23, all the candidate sets are combined to be stored in the candidate set array. Finally, 

in step 24, the algorithm returns the candidateSet[] to the calling cloud FHE function. 

Algorithm 2: Adaptive AutoPro for Healthcare Prediction using the Fully Homomorphic Encryption (FHE) Algorithm 

1. Input:    RemoteDataset[], Open dataset of remote users for the training of heart disease. 
2.            Labels[], Selected dataset labels to be processed by FHE algorithm. 
3.            TestSet[], A group of recent remote health patients’ data sent by  

                      An authorized hospital’s server. 
4. Output:   candidateSet[], Prediction given by FHE algorithm for the  

                        patient’s health status. 
5.           FHE_AlgorithmTime[], Time required for the execution of the FHE algorithm.   
6. Initialize (DTrain, DTest, DProcessedTrain, DProcessedTest, FHE Model, DQue, candidateSet1, candidateSet2, 

candidateSet3, candidateSet4) = ∅ 
7. DTrain, DTest=TrainTestRatio(RemoteDataset[], Labels, 80:20) 

8. ��������������� =
����������(������)

���(������)����(������)
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# Min–Max normalization by rescaling the data [0,1]. 

9. �������������� =
���������(������)

���(������)����(������)
 

10. FHE = FHE.Train(DProcessedTrain, DProcessedTest)    
# TFHE library with GSW 

11. DQueue = Input (TestSet[10])    # Input encrypted Test Set of 10 patients. 
12. If (DQueue == Consistent) 
13.      Print “The patient’s test set is consistent and ready to be processed” 
14. Else 
15.       Print “The patient’s test set is corrupted”, exit()  
16. For EHR in range(sizeof(TestSet[])) 
17.       candidateSet1 = FHE.Decision Tree(TestSet[x]) 
18.       candidateSet2 = FHE.Logistic Regression(TestSet[x]) 
19.       candidateSet3 = FHE.SVM(TestSet[x]) 
20.       candidateSet4 = FHE.XGBoost(TestSet[x]) 
21. Print “Decision Tree:”,candidateSet 1,“Logistic Regression:”, candidateSet2, “SVM:”,candidateSet 

3,“XGBoost:”,candidateSet 4 
22. Print “Execution Time required for Decision Tree:”, candidateSet1.time(),  

“Logistic Regression:”,candidateSet2.time(), “SVM:”,candidateSet3.time(), “XGBoost:”,candidateSet4.time() 
23. candidateSet[] = candidateSet1 ∪ candidateSet2 ∪ candidateSet3 ∪ candidateSet4 
24. Return candidateSet[] 

2.3. Mathematical Model 

The faster FHE (FFHE) improves the processing speed of the system model by using 

optimized FHE computations [32,33]. The bootstrapping key size is also reduced by using 

an approximation algorithm. During the FHE computations, some errors are generated 

known as learning with errors (LWE) whereas the ring variant is known as Ring-LWE. The 

LWE cipertexts with unified representation are TLWE encoding polynomials over the to-

rus. The security of TLWE depends on ideal la�ice reduction or general hardness. 

For the la�ice-based homomorphic encryption schemes, the construction of both 

LWE/Ring-LWE variants can be used. The torus contains the right number of the LWE 

sample and can also be described as a continuous Gaussian distribution. The scale invar-

iant LWE (SILWE) is used to work on the real torus. TLWE samples are used as follows: 

(a) Search Problem: There exists multiple random homogeneous TLWE samples 

which are polynomial and then find key � � ��[�]�; 

(b) Decision Problem: The difference between fresh random homogeneous TLWE 

samples and uniform random samples taken from ��[�]��� is distinguished. Where K ≥ 

1 integer, TLWE secret key � � ��[�]� is K polynomial vector � ℝ =
�[�]

[�]���
 having a bi-

nary co-efficient ��[�] in the TLWE sample message space. 

TGSW can be defined as the FHE scheme’s GSW generalized scaled invariant version. 

The author’s gentry, sahai, and water proposed GSW with LWE problem-based security. 

The gadget decomposition function is utilized by this TGSW scheme for improving the 

processing time and minimal memory usage with small noise as an approximate decom-

position function. The input given as a TLWE sample is (�, �) = (��, . . ��, ����) ∈

��[�]� × ��[�] and p is an integer polynomial. 

� ��,���
���

���
 (1)

Here, a unique representation is chosen for unique �� with ��,� ∈ � and set ���,� as 

the nearest multiple of 
�

��
�  to ��,�. 
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� ���,��
1

��
�
 

�

���
 (2)

The ���,� is decomposed uniquely with each ���,�, � ∈ �−
��

�
,

��

�
� 

��,� = � ���,� , ��� ∈ ℛ 
���

���
 (3)

Equation (3) is executed as a matrix with � = 1 �� � + 1 and � = 1 �� �. The output 

returned is in the form of (��,�)�,� as a combination of 

���,�, . . ����,�� ∈ ℛ(���)�  ∈  ����,� =  ∑ ∈ �, �.�
���

�

��
� − ��,� =���,� − ��,�  ≤

�

���
� =∈  

as ���,�  is the closest multiple of 
�

��
�  on torus and is a concentrated distribution where � =

���{0,1}. 

