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Abstract: As globalization accelerates, the linguistic diversity and semantic complexity of in‑vehicle
communication is increasing. In order to meet the needs of different language speakers, this paper
proposes an interactive attention‑based contrastive learning framework (IABCL) for the field of in‑
vehicle dialogue, aiming to effectively enhance cross‑lingual natural language understanding (NLU).
The proposed framework aims to address the challenges of cross‑lingual interaction in in‑vehicle di‑
alogue systems and provide an effective solution. IABCL is based on a contrastive learning and
attention mechanism. First, contrastive learning is applied in the encoder stage. Positive and nega‑
tive samples are used to allow themodel to learn different linguistic expressions of similar meanings.
Its main role is to improve the cross‑lingual learning ability of themodel. Second, the attentionmech‑
anism is applied in the decoder stage. By articulating slots and intents with each other, it allows the
model to learn the relationship between the two, thus improving the ability of natural language un‑
derstanding in languages of the same language family. In addition, this paper constructed amultilin‑
gual in‑vehicle dialogue (MIvD) dataset for experimental evaluation to demonstrate the effectiveness
and accuracy of the IABCL framework in cross‑lingual dialogue. With the framework studied in this
paper, IABCL improves by 2.42% in intent, 1.43% in slot, and 2.67% in overall when compared with
the latest model.

Keywords: interactive framework; in‑vehicle dialogue; contrastive learning; attention mechanism;
cross‑lingual

1. Introduction
The intelligent development of in‑vehicle dialogue systems is one of the main goals

to improve the functional convenience and driving safety of automobile cockpits [1–5].
Natural language understanding (NLU) is crucial for the implementation of voice control
functions in in‑vehicle dialogue systems, which mainly consists of two tasks: intent detec‑
tion and slot filling. Intent detection means that when the user inputs a command to the
dialogue systems, the computer determines whether the question is to turn on the air con‑
ditioner, listen to music, query the navigation location, etc. Slot filling is to determine the
specific content of the intent based on the intent detection. For example, if the user inputs
a navigation command to ‘go to the airport’, the dialogue system first determines that the
intent of this sentence is to navigate, and the specific navigation location is the airport.

Since 2019, with the development of pretrained models in the field of natural lan‑
guage processing (NLP) and the improvement of representation capabilities, researchers
have proposed a variety of joint‑training frameworks [6–13] based on pretrained models
to improve the ability of cross‑lingual NLU. These frameworks have been applied in the
industrial domain [6], cross‑lingual interactive chatbots [7], cross‑lingual e‑banking do‑
main [8], restaurant customer service domain [9], airline ticket purchasing customer ser‑
vice domain [10–13], and so on. These studies [6–13] show that the representation capabil‑
ity of pretrained models and the application of cross‑lingual transfer learning techniques
can play an important role in multilingual NLU in different domains.
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To summarize, researchers have carried out applied research on cross‑lingual NLU in
many fields, but so far, there is no research on cross‑lingualNLU tasks of a dialogue system
in the field of in‑vehicle dialogue. According to market research, the existing cross‑lingual
NLU in the vehicle field mainly adopts the rule‑based method [14]. However, with the
addition of some new knowledge and new terms, the rule‑based method needs to spend a
lot of manpower and material resources to adjust. In addition, there are currently private
datasets in the field of in‑vehicle dialogue, so it is necessary to build a dataset for an in‑
vehicle dialogue system, which can be shared and used by other researchers to promote
the development of an in‑vehicle dialogue system.

This paper focuses on the in‑vehicle domain, attaining multilingual NLU and provid‑
ing a set of datasets for multilingual in‑vehicle dialogue. The contributions of this paper
are mainly as follows:
(1) This paper provided a set of datasets of NLU tasks of an in‑vehicle dialogue system

under cross‑lingual scenarios, including Chinese, Arabic, Japanese, and English. The
intent and slots of the datasets are annotated according to the annotation specification
of the currently published MultiATIS++ [10] dataset.

(2) It proposed a cross‑lingual interactive framework for in‑vehicle human–computer di‑
alog systems. The framework employs an end‑to‑end architecture for joint modeling,
using pretrained models and incorporating contrastive learning to communicate the
relationship between intent recognition and slot filling tasks through interactive at‑
tention mechanisms in downstream tasks.

(3) It validated an IABCL framework on self‑built MIvD datasets and public datasets.
To the best of our knowledge, this is the first time to evaluate the model work on
the joint task of intent detection and slot filling in in‑vehicle dialogue systems. The
experimental results show that the attention‑based interactive framework achieves
remarkable results in cross‑lingual intent detection and slot filling.

2. Related Work on Cross‑Lingual NLU
2.1. In‑Vehicle Dialogue NLU

Under the impetus of economic globalization, the number of automobile users has
been growing gradually and the languages they use are different, so it is an urgent problem
for NLU in the automobile field to correctly identify the intent detection and slot filling of
the user’s expressions in cross‑lingual environments.

This paper investigates cross‑lingual NLU tasks in other domains. For example, in
the industrial domain, in order to perform multilingual intent classification under low re‑
sources, Khalil et al. [6] constructed an industrial intent dataset and explored different
methods formultilingual intent detection in industrial environments. The presentedmeth‑
ods [6] verified that the source language can be well migrated to the target language based
on the machine translation model and the multilingual pretraining model. In 2020, in the
cross‑lingual interactive chatbot domain, in order to better utilize cross‑lingual transfer
learning techniques to improve the accuracy of chatbots in multilingual prediction, espe‑
cially for the COVID‑19‑related problem, Arora et al. [7] proposed a joint model that is
structured for simultaneous intent detection and slot filling, and compared the effective‑
ness of different pretrained models in the cross‑lingual transfer learning task. In addition,
the authors provide a multilingual dataset, M‑CID, containing English, Spanish, French,
and German. In 2021, Daniela et al. [8] combined machine translation with a pretrained
model for an intent detection task in the e‑banking domain and obtained excellent results,
and this article also contributed a new data resource called MIN DS‑14. In the restaurant
customer service domain, in order to reduce the cost of cross‑lingual NLU, Liu et al. [9]
proposed an attention‑informed mixed‑language training method. This mixed language
training method uses a very small number of task‑related parallel word pairs to generate
sentences in a hybrid language. It outperforms the then zero‑sample adaptation methods
in dialogue state tracking and natural language understanding, and is less costly. In the
field of ticketing customer service in the aircraft aviation domain, Xu et al. [10] proposed a
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new end‑to‑end model in order to address slot alignment and recognition in cross‑lingual
migration, which outperforms the traditional simple tag mappingmethod using fast‑align
on most languages, and the authors also released a new multilingual NLU dataset, Multi‑
ATIS++. Jack et al. [11], in the field of aircraft aviation, described a new multilingual NLU
task that simultaneously translates input text, outputs text with slots, categorizes intents,
recognizes the input language, and improves on the MultiATIS++ dataset using the multi‑
lingual BARTmodel. In the same area, in 2020, Qin et al. [12] proposed a new approach to
improve the language neutrality of Transformer‑based language models (e.g., mBERT) by
switching data through multilingual codes for fine‑tuning downstream NLU tasks. Com‑
pared with machine translation, multilingual code switching allows for multilingual text
characterization at a finer granularity, such as the sentence, phrase, or word level, while
the authors released a new manually annotated tweet dataset for intent detection and slot
filling in English and Haitian. In 2022, to address the problem of sequential alignment be‑
tween multilingual transitions in the field of aircraft aviation, Qin et al. [13] proposed a
contrastive learning framework. The framework achieves excellent performance on ticket‑
ing customer service in the aviation domain and successfully brings the representations of
cross‑lingual similar sentences closer together.

2.2. Cross‑Lingual Transfer Learning
In the field of single‑language dialogue system, NLU based on deep learning has

achieved remarkable results [15]. However, in the field of multilingualism, especially in
low‑resource languages, the lack of a large amount of training data makes the model of in‑
tent detection and slot filling not better aligned between different languages, so its recogni‑
tion effect in the cross‑lingual domain is not significant. In recent years, some researchers
have adopted the concept of transfer learning to train NLU models in resource‑rich lan‑
guages, such as English and Chinese, and adopted cross‑lingual transfer learning strate‑
gies to apply them to other low‑resource languages [16].

Cross‑lingual transfer learning is amachine learning technique that allows knowledge
learned in one language to be applied to another. The basic idea is to transfer the knowl‑
edge of the language model of one or more source languages into the language model of
the target language [17]. There are two main approaches to cross‑lingual transfer learning:
one based on machine translation and the other based on a multilanguage model. The
approach based on machine translation is to translate resource‑rich data into a resource‑
poor target language and then train themodel of the target language. For example, in 2010,
Lefevre et al. [18] proposed amethod to complete the intent detection task in the target lan‑
guage throughmachine translation given the source language and its semantic annotations.
In 2017, Adams et al. [19] proposed a method using cross‑lingual word vectors to solve the
natural language processing problem of low‑resource languages. It uses bilingual dictio‑
naries to linkmonolingual corpora of two different languages to learnword embeddings in
both languages in a common vector space, thereby helping to solve problems such as data
scarcity and lack of labeled data in low‑resource languages, improving the performance
of natural language processing tasks. Andrew et al. [20] proposed a method of MOM
(mixed orthographic mapping) to overcome the spelling differences between English and
Japanese and realize the application of cross‑lingual transfer learning in Japanese‑named
entity recognition. Another approach based on multilingual models is usually taking a
pretrained model with some modifications and fine‑tuning. In 2020, Qin et al. [12] pro‑
posed a multilingual code‑switching data enhancement framework to fine‑tune mBERT
to align the representation of the source language and multiple target languages, improv‑
ing the performance of cross‑lingual NLU tasks. Qin et al. [13] proposed to use contrast
learning to narrow the representation of cross‑lingual similar sentences in mBERT to solve
the word order alignment problem between multilanguage code transitions and achieved
outstanding performance.
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2.3. Joint Learning Frameworks for Intent Detection and Slot Filling
Joint learning of intent detection and slot filling is the mainstream model training