LWE Key-Switching Procedure: 

LWE is given a sample of message � ∈ �, the procedure of key switching KS with the 

same � is output with less noise occurrence and tolerate approximations. The input given 

is the LWE sample (�� = (��
� , . . ��

� ), ��)  ∈ �����(�) with key switching ���� → �. Where 

�� ∈  {0,1}��
, � ∈ {0,1}� and � ∈ � is a precision parameter. 

|��
�� − ��

�| < 2�(���) (4)

where ��
��  is the nearest multiple of 

�

�� to ��
� 

��
�� = � ��

�. �. 2��
�

���
 (5)

��,�
� ∈ {0,1} where each ��

��  is the binary decomposition. 

(�, �) = (0, ��) − � � ��
��. ���,�

�

���

��

���

 (6)

Equation (6) is the output LWE sample ����(�). 

Bootstrapping Procedure: LWE sample ����(�) = (�, �) has an encryption of � by 

key S as a bootstrapping construct with constant noise. The intermediate encryption 

scheme used is TLWE. 

��� ← (���. (�, �����) ∈ ��[�]��� (7)

where �̅ =
�����

�
, �̅� = �� − �̅, � = [2��] and ��� = [2���] ��� ���ℎ � ∈ [1, �]. 

����� = (1 + � + ⋯ + ����) × ��
��
� ��� ∈ ��[�]. 

��� ← [ℎ + (����� − 1). ���] ⊡ ��� 

(8)

� = (0, �̅) + ������ �������(���) (9)

where ��������ℎ�,�(�) is the output. Here, the squashing technique utilized by the ac-

cumulator achieves an additional 2x speed up. 

3. Results 

In this section, the implementation details of the FHE-based RHM are given in detail. 

The system configuration required to implement the FHE operations on the workstation 

and cloud instance is given in Table 2 as follows: 
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Table 2. System configuration. 

System 
Workstation: Intel Core i7-

8700K CPU@3.70GHz 

Amazon Linux AMI Cloud Instance  

(i386, x86_64)  

Memory 64 GB 1 GiB 

Operating System Ubuntu 20.04.3 LTS Linux kernel 5.10 

Library 
Concrete.ml.sklearn, Concrete.ml.deployment, FHE ModelClient, 

FHE ModelDev, FHE ModelServer, Socket, OS, Sys and Time. 

Three independent datasets are referred for the FHE model training on the prime 

servers, as given in Table 2. The Table 3 dataset is referenced from the UCI Heart Disease 

Dataset (Cleveland, Hungary, and V.A.) [34]. The purpose of referring to the different 

open datasets shows the adaptability of the FHE model to international standards. 

Table 3. Dataset details. 

Dataset Name 
Heart Disease Dataset (Cleveland, Hungary and V.A.—

Long Beach) 

Characteristics Multivariate 

Number of Instances 303 

Attributes 14 

3.1. Pre-Processing Techniques Used on the Dataset 

The pre-processing techniques applied on the different datasets, as shown in Table 4, 

are necessary to achieve the high accuracy for the model performance. Every dataset is 

pre-processed to handle missing data to maintain consistency. One-hot encoding deals 

with categorical data processing. 

Table 4. Pre-processing Techniques and Parameter Values. 

Dataset 
Pre-Processing 

Required? 

Missing Data 

Handling 

One-Hot 

Encoding 

Data Imbalance Handling 

by Class Weight 

Prime Server 1 (Cleveland) Yes Yes Yes (0.92424242, 1.08928571) 

Prime Server 2 (Hungary) Yes Yes Yes (0.80384615, 1.32278481) 

Prime Server 3 (V.A.) Yes Yes Yes (2.1875, 0.64814815) 

Therefore, string category data can be transformed into numbers for machine learn-

ing processing. The data imbalance is handled using class weights for adjusting cost func-

tion within the model classification for penalizing major/minority classes accordingly. 

3.2. Machine Learning Performance for Different Algorithms on the Dataset (Train:Test Ratio = 

80:20) 

The above machine learning-based evaluation of the three different UCI datasets are 

presented in Table 5. Every prime server dataset is evaluated using multiple machine 

learning algorithms that include linear regression, support vector machines (SVM), 

XGBoost, and decision tree. The dataset for prime servers 1, 2, and 3 is trained with Cleve-

land, Hungary, and V.A. heart disease open datasets, respectively. A total of 10 parame-

ters are used as input to the algorithms where the highest values in most of the metrics of 

precision, F1-score, and accuracy are recorded by the decision tree algorithm output with 

the minimum processing time overall. In the case of prime server 2, all the metrics perform 

highly for the SVM. Whereas, the lowest recorded time is for the decision tree across all 

of the prime servers due to its lowest algorithm time complexity O(Nkd) where n is the 

number of training data, k is the features, and d is the decision tree depth. The prime 
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server 3 also performs be�er for SVM in most of the metrics with less algorithm execution 

time in comparison to other prime servers. 

Table 5. Machine Learning based Evaluation for the Hospital Prime Servers. 