method in the field of NLU at present. Parallel architecture is the earliest joint training
method, which treats the two tasks as parallel subtasks instead of serial ones when pro‑
cessing intent detection and slot filling. Li et al. [21] constructed a parallel architecture of
intent detection and slot filling. The architecture adopted bidirectional LSTM as the em‑
bedding layer, introduced attention‑based classifiers for intent detection, andmodeled slot
fillingwith a conditional randomfield (CRF). Schuster et al. [22] used a self‑attentional clas‑
sifier as intent detection in the decoding layer, filled the CRFmodeling slot, and compared
somemultilanguagemodels in the encoder. The advantage of a parallel architecture is that
both intent detection and slot filling can be performed simultaneously, thus improving the
efficiency and performance of the model. However, the disadvantage is that it ignores the
strong correlation between the two tasks, and cannot supervise each other in the process
of transfer learning, so the overall accuracy of the model is affected.

Aiming at the bidirectional interaction between intent and slot, Zhang et al. [23] pro‑
posed a dual‑model architecture in 2016 to consider the cross‑impact between intent and
slot by using two related bidirectional LSTMS. Wang et al. [24] proposed to share parame‑
ters of RNN (Joint ID and SF) to learn the correlation between intent and slot. Compared
with parallel architecture, the results of both intent detection and slot filling can be signif‑
icantly improved with the same number of parameters. Liu et al. [25] then introduced a
shared encoder–decoder framework with an attention mechanism, and introduced atten‑
tion mechanisms into RNN models that provide additional information for intent classifi‑
cation and slot filling. Compared with shared RNN parameters, the bidirectional interac‑
tion for intent detection and slot filling has improved the results. In 2019, Chen et al. [26]
proposed a BERT‑based joint intent classification and slot filling model, which uses a uni‑
versal large‑scale language to represent the model BERT compared with the RNN model,
reducing the training time. In 2021, Zhou et al. [27] introduced a new parallel interaction
network (PIN) in which the interaction between intent detection (ID) and slot filling (SF)
tasks is divided into two phases: an implicit interaction phase and an explicit interaction
phase. In the implicit interaction phase, ID and SF tasks transmit information through the
bidirectional recurrent neural network, and in the explicit interaction phase, ID and SF
tasks fuse information through a collaborative mechanism. This interaction achieved the
most advanced results at the time. In 2021, Qin et al. [28] used a co‑interactive module
to establish a bidirectional connection between two tasks. This module allows slots and
intents to pay attention to each other’s information, to better capture the cross‑influence
between the two tasks, and this interaction is evaluated and improved on ATIS and SNIPS.
In 2022, Qin et al. [12] added the correlation between the learning intents and slots of three
contrast learning modules by introducing the contrastive learning framework. The results
of cross‑lingual intent detection and slot filling have been significantly increased on the
MultiATIS++ dataset. It is therefore promising to consider the interaction between these
two tasks.

To sum up, strategies based onmultilanguage models are commonly used in the field
of cross‑lingual transfer learning. The advantages of such strategies are that they can re‑
duce training costs, improve efficiency, and enhance generalization ability. In addition, the
bidirectional interactive framework is often used in the joint learning framework, which
can make the model capture more shared knowledge between tasks, thus improving the
performance of both tasks. Second, the bidirectional interactive framework helps to im‑
prove the interpretation ability of themodel, making it easier to analyze the effects between
slots and intents.

Therefore, this paper will adopt the strategy of a multilanguage model and propose
an attention‑based bidirectional interactive framework based on a bidirectional interactive
framework to realize cross‑lingual intent detection and slot filling in the field of
in‑vehicle dialogue.
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3. Modeling Framework
The proposed overall framework shown in Figure 1 has two parts: the encoder based

on contrastive learning and the decoder based on interactive attention. The encoder is
mainly responsible for converting text characters into embedded vectors for deep learning
and projecting the vectors onto a high‑dimensional plane. Contrastive learning can help
models learn discrimination feature representations. By comparing the source statement
with the positive and negative samples, the model learns the feature representation that
can accurately distinguish the positive and negative samples. The positive and negative
samples in this paper are multilingual text representations with the same semantics and
different semantics as the source text, respectively. Therefore, the encoder based on con‑
trast learning uses high‑dimensional embedded vectors to carry out standardized multi‑
language learning through self‑supervised means, which enables the encoder to integrate
more language information in the coding stage and increase the cross‑lingual ability of
the model. The decoder based on interactive attention uses the characteristics of coding
to generalize intent detection and slot filling. In this process, these features are extracted
and used for learning, while interactive attention is used for two‑way interaction between
intent detection and slot filling.
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3.1. Contrastive‑Learning‑Based Encoder
An encoder converts an input sequence into a fixed‑length embedding, such as a piece

of text. This embedding is called a “context vector” or “encode vector”. The code vector
contains information about the input sequence and acts as the input to the decoder to help
it generate the output sequence.

Contrastive learning (CL) is a machine learning method that learns differences by
comparing positive and negative samples. Contrastive learning helps NLP models learn
meaningful representations of text data. The model learns to capture semantic and con‑
textual information by contrasting positive and negative samples, enabling better under‑
standing of word meanings, sentence structures, and overall language semantics. It has
been widely used in computer vision, natural language processing, and other fields, and
performs well [29].

As shown in Figure 2, themodelmainly consists of amultilanguage pretrainingmodel
and a contrastive learning module. The multilanguage pretraining model is pretrained
based on various texts, which can bemBERT, XLM‑R, and othermodels. Contrastive learn‑
ing modules include a sentence‑level intent CL module, word‑level slot CL module, and
semantic level intent‑slot CL module. The sentence‑level intent CL module is used to dis‑



Sensors 2023, 23, 8501 6 of 16

tinguish the intents of texts in different languages with the same semantics; the word‑level
slot CL module is used to distinguish the slots of words in different languages with the
same semantics; and semantic‑level intent‑slot CL module is used to learn the correlation
between intent slots.

Sensors 2023, 23, x FOR PEER REVIEW  6  of  16 
 

 

As  shown  in Figure  2,  the model mainly  consists of  a multilanguage pretraining 

model and a contrastive learning module. The multilanguage pretraining model is pre-

trained based on various texts, which can be mBERT, XLM-R, and other models. Contras-

tive learning modules include a sentence-level intent CL module, word-level slot CL mod-

ule, and  semantic  level  intent-slot CL module. The sentence-level  intent CL module  is 

used to distinguish the intents of texts in different languages with the same semantics; the 

word-level slot CL module is used to distinguish the slots of words in different languages 

with the same semantics; and semantic-level  intent-slot CL module is used to learn the 

correlation between intent slots. 

 

Figure 2. Contrastive-learning-based encoder. 

The contrastive learning adopted in this paper is to take the new sentence expression 

obtained from the translation of the words in the source sentence as the positive sample 

and the expression with different meanings as the negative sample. 

3.1.1. Positive Sample 

A positive sample is a multilingual statement with the same semantics. First, given a 

source statement   1 2 3  , , , , nX x x x x  , a positive sample   1 2 3  , , , , nX x x x x       is gen-

erated by a bilingual dictionary. Specifically, a positive sample is obtained by randomly 

selecting each word  1x   in  X   and replacing  1x  with a translation improved by a bilin-

gual dictionary. For example, given the English source statement watch football match, 

the positive sample is 看  (zh/watch) サッカー  (ja/football) Спички (es/match). 

3.1.2. Negative Sample 

A negative sample is very different from a positive sample. A source statement gener-

ally generates only one positive sample statement, but a negative sample is a collection of 

statements. The negative sample set is generated in such a way that the coding samples of 

previous batches will be reused, thus eliminating unnecessary negative coding processes. 

The whole encoder process: First of all, the source utterance  X   carries out multilan-

guage code switch data to obtain   X    and   X  , and then input to the mBERT encoder to 

obtain the representation  H ,  H  ,  H  . 

   

Figure 2. Contrastive‑learning‑based encoder.

The contrastive learning adopted in this paper is to take the new sentence expression
obtained from the translation of the words in the source sentence as the positive sample
and the expression with different meanings as the negative sample.

3.1.1. Positive Sample
A positive sample is a multilingual statement with the same semantics. First, given a

source statement X =
{

x1, x2, x3, . . . , xn
}
, a positive sample X+ =

{
x+1 , x+2 , x+3 , . . . , x+n

}
is

generated by a bilingual dictionary. Specifically, a positive sample is obtained by randomly
selecting each word x1 in X and replacing x1 with a translation improved by a bilingual
dictionary. For example, given the English source statement watch football match, the
positive sample is
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3.1.2. Negative Sample
A negative sample is very different from a positive sample. A source statement gener‑

ally generates only one positive sample statement, but a negative sample is a collection of
statements. The negative sample set is generated in such a way that the coding samples of
previous batches will be reused, thus eliminating unnecessary negative coding processes.

The whole encoder process: First of all, the source utterance X carries out multilan‑
guage code switch data to obtain X+ and X− , and then input to the mBERT encoder to
obtain the representation H, H+, H−.

3.1.3. Loss Function of Contrastive Learning
Three contrastive learning modules consisting of positive samples X+ , negative sam‑

ples X− , and source utterances X as inputs are the sentence‑level intent CL module, the
word‑level slot CLmodule, and the semantic‑level intent‑slot CL module.