Dataset Algorithm 
Paramete

rs 
Precision  Recall F1-Score Accuracy AUROC  

Execution Time (s) 

Workstation Cloud 

Prime 

Server 1 

Linear 

Regression 
10 0.59 0.85 0.71 0.67 0.82 0.0032 0.0014 

SVM 10 0.58 0.93 0.70 0.67 0.82 0.0030 0.0037 

XGBoost 10 0.67 0.81 0.73 0.73 0.83 0.0011 0.0091 

Decision Tree 10 0.74 0.74 0.74 0.77 0.82 0.0004 0.0012 

Prime 

Server 2 

Linear 

Regression 
10 0.92 0.58 0.77 0.86 0.90 0.0026 0.0014 

SVM 10 1.00 0.68 0.81 0.88 0.91 0.0026 0.0026 

XGBoost 10 0.92 0.58 0.71 0.82 0.84 0.0006 0.0089 

Decision Tree 10 0.85 0.58 0.69 0.80 0.83 0.0004 0.0011 

Prime 

Server 3 

Linear 

Regression 
10 0.86 0.60 0.71 0.60 0.67 0.0017 0.0013 

SVM 10 0.89 0.80 0.84 0.76 0.67 0.0017 0.0017 

XGBoost 10 0.87 0.65 0.74 0.64 0.72 0.0006 0.0087 

Decision Tree 10 0.70 0.88 0.78 0.68 0.65 0.0004 0.0010 

Bold value: Best algorithm time. 

In the case of machine learning-based evaluation on the cloud server, it can be ob-

served that the linear regression algorithm performs with less time in comparison to the 

other prime server algorithm implementations. Whereas, the SVM algorithm executed on 

different prime servers has a similar time execution as that of the workstation. The execu-

tion of the decision tree and XGBoost performed oppositely, having higher time require-

ments with the same process on the workstation server. 

3.3. FHE Concrete-ML Performance 

The FHE-based evaluation of the concrete-ML workstation is presented in the above 

Table 6. FHE computations take longer time in comparison to other cryptographic algo-

rithms. FHE combined with machine learning is presented using concrete-ML operations. 

In Table 6, the dataset used for evaluation is similar to Table 4 prime servers. Therefore, 

all the FHE prime servers are evaluated based on similar machine-learning algorithms for 

comparison with this workstation. In prime servers 1, 2, and 3, the best scores achieved 

by the algorithms are by a decision tree, SVM, and SVM, respectively. It is found to be 

similar in the metric evaluation as compared to the workstation. Whereas, the major dif-

ference is noticed within the timing evaluation of the FHE computations on the work-

station. Nevertheless, the FHE decision tree requires the lowest time in comparison to the 

other FHE-based machine learning algorithms. Implementing a concrete-ML algorithm 

on the workstation with the highest accuracy is observed on prime server 2 followed by 

prime server 1 and the lowest on prime server 3. In case of timing requirements, prime 

server 3 requires the lowest execution time followed by the primer server 2 and highest 

time for prime server 1. The confusion matrix for the concrete-ML based machine learning 

evaluations are presented in detail in Appendix A Figures A1–A4, respectively. 
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Table 6. FHE machine learning-based evaluation for the hospital prime servers. 

Dataset Algorithm Parameters Precision  Recall F1-Score Accuracy AUROC  
Workstation 

Time (s) 

Prime 

Server 1 

Linear  

Regression 
10 0.59 0.85 0.71 0.67 0.82 345.70 

SVM 10 0.58 0.93 0.70 0.67 0.82 345.62 

XGBoost 10 0.67 0.81 0.73 0.73 0.83 521.43 

Decision Tree 10 0.74 0.74 0.74 0.77 0.82 148.58 

Prime 

Server 2 

Linear  

Regression 
10 0.92 0.58 0.77 0.86 0.90 293.51 

SVM 10 1.00 0.68 0.81 0.88 0.91 291.50 

XGBoost 10 0.92 0.58 0.71 0.82 0.84 432.75 

Decision Tree 10 0.85 0.58 0.69 0.80 0.83 125.78 

Prime 

Server 3 

Linear  

Regression 
10 0.86 0.60 0.71 0.60 0.67 143.82 

SVM 10 0.89 0.80 0.84 0.76 0.67 143.08 

XGBoost 10 0.87 0.65 0.74 0.64 0.72 182.01 

Decision Tree 10 0.70 0.88 0.78 0.68 0.65 61.51 

Bold value: Best system time. 

3.4. Details for the Parameters Tuned to Improve the Performance by the Concrete-ML Model 

The support vector classification is based on libsvm with the configuration parame-

ters as shown in Table 7. The number of samples is limited to thousands for the fit time to 

be scaled quadratically. The one-vs-one scheme is used to handle the multiclass support. 

The hyper-parameters determine the linear kernel type to be used for this algorithm which 

is suitable for datasets with large features. The regularization purpose is to prevent over-

fi�ing and minimize loss function by calibrating machine learning models. Regularization 

is usually inversely proportional to C and has a squared l2 penalty. The probability deter-

mines the enablement of probability estimates. In the case of class_weights which have a 

balanced mode that uses x values in n_samples/(n_classes * np.bincount(x)) as inputs, 

weights that are inversely proportional to the class frequencies are adjusted. The Max_iter 

is set to 1000 as the default, which is a solver hard limit on iterations. Finally, the data are 

shuffled based on probability estimates by the pseudo-random number generator. 

Table 7. SVC concrete-ML parameters. 