1. Sentence‑level intent CL module for aligning sentence representations across
languages for intent detection.

Intent detection is a sentence‑level classification task. In the cross‑linguistic domain,
aligning sentence representations is an importantmeasure for the zero‑shot cross‑linguistic
intent detection task. Sentence alignment can explicitly encourage models to align similar



Sensors 2023, 23, 8501 7 of 16

sentence representations into the same space across languages for intent detection. Here
is the sentence‑level intent contrastive learning loss calculated for a sentence:

LUI = − log
s(hCLS, h+CLS)

s(hCLS, h+CLS) + s(hCLS, h−CLS)
(1)

2. Word‑level slot CL module for cross‑lingual alignment of slot representations for
slot filling.

Since slot filling is a word‑level task, cross‑lingual alignment of sentence representa‑
tions is used to help the model consider the alignment of slot filling for fine‑grained cross‑
lingual transfer. Here is the word‑level slot contrastive learning loss for the i‑th word:

Li
TS = −

n

∑
i=1

log
s(hi, h+i )

s(hi, h+i ) + s(hi, h−i )
/n (2)

3. Semantic‑level intent‑slot CL module for aligning representations between slots
and intents.

When slot and intent belong to the same object, they are usually highly semantically
related. Therefore, this paper argues that intents and their slots in sentences constitute a
positive correlation, while the corresponding slots in other sentences constitute a negative
correlation. Therefore, this paper further introduces semantic‑level intent‑slot CL loss to
model the semantic interaction between slots and intents, which may further improve the
cross‑linguistic transfer between them:

LSIS1 = −
n

∑
i=1

log
s(h+CLS, hi)

s(h+CLS, hi) +
K−1
∑

k=0
s(h−CLS, hi,k)

/n (3)

LSIS2 = −
n

∑
i=1

log
s(hCLS, h+i )

s(hCLS, h+i ) +
K−1
∑

k=0
s(hCLS, h−i,k)

/n (4)

LSIS = LSIS1 + LSIS2 (5)

whereLSIS1 andLSIS2 are the contrastive learning loss between the positive samples of the
intent vector and slot vector and the source utterance, respectively, and s(a, b) represents
the dot product of a and b.

3.2. Interactive‑Learning‑Based Decoder
In neural networks, decoders play a crucial role in various tasks that involve gener‑

ating output from abstract representations or latent features. Decoders are often paired
with encoders, which are responsible for converting input data into a compressed or ab‑
stract representation. The decoder’s role is to transform these representations back into
the desired output format.

The decoder stage adds an interactively learned multitask attention head to the fully
connected layer. Because of the high correlation between the intent detection and slot
filling tasks, the hidden state of the slot filling task is shared to the intent detection task
through the attention mechanism in the decoder phase, and the hidden state of the intent
detection task acts on the slot filling as well. Intention detection task and slot filling task
learn together and promote each other.

The intent detection attention head and slot filling attention head are computed based
on the output sequence of the pretrained model by calculating the attention computation
score, which is combined with the fully connected layer for different tasks to compute the
final state.
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1. Intent detection task attention head:

αI =
exp(hCLS)

exp(hCLS) + ∑n
i=1 exp(hi)

(6)

2. Slot filling task attention header:

αS
i =

exp(hi)

exp(hCLS) + ∑n
i=1 exp(hi)

(7)

The intent detection task is to put hCLS into the classification layer to find labels:

oI = so f tmax
(

W Ihout
CLS + αS

i hout
i + bI

)
(8)

There, W and b are the matrix of the parameter to be trained. In this paper, we jointly
fine‑tune all the parameters of mBERT and W by maximizing the logarithmic probability
of correct labeling.

For the sequence labeling task, this paper feeds the final hidden state of the model to
the softmax layer to classify the slots. In this paper, the hidden state corresponding to the
first sublabel is used as input to classify words:

oS = so f tmax
(

WS hout
i + αIhout

CLS + bS
)

, i = 1, 2, . . . n (9)

3.3. Multitask Learning
The loss function is to calculate the difference between the forward computed result

and the true value of each iteration of the neural network, to guide the next step of training
in the right direction. Its input is the network prediction and the real target value, and
then calculates a distance value, to measure the quality of the network output results. The
loss function consists of the loss of the contrastive learning module (LUI , Li

TS, LSIS) and
the loss of the multitasking (LI , LS), and the different structures of the loss function are
connected by the hyperparameter λ.

1. Loss of intent detection task:

LI ≜ −
nI

∑
i=1

ŷI
i log

(
oI

i

)
(10)

2. Loss of slot filling task:

LS ≜ −
n

∑
j=1

nS

∑
i=1

ŷi,S
j log

(
oi,S

j

)
(11)

The total loss function is a linear combination of the losses from the three comparison
learning modules and the two tasks:

L = λILI + λSLS + λLILLI + λLSLLS + λGISLGIS (12)

4. Experimental Setup
4.1. Experimental Data

In this paper, we conduct experiments on the public datasets MultiATIS++ and the
in‑vehicle dialogue datasets (MIvD) collected by our own constructed in‑vehicle dialogue
platform in the vehicle domain. MultiATIS++ contains nine languages, including English
(en), Spanish (es), Portuguese (pt), German (de), French (fr), Chinese (zh), Japanese (ja),
Hindi (hi), and Turkish (tr). The detailed item information corresponding to the datasets
is given in Table 1.
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Table 1. MultiATIS++ dataset.