Kernel Regularization C Degree Probability Class-weights Max_iter Random-State 

Linear Yes 1 3 (default) True Balanced 1000 (default) None (default) 

XGBoost is derived from a gradient-boosting framework as an optimized distributed 

library which is portable, flexible, and efficient. It can be applied to run on billions of sam-

ples in the distributed environment with the configuration parameters as shown in Table 

8. The random_state for FHE experiments is kept null. N_Estimators are the count for run 

numbers for the learning performed by XGBoost. The learning rate is the learning speed 

and the low error rate determines its proper selection. The booster parameter is used to 

select the model type to be run every iteration, where gbtree has tree-based models. The 

max_depth of a tree is specific to the learning relation of sample data for controlling over-

fi�ing at higher depth. The seed is used for parameter tuning and obtaining reproducible 

results. It is a supervised learning method that is focused on regression and classification 

with the configuration parameters as shown in Table 9. It learns simple decision rules for 

model prediction based on feature data. The balanced class weight means have equal 

weights assigned for the output class and have the same class proportion for the child 
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samples. The max depth limits the size of the training sample nodes within the tree to 

avoid overfi�ing. 

Table 8. XGBoost concrete-ML parameters. 

Random_State N_Estimators Learning-Rate Booster Max_Depth Seed 

0 (default) 10 0.1 (default) GbTree (default) 3 (default) None (default) 

Table 9. Decision Tree Concrete-ML Parameter’s. 

Class_Weight Max_Depth Min_Samples_Leaf Max_Features Min_Samples_Split 

balanced 10 10 None 100 

Minimum sample split is used to split an internal node based on the minimum num-

ber of specified samples. Here, the minimum sample split is related to internal nodes and 

the minimum sample leaf is about external nodes. The internal node has further splits but 

leaf nodes have no children. Minimum sample leaves are the minimum samples needed 

at leaf nodes. The presence of training samples in the left and right branches makes a split 

point be considered valid which has a smoothing effect during regression. Maximum fea-

tures are used to select the number of features for the best split. 

3.5. Detailed Comparison of ML and Concrete-ML 

The x-axis presents the record count for tests that are performed by the ML algorithm 

on the workstation with the y-axis as time, as shown in Figure 5. It can be observed that 

the decision tree algorithm requires the lowest time on a workstation for testing multiple 

records. In the case of linear regression and SVM, the execution timing requirements are 

the average and are similar to each on the workstations. Whereas, XGBoost has the highest 

requirements on all of the prime servers. Therefore, the end user can select the appropriate 

algorithm based on accuracy- and time-based criteria. 

 

Figure 5. Graph comparison for the ML and concrete-ML algorithms. 

Implementing ML algorithms on the AWS cloud is first presented by Figure 6. Every 

prime server has its respective open dataset as given in Table 3. The ML algorithm for the 

linear regression requires the highest time of 0.02 second and lowest of 0.001 second by 

DT on the prime server 1. 
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Figure 6. Implementation of machine learning algorithms on the AWS platform. 

The highest time of 0.01 sec is required by XGB and the lowest of 0.001 s by DT on 

the prime server 2. Whereas, the highest of 0.01 sec is required by XGB and the lowest of 

0.001 s by DT on the prime server 3. Overall, the DT requires the lowest processing time 

on all the prime servers and LR with the highest time. 

In Figure 7, implementing concrete-ML on the AWS cloud has a similar behavioral 

pa�ern across the different prime servers. It can be noticed that prime server 1 performs 

with the lowest time, prime server 2 performs with the average time, and prime server 3 

performs with the highest time for all the algorithms. Therefore, it can be concluded that 

cloud-ML has more algorithm-specific behavior and concrete-ML on the cloud has more 

pa�ern-based behavior by a group of algorithms. 

 

Figure 7. Implementation of AWS concrete-ML algorithms on AWS Platform. 

3.6. Concrete-Ml Graphs Including Time (Sec) for Independent Record Encryption and 

Decryption 

The concrete-ML algorithm time required for encryption /decryption on work-

stations and the AWS cloud with the VA dataset is presented in Table 10. In the case of 

cryptography, the encryption/decryption time for the decision tree is the lowest on the 

workstation, followed by XGBoost, SVC, and linear regression due to the output parame-

ters generated. Similarly, the cloud cryptography time generated follows the same se-

quence, where the lowest time required is for the decision tree followed by the XGBoost, 

SVC, and linear regression. The processing time on the workstation is less for the concrete-

ML prediction due to the higher workstation configuration as compared to the cloud 

given in the workstation configuration of Table 2. 
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Table 10. Concrete-ML encryption and decryption time. 

Concrete-ML Algorithm 
Workstation Cloud 

Enc. Dec. Enc. Dec. 

Linear Regression 0.0047 0.0005 0.0099 0.0007 

SVC 0.0047 0.0005 0.0098 0.0007 

XGBoost 0.0032 0.0028 0.0054 0.0015 

Decision Tree 0.0032 0.0005 0.0054 0.0007 

3.7. Concrete-Ml Time for Independent Record for Multiple Datasets on AWS Cloud 

Implementing multiple open heart disease datasets by concrete-ML on the cloud 

shows high variability in the processing with different algorithms. The Cleveland dataset 

has the lowest prediction time by the decision tree algorithm followed by XGB, SVC, and 

LR as the highest cryptographic operations, as shown in Table 11. Similarly, in the VA 

dataset, the lowest prediction time is given again by the DT followed by SVC, XGB, and 

LR. Whereas, the Hungary dataset has the lowest prediction time by the XGB followed by 

LR, DT, and SVC. 

Table 11. Concrete-ML Time Comparison for Multiple Datasets. 

Concrete-ML Algorithm 
Cleveland VA Hungary 

Enc. Dec. Enc. Dec. Enc. Dec. 

Linear Regression 0.0107 0.0007 0.0133 0.0007 0.0098 0.0008 

SVC 0.0097 0.0007 0.0099 0.0007 0.0111 0.0007 

XGBoost 0.0053 0.0013 0.0079 0.0034 0.0061 0.0015 

Decision Tree 0.0054 0.0007 0.0064 0.0007 0.0101 0.0007 

3.8. Analysis of the Final Protocol Time 

The complete FHE protocol time can be given by the 

FHE Protocol Total Time = Time (Cloud server communication + Encryption/Decryption + Algorithm Process)  

where, Cloud Server Communication Time = Time (3 Prime Servers), and 

Algorithm Execution Time = (Encryption/Decryption + Algorithm Process). 

While training the prime servers with different machine learning algorithms and dif-

ferent open datasets, the performance details can be given as above in Table 12. The tables 

are summarized later in Figure 8. 

 
(a) 

 
(b) 
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Figure 8. FHE protocol implementation time: (a,b) train by VA, (c,d) train by Cleveland, and (e,f) 

train by Hungary. 

Table 12. Train by open dataset and test on sample. 

Dataset for 

Training 

Testing 

Sample 
Algorithm 

Cloud Server  

Communication 

(sec) Time within 

Servers  

[A] 

Cryptography Time 

(sec) 

Algorithm 

Execution 

Time (sec) 

[D = B + C] 

FHE Protocol Total Time 

(sec)  

[E = A + D] 

M1 M2 M3 
Encryption 

[B] 

Decryption 

[C] 
P1 P2 P3 

V.A. 

Cleveland 

Linear  

Regression 
0.95 1.24 1.30 0.0097 0.0007 9.45 10.4 10.69 10.75 

SVC 0.95 1.24 1.30 0.0095 0.0007 9.29 10.24 10.53 10.59 

XGBoost 0.95 1.24 1.30 0.0056 0.0014 18.79 19.74 20.03 20.09 

Decision 

Tree 
0.95 1.24 1.30 0.0055 0.0007 3.28 4.23 4.52 4.58 

Hungary 

Linear  

Regression 
0.95 1.24 1.30 0.0095 0.0007 9.36 10.31 10.6 10.66 

SVC 0.95 1.24 1.30 0.0097 0.0007 9.28 10.23 10.52 10.58 

XGBoost 0.95 1.24 1.30 0.0056 0.0014 18.75 19.7 19.99 20.05 

Decision 

Tree 
0.95 1.24 1.30 0.0054 0.0007 3.28 4.23 4.52 4.58 

Cleveland V.A. 

Linear  

Regression 
0.95 1.24 1.30 0.098 0.0007 9.37 10.32 10.61 10.67 

SVC 0.95 1.24 1.30 0.0105 0.0007 9.30 10.25 10.54 10.6 
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XGBoost 0.95 1.24 1.30 0.0056 0.0015 22.42 23.37 23.66 23.72 

Decision 

Tree 
0.95 1.24 1.30 0.0059 0.0007 3.79 4.74 5.03 5.09 

Hungary 

Linear  

Regression 
0.95 1.24 1.30 0.0110 0.0007 9.30 10.25 10.54 10.6 

SVC 0.95 1.24 1.30 0.0097 0.0007 9.35 10.3 10.59 10.65 

XGBoost 0.95 1.24 1.30 0.0061 0.0014 22.54 23.49 23.78 23.84 

Decision 

Tree 
0.95 1.24 1.30 0.0054 0.0007 3.82 4.77 5.06 5.12 

Hungary 

Cleveland 

Linear  

Regression 
0.95 1.24 1.30 0.0098 0.0007 9.52 10.47 10.76 10.82 

SVC 0.95 1.24 1.30 0.0095 0.0007 11.54 12.49 12.78 12.84 

XGBoost 0.95 1.24 1.30 0.0054 0.0015 22.31 23.26 23.55 23.61 

Decision 

Tree 
0.95 1.24 1.30 0.0056 0.0007 3.58 4.53 4.82 4.88 

V.A. 

Linear Re-

gression 
0.95 1.24 1.30 0.0110 0.0006 9.40 10.35 10.64 10.7 

SVC 0.95 1.24 1.30 0.0097 0.0007 11.57 12.52 12.81 12.87 

XGBoost 0.95 1.24 1.30 0.0060 0.0014 21.83 22.78 23.07 23.13 

Decision 

Tree 
0.95 1.24 1.30 0.0054 0.0007 3.58 4.53 4.82 4.88 

Bold value: Best protocol time, M1: Mode 1, M2: Mode 2, M3: Mode 3, P1: Protocol 1, P2: Protocol 

2, and P3: Protocol 3. 

The final FHE protocol is implemented on the AWS cloud network. First, the prime 

server is trained by the V.A. dataset and the test samples are taken from the Cleveland 

and Hungary datasets as shown in the Figure 8a,b. The Figure 8c,d show that the XGB 

requires the highest time for the FHE protocol followed by the SVC and LR which require 

a similar time and the least time by the DT. Similarly, when the cloud servers are trained 

by the Cleveland dataset, the similar pa�ern is again observed in the FHE protocols with 

different algorithms having XGB as the highest time requirements followed by the similar 

time of LR and SVC and lowest time requirement by the DT. 