Language
Utterances

Intent Types Slot Types
Train Dev Test

en 4488 490 893 18 84
es 4488 490 893 18 84
pt 4488 490 893 18 84
de 4488 490 893 18 84
fr 4488 490 893 18 84
zh 4488 490 893 18 84
ja 4488 490 893 18 84
hi 1440 160 893 17 75
tr 578 60 715 17 71

MIvD is collected by the onboard device and then manually redacted and annotated.
It includes annotations of intent and semantic slots in four main languages, namely, En‑
glish (en), Chinese (zh), Japanese (ja), and Arabic (ar). The details are summarized in the
following Table 2.

Table 2. MIvD dataset.

Language
Utterances Intent

Number Slot Number
Train Dev Test

zh 22,152 2770 2769 17 14
ja ‑ 392 392 17 14
en ‑ 501 500 17 14
ar ‑ 493 493 17 14

To describe the dataset inmore detail, this paper is carried out in Table 3 to show some
features of the dataset. Utterance is the instruction entered by the user, and increases the
robustness of the model; we have not removed the colloquial words. Intent types are the
intent labels of the input instructions, and slot values are the ranges of the attributes of the
intent labels, and some of the instructions’ slot values are empty.

Table 3. MIvD dataset description.

Language Utterance Intent Types Slot Values

zh 哎帮我把空调调一下19度 adjust_ac_temperture 19
ja 風量を九に adjust_ac_windspeed 九
en Open ac cooling mode open_ac_mode cooling
ar
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4.2. Evaluation Indicators and Baseline Model
4.2.1. Evaluation Indicators

In this paper, there are three evaluation indicators used in this paper: the Intent Ac‑
curacy for the intent detection task, slot F1 for the slot filling task, and the combined indi‑
cators overall accuracy for the two tasks. These evaluation indicators are also widely used
in other domains of NLU.

• Intent accuracy: Intent Accuracy is used to evaluate the performance of intent detec‑
tion by calculating the percentage of sentences that correctly predict the intent.

• Slot F1: The performance of slot filling is evaluated using the F1 score, which is the
average score of the reconciliation between accuracy and recall. Slot predictions are
considered correct when exact matches are found [30].
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• Overall accuracy: It calculates the proportion of sentences that correctly predict in‑
tents and slots. The indicator takes into account both intent detection and slot fill‑
ing [13].

4.2.2. Baseline Model
• CoSDA‑ML. Qin et al. [12] proposed a dynamic code‑switching method for randomly

performingmultilingualword‑level substitutions. For a fair comparison ofMIvD, this
paper uses Chinese training data and code‑switching data for fine‑tuning.

• Multilingual‑ZeroShot. Train a joint intent detection and slot filling model using En‑
glish and generalize to other languages by Jitin [31].

• GL‑CLEF is a global–local contrastive learning framework for display alignment pro‑
posed by Qin et al. [13].

• LAJ‑MCJ is a multilevel label‑aware contrastive learning framework for display align‑
ment that was proposed by Liang et al. [32].

4.3. Experimental Parameters
In this paper, we use themultilingualmBERTmodel. ThemBERTmodel has the same

architecture and training process as the BERT model, which has 12 transformer layers,
768 hidden states, and 12 attention heads. As shown in Table 4, the optimal hyperparame‑
ters are selected by comparing the combination of batch size and learning rate. The prob‑
ability of replacing a word in the contrastive learning module during training is 0.55. For
fine‑tuning, the maximum length of the sequence is 128, and the batch size is 32. The
optimizer chooses Adam with an initial learning rate of 5 × 10−6 and a dropout proba‑
bility of 0.1. The range of the learning rate is as follows: {2 × 10−7, 5 × 10−7, 1 × 10−6,
2 × 10−6, 5 × 10−6, 6 × 10−6, 5 × 10−5, 5 × 10−4}; batch size {4, 8, 16, 32}; the size of
negative samples chosen from {4, 8, 16, 32}, which are the weight parameters of sentence‑
level intent CL modules, word‑level slot CL modules, and semantic‑level intent‑slot CL
modules, respectively.

Table 4. Experiment‑related parameters.

Experimental Modules and Parameters Parameters and Module‑Specific Information

Pretrained models mBERT (12 transformer layers, 768 hidden
layers, and 12 attention heads)

Batch size 32
Learning rate 5 × 10−6

Probability of code switching 0.55
Maximum sequence length 128

Optimizer Adam
Dropout 0.1

Number of negative samples 16
λ1 0.01
λ2 0.005
λ3 0.01

Hardware labs are equipped with consumer‑grade RTX 3090, enterprise‑grade A40
general‑purpose AI servers, and enterprise‑grade high‑performance AI training server
A100, with the total GPU computing power FP64 ≥ 200 TFlops and FP32 ≥ 3.0 PFlops.
The software uses Linux‑based miniconda3 with pytorch1.12.1 + python3.7.