In the case of training cloud prime servers by Hungary, as shown in Figure 8c,d, XGB 

again requires the highest and DT the lowest time respectively. Whereas, the SVC needs 

more time for the execution than the LR. Overall, depending on the accuracy and time 

requirement, the user can choose appropriate se�ings for the training dataset. 

The above Table 13 shows the benchmark comparison details of the multiple FHE 

protocol evaluations. In an outsourced multi-party k-means clustering scheme [8], multi-

ple distinct secured keys are utilized for the protocol. This scheme proposes minimum, 

comparison, secure squared Euclidean, and average operations in the protocol with serv-

ers having time greater than or equal to five seconds. The multi-key homomorphic en-

cryption (MKFHE) [26] uses the TFHE scheme with the CCS19 algorithm implemented in 

the cloud protocol. The MKFHE uses circuit optimization with three multi-party node 

protocols having preprocessing, intersection, set difference, and TH intersection for a min-

imum time of 5.16 s. In the case of privacy preservation in multi-layer perceptron (PFMLP) 

protocol [27], the improved paillier federated protocol is used that has multiple hidden 

layers containing multiple units with the embedded homomorphic operation. The system 

involves a key management center and computing server with multiple clients requiring 

at least 7.92 s to complete the protocol process. Federated learning has provided a key 

advantage to utilizing the network for healthcare applications [35–37]. Ultimately, it has 

been observed that even though the nodes involved by the benchmarking algorithms are 

quite similar in range to each other, the minimum processing time of 4.23 s with FHE and 



Sensors 2023, 23, 8504 24 of 32 
 

 

multiple open heart disease datasets trained evaluation are achieved by our AUTOPRO-

RHC protocol. 

Table 13. Benchmark Comparison for the AutoPro-RHC. 

FHE Protocol Scheme Algorithm Model Parameters 
Time  

(Seconds) 

Outsourced Multi-party K-

means Clustering [8] 
Advanced k-means clustering scheme. Distance = 2, 3, and 4 ≥5 

Multi-Key Homomorphic En-

cryption [26] 

LWE and RLWE of Tours FHE (TFHE) 

and CCS19. 
Multi-Party Nodes = 3 5.16 

Privacy Preserving in Machine 

Learning with HE [27] 

Improved Paillier federated multi-

layer perceptron algorithm 
Nodes = 1, 2 and 4. 7.92 

AutoPro-RHC 
Concrete-ML with TFHE in the Feder-

ated Protocol 
Multi-Party Nodes = 4 4.23 

Bold value: Best protocol time. 

4. Detail Discussion for the AutoPro-RHC Implementation 

a. Device Availability: A hospital association with at least five to seven branches should 

form a contract with the wearable sensor’s device manufacturing company. Heart-

affected patients staying in the remote areas should be prioritized for the device as-

signment and are supposed to return it after successful treatment. The AutoPro-RHC 

will be pre-installed before the device allotment and initiated immediately after the 

deployment. In the future, AutoPro-RHC can be upgraded to be easily installed on 

mobile devices with a�ached sensors for ease of usage; 

b. Data Consent and Usage: After the remote patient is diagnosed with the heart dis-

ease, the data consent form is recommended to be submi�ed for accepting the device 

agreement. Data can be optionally donated by de-identification for the hospital’s FHE 

model training purpose and storage. The contribution of data makes a significant 

difference to the scientific/medical field for the future treatment improvement pur-

pose; 

c. Frequency of the Data Collection: Based on the patient’s location and severity type, 

the data can be uploaded on specific intervals. Continuous data recording is not easy 

to process so in such cases, an average/peak value over an interval of 10/20/30 min 

can be shared. In case of multi-disease category, special a�ention can be given by 

having a continuous monitoring device with emergency calling/tracking by consent; 

d. Technical Device Issues: A vendor-based maintenance system should be present to 

solve the device issues in case of malfunctioning or damage. Hospital-based moni-

toring and calling should not be responsible due to the limited resources. Effective 

strategy by the vendors can help to handle such problems and should be resolved on 

priority. Some backup sensor parts or ba�eries can be provided to avoid the last hour 

of rushing in case of an emergency situation; 

e. Future Trends and Opportunities: A mobile device can be used to collect the sensor 

reading, encrypt it, and share it with the AutoPro-RHC which will be more conven-

ient. Developing a mobile application to use AutoPro-RHC will enable it to be more 

portable to use, carried comfortably, and charged with a regular routine. Even 

though the mobile application will make it more portable to use, the mobile device 

security must also be taken into consideration. Another opportunity is present in 

multiple disease diagnoses by a single device,where the patient affected with heart 

disease, diabetes, hypertension, etc., must be able to use a single portable device and 

obtain health reports weekly. 
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5. Conclusions 

Heart diseases are known to be the most life-threatening condition affecting the hu-

man population. The FHE-based RHM provides a secure and effective model that pro-

vides services to the remote affected patient. The FHE model presented in this research 

implements a concrete-ML library within the cloud network. The prediction given by the 

concrete-ML is trained by using multiple open heart disease datasets. Preprocessing ap-

plied on the initial training data is to recover the missing and incomplete data and class 

weights are assigned. The AWS cloud FHE protocol demonstrated from this work pro-

vides the prediction from a different prime server that is grouped and reported to the 

patient and registered hospital. Priority schedulers help to identify the best time for the 

patients based on their respective conditions. Successively, the results are evaluated by 

the medical examiner only after the patient provides consent for results analysis. The FHE 

results show that the highest accuracy is achieved by support vector classification (SVC) 

of 88% and linear regression (LR) of 86% with the AUC of 91% and 90%, respectively. 

Ultimately, the best time achieved by the FHE protocol is around 4.23 s by the decision 

tree algorithm on the AWS cloud network. The future work will focus on utilizing the 

smart wearable device to analyze multiple vital signs for analyzing multiple disease-af-

fected patients based on trustworthy computing. A mobile device or smartwatch can be 

used without the need to carry other sensor devices; receiving complete healthcare anal-

ysis is a necessity for this era. 
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Appendix A 

 
(a) 

 
(b) 

 
(c) 

Figure A1. Concrete-ML based linear regression algorithm evaluation for (a) Cleveland, (b) Hun-

gary, and (c) VA. 
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(c) 

Figure A2. Concrete-ML based Support Vector Mechanism algorithm evaluation for (a) Cleveland, 

(b) Hungary, and (c) VA. 

The above Figure A1 shows the evaluation of Concrete-ML with the linear regression 

algorithm for the different open heart disease datasets with (a) Cleveland, (b) Hungary, 

and (c) VA. It can be noticed that the evaluation is quite moderate. In the case of Figure 

A2, the evaluation of concrete-ML with the SVM algorithm for different datasets isbe�er 

than the linear regression evaluation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure A3. Concrete-ML based XGB algorithm evaluation for training by (a–c) Cleveland, (d–f) Hun-

gary, and (g–i) VA. 
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(a) 

 
(b) 

 
(c) 

Figure A4. Concrete-ML based decision tree algorithm evaluation for (a) Cleveland, (b) Hungary, 

and (c) V.A. 

Successively, Figure A3, detailing Concrete-ML based evaluation of XGB for different 

combinations of open datasets, is presented. It can be noted that, even though the system 

time requirements are drastically increased amongst the algorithms experimentation, the 

accuracy and average show improvements in two thirds of the cases. 

Therefore, the use of Concrete-ML based XGBoost is recommended only when the 

workstation configuration is higher and the dataset is performing significantly in metrics 

as compared to the other open datasets. Ultimately, Figure A4 stating the evaluation of 

the Concrete-ML based decision tree algorithm with the respective dataset shows the best 

time achieved, as compared to the algorithms, while having a decent accuracy in compar-

ison. Thus, systems with minimal configurations or requiring the best time and nearby 

best evaluation metrics can select decision tree algorithms in this context. 

Appendix B 

Table A1. References for the FHE literature survey. 

Homomorphic Encryp-

tion Type 

Somewhat Homomorphic Encryption [11], 

Partial Homomorphic Encryption [27],  

Fully Homomorphic Encryption [12,21–23,27–29], and Enhanced Homomorphic Encryption 

[30]. 

AI Algorithm Integra-

tion 

Fast Matrix Multiplication [13], 

Convolutional/Deep Neural Network [23,24], 

Augmented Ensemble Learning [18], 

Genetic Algorithm [12], 

Gated Recurrent Unit [16], and 

Decision Tree [15]. 

Communication Protocol 

Multi-Party Computation [14,16,19,25,28],  

Client-Server Model [14,17], 

ETL Process for Database [20], 

Multi-Key Homomorphic Encryption [25,26], 

Federated Learning [27], and 

Multi-Tenancy Environment [30]. 

Key Distribution 
Dynamic Key [11], Token [30], Private [30], Hybrid [30], and  

Public [20,21,30]. 

Applications 

Smart Health for EHR Data [11], 

Heart Disease/Cardiac Health [13],  

COVID-19 Detection [19],  

Spam Filtering [18],  

Genomic Data for Disease Detection [17], and Cancer Detection [12,16].  
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1. Table A1 presents the reference linking with Figure 1 which is explained in the litera-

ture survey section; 

2. Literature analysis for the recent references (2023) for the security in healthcare: 

Monitoring of remote patients using artificial intelligence (AI) with the recent pro-

gress, challenges, and applications is presented by T. Shaik et al. [38]. This work discusses 

the importance of utilizing IoT wearable devices and AI for the patient’s regular physical 

activities for chronic conditions monitoring. The challenges are mostly discussed in terms 

of data privacy, dataset pre-processing, AI/ML processing, and decision making. Cardio-

vascular disease assessment by deep learning-based IoT smart health is demonstrated by 

D. Zhang et al. [39]. This work uses hemodynamic parameters for the detailed study of 

cardiovascular disease challenges, with a novel simulation strategy for analyzing pressure 

and velocity in the coronary vessel structure. Here, the explainable feature prediction is 

provided by the deep learning IoT model. A remote healthcare model for cardiovascular 

patients is presented by TP Armand et al. [40]. This study focuses on the Cameroonian 

population, deprived of healthcare services by applying the framework of Gothelf and 

Seiden on the ECG, body posture, and some vital signs. Objectives here mostly concern 

the emergency services for the affected patients and reporting to the remote hospital. 