5. Result Analysis and Discussion
The IABCL framework proposed in this paper has attained superb results on both

MultiATIS++ and MIvD datasets, where the results are excellent on the MIvD dataset. To
evaluate the effectiveness of the IABCL‑based framework, this paper investigates the fol‑
lowing three questions.
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• RQ1: Does IABCL predict better results than other cross‑lingual migration models in
the MIvD dataset?

• RQ2: How well does IABCL work on public datasets?
• RQ3: What role do contrastive learning and interactive attention specifically play?

RQ1: Does IABCL predict better results than other cross‑lingual migration models in the
MIvD dataset?

To verify this problem, this paper conducts a comparative experiment for the IABCL
model on MIvD with other basic models, and the results of the experiment are shown in
Table 5.

Table 5. Performance comparison on MIvD.

Intent
Accuracy (%) ZH JA AR EN Avg

CoSDA‑ML
(2020) 96.24 60.71 60.32 60.33 69.40

Multilingual‑
ZeroShot
(2021)

96.78 61.22 30.22 31.60 54.95

GL‑CLEF
(2022) 97.32 72.19 61.86 54.4 71.44

IABCL 97.40 73.97 62.67 61.60 73.86

Slot F1 (%) ZH JA AR EN avg

CoSDA‑ML
(2020) 93.00 72.27 26.77 53.54 61.39

Multilingual‑
ZeroShot
(2021)

90.42 36.52 19.47 36.48 45.72

GL‑CLEF
(2022) 95.53 75.54 28.62 55.48 63.79

IABCL 95.72 79.68 30.54 56.15 65.22

Overall Acc
(%) ZH JA AR EN avg

CoSDA‑ML
(2020) 90.08 46.68 28.00 43.55 52.07

Multilingual‑
ZeroShot
(2021)

88.76 15.00 5.47 7.90 29.28

GL‑CLEF
(2022) 93.71 58.92 28.8 37.20 54.66

IABCL 94.07 60.45 28.89 46.4 57.33

For the experiments onMIvD, this paper usesmBERT. As shown in Table 5, this paper
compares the performance of four different models on different languages and metrics,
including intent accuracy, slot F1 value, and overall accuracy. Intent, slot, and overall
results have the same trend in different languages. As shown in Figure 3 (results of overall
accuracy), IABCL obtained optimal results on MIvD. Compared with other models, this
paper improves more significantly in Japanese and English. Because of the cost involved,
Multilingual‑ZeroShot needs to translate each dataset, and this experiment only translates
one‑third of the vocabulary comparable with other split‑word translations.
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Since IABCL and other baseline models are trained based on the Chinese language,
they have excellent performance in Chinese onboard datasets; e.g., IABCL achieves 97.40%
in Chinese intent accuracy, 95.72% in slot f1 value, and 94.07% in overall accuracy. It is
worth noting that in cross‑lingual transfer learning, the results of Japanese are better than
those of English andArabic because Chinese and Japanese are of similar language families,
and the results of English and Arabic are slightly inferior to those of Japanese, which fur‑
ther verifies that the effect of cross‑lingual transfer learning in the same language family is
more effective than that of cross‑lingual transfer between languages of different language
families. Meanwhile, we also analyze the results in English and Arabic separately. The
MIvD dataset contains high‑dimensional semantic data, such as “I am sweating”, “Here
we go”, and “
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” (This song is very sweet), which requires more complex
semanticmodeling to understand. Additionally, Arabic is a right‑to‑left language, and this
style also affects the final result. Relative to the three baseline models, the framework pro‑
posed in this paper excels in cross‑lingual transfer learning ability, comparing CoSDA‑ML,
Multilingual‑ZeroShot, andGL‑CLEF,with an average improvement of 5.63%, 25.07%, and
3.27% in intent accuracy in English, Japanese, and Arabic, respectively, and an improve‑
ment of 4.59%, 24.63%, 2.24%, and 3.27% in slot F1 values, respectively, and 24.63%, 2.24%,
and 5.83%, 35.79%, and 0.54% in overall accuracy, respectively.

Overall, the adoption of the IABCL framework has yielded excellent results in both
intent and slot prediction in the field of in‑vehicle dialogue system.
RQ2: How well does IABCL work on public datasets?

In this paper, the IABCL framework is validated on the public datasets MultiATIS++,
and to validate the impact of differentmultilingual pretrainingmodels on the performance
of this model, two pretraining models, mBERT and XLM‑R, are used for comparison, and
the experimental results are shown inTable 6. The IABCL frameworkwithmBERTachieves
the optimal intent accuracy compared with other models, and the F1 value and overall ac‑
curacy are slightly worse, while the IABCL framework with XLM‑R achieves the optimal
slot F1 and overall accuracy, and is slightly worse in intent accuracy, but also achieves
more than 90% in general.
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Table 6. Performance comparison on MultiATIS++. Results with * are from LAJ‑MCJ.