Blood pressure control during the COVID-19 pandemic for remote cardiovascular hyper-

tension is presented by SG Lee et al. [41]. The disruption of the healthcare services create 

side effects on cardio patients with low blood pressure; the impact analysis as well as a 

statistical review are given in this work. It is one of the challenges to handle remote pro-

grams during such conditions and provide emergency services with limited medical ex-

aminers. Remote patient monitoring by secure IoT sensors is presented by B. Kapoor et al. 

[42]. A Ciphertext Key 2 Policy (CK2P) with a clustering technique is used to find the fit-

ness evaluation and a simulation of 200 nodes is shown for the evaluation. The focus is to 

assess the node’s location, throughput, and energy consumption analysis. 

Remote monitoring using healthcare wearable devices is presented by Yue L. et al. 

[43]. Multidisciplinary care is discussed as the symptoms of major diseases are difficult to 

reproduce and real-time collection of the data is challenging. Also, the multidisciplinary 

teams to manage clinical data from branded wearable devices with activity, volume, stor-

age, cost of care, and analysis is emphasized. Big data analytics applied in real-time 

healthcare for disease prediction is demonstrated by M. Safa et al. [44]. A big data analysis 

is performed on the large data of body temperature, blood sugar, and blood pressure; 

where a pulse oximeter collects data via a wearable device, which uses trusted forwarding 

and carrier weight for route selection. Whereas, the data are processed using class simi-

larity metrics and disease prone weights for the final prediction; 

3. Scaling in Auto-RHC: 

The AutoPro-RHC protocol scaling in real-world healthcare is given in Section 2 

Methodology which states that the patients’ encrypted data are processed by the FHE 

algorithm on the prime server in step 1 and 2 and the results suggesting the final output 

as a prediction value re returned back to the patient in step 3. Therefore, as the patient 

possess his private keys, he does not need to perform homomorphic decryption: only a 

normal public-key based decryption which takes fraction of seconds on a mobile device 

is needed. The result values predicted by three different prime servers are then shared 

with medical examiners in step 6. Successively, the medical examiner performs the results 

average for returning the final outcome as a normal, moderate, or severe heart report to 

the patient in step 7 and 8; 

4. AutoPro-RHC Security Analysis. 

I. Active Attacks: 

a. Spoofing: Authentication of the malicious intruder (� ) will be unsuccessful as his 
registration in the hospital as a patient will be unavailable. Therefore, the intruder will 
be unable to access the prime server legitimately. 
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� →  ��������������(������(�����������[�])); 

b. Fabrication: Routing of the message from different servers will be useless as the public 
key will be invalid at different local hospitals. Therefore, the request message for the 
prime server will not be delivered successfully for the AutoPro job scheduling in the 
successive step; 

c. Modification: Even though the malicious user ( � ) modifies the data packet, the 
successive process for the authentication by the local server will be treated as an invalid 
request. As the sensor’s data will not be identified by the AutoPro job scheduler, it 
cannot be processed further; 

d. Sinkhole: A specific modification in the test data can change the scheduling mode of the 
AutoPro job scheduler but the message authentication and response to the hospital 
needed for the request will be invalid. Thus, it would be inefficient to apply this attack 
type. 

II. Passive Attacks: 

a. Monitoring: The communication between different systems and the network 
performance can be possibly monitored. Passive monitoring would not be useful to 
know the encrypted patient’s identity details, his encrypted sensor’s data values, or 
evaluation for the respective patient due to AutoPro job scheduling; 

b. Traffic Analysis: The intruder can identify the network path and multiple network 
entities involved within the protocol. Thus, it is possible to map the network 
communication but the encrypted message will be useless until the correct decryption 
method and its data are available; 

c. Man-in-the-Middle: In this attack type, a random message is captured and the 
interceptor attempts to read it but, due to the encrypted data within the message, it will 
be encoded text. Later, as the encrypted data will be shared with different prime servers 
by the job scheduler, it will be challenging to track all the responsive packets for the final 
results. 

III. Advance Attacks: 

a. Replay: The intruder captures the packet within the communication network and then 
applies it in a loop to a multiple system in the expectation of some useful outcome. Such 
a process will be evaluated as an invalid operation and will be discarded. Therefore, 
replay attack without a valid public key, authentication, or scheduling will not be useful 
in the AutoPro-RHC; 

b. Blackhole: In the case of a network switch getting abrupted/crashed, the prime server 
restarts the last request. In the similar case, if the messages are delayed the AutoPro 
reinitiates the job scheduling request for the process and completes it by an evaluated 
response; 

c. Location Disclosure: Considering the local hospital server, the network address can be 
stored but it will be challenging to locate the AWS cloud prime servers. Thus, in the case 
of an organized attack on the network entities, the cloud prime server will be unknown 
and the AutoPro Job scheduler exchange of messages between the prime servers will be 
completely confidential due to privacy and high cloud data traffic. Hence, location 
disclosure will be an incomplete attack; 

d. Rushing: In this hybrid type of attack where a message is replayed by modifying it 
multiple times, a huge fake message traffic in the local hospital network can be created. 
The replay of the same messages will be discarded by the cloud server and modification 
will make the public key invalid. Therefore, rushing can be partially applicable but 
would not succeed in disturbing the AutoPro-RHC communications. 

5. The Limitations of AutoPro-RHC: 
(a) A necessity for high configuration cloud systems for possessing optimal pro-

cessing time for a faster response; 

(b) Continuous availability of the remote device for effective monitoring. 
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