Method
mBERT XLM‑R

Intent Acc
(%)

Slot F1
(%)

Overall
Acc (%)

Intent Acc
(%)

Slot F1
(%)

Overall
Acc (%)

mBERT
(2019) * 88.42 61.66 36.29 ‑ ‑ ‑

XLM‑R
(2020) * ‑ ‑ ‑ 93.02 57.38 33.31

CoSDA‑ML
(2020) 90.87 68.08 43.15 93.04 70.01 43.72

Ensemble‑Net
(2021) * 87.20 55.78 ‑ ‑ ‑ ‑

LAJ‑MCJ
(2022) 92.41 78.23 52.50 93.49 75.69 47.58

IABCL 92.96 78.08 51.04 93.13 75.99 49.38

As shown in Figure 4, comparing mBERT (2019) and XLM‑R (2020) models, this pa‑
per improves by 16.42%, 14.75% and 18.61%, 16.01% in slot F1 and overall accuracy, re‑
spectively, which verifies that code switch improves significantly on cross‑lingual migra‑
tion. Compared with CoSDA‑ML, this paper improves by 1%, 7%, and 6% in intent, slot,
and overall, verifying that contrastive learning works significantly on cross‑lingual trans‑
fer learning. Compared with LAJ‑MCJ, this paper only improves the result of intent on
mBERT, and the slot and overall are reduced. According to our analysis, in the genera‑
tion of positive and negative samples of contrastive learning, to reduce the cost, this paper
simply takes other utterances from the same batch as negative samples, which may result
in the existence of “false‑negative samples”, and the final accuracy will be reduced; at the
same time, in XLM‑R, the accuracy is reduced by 1%, 7%, and 6%. This may cause the
existence of “false‑negative samples”, and the final accuracy will be reduced; at the same
time, in the XLM‑R model, the results of slots and overall have been improved, and the
intent has been reduced, which verifies that the existence of the “false‑negative samples“
will affect the final results.
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Taken together, the IABCL model performs better in cross‑lingual intent detection
and slot filling tasks, and the performance of the IABCL model needs to be improved in
Arabic and English. Future research can focus on improving the model’s ability to transfer
across language families and exploring more effective methods to achieve cross‑lingual
transfer learning.
RQ3: What are the specific roles of contrastive learning and interactive attention?
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To answer the question, in this paper, we remove the proposed method modules one
by one and perform ablation experiments in the MIvD dataset. The results are shown in
Table 7. In the table, our‑cl is the removal of the contrast learningmodule, our‑bi_interaction
is the removal of the attention interaction module, our‑all is the removal of both contrast
learning and attention interaction modules, and our is the complete model architecture.

Table 7. Ablation experiments.

Intent Acc
(%) ZH JA AR EN Avg

Our‑cl 97.32 73.27 60.98 58.99 72.64
Our‑

bi_interaction 96.93 73.19 61.86 60.00 72.99

Our‑all 95.66 72.95 59.22 57.80 71.40
Our 97.40 73.97 62.67 61.60 73.91

Slot F1 (%) ZH JA AR EN Avg

Our‑cl 95.53 76.82 29.84 55.00 62.29
Our‑

bi_interaction 95.35 75.54 29.92 55.48 64.07

Our‑all 93.63 75.30 28.62 54.17 62.93
Our 95.72 79.68 30.54 56.15 65.52

Overall Acc
(%) ZH JA AR EN Avg

Our‑cl 93.71 59.82 28.80 41.40 55.93
Our‑

bi_interaction 93.64 59.18 28.89 43.80 56.37

Our‑all 92.66 55.95 27.18 39.80 53.89
Our 94.07 60.45 30.22 46.40 57.78

Comparing our‑all and our‑cl (i.e., containing only interactive attention) improves the
results in intent, slot, and overall, so the joint framework enables the model to learn more
implicit information. Additionally, comparing our and our‑cl improves the effect in Sino‑
Tibetan languages (ZH, JA) more than our‑bi_interaction, andwe conclude that interactive
attention can better act on cognate languages. Further, according to our‑bi_interaction, our‑
all, and our, the boosting effect of contrastive learning in non‑Chinese‑Tibetan languages
is obvious, and contrastive learning can promote cross‑linguistic learning of themodel and
improve the compatibility of the model.

Therefore, in summary, both interactive attention and contrastive learning have their
advantages, and the combination of the two is more instructive and practicable.

6. Conclusions
To improve the cross‑lingual intent detection and slot filling ability of the in‑vehicle

dialogue system, this paper proposes an interactive attention‑based contrastive learning
framework (IABCL). Meanwhile, for the first time, this paper constructs multilingual
datasets (MIvD) in the field of in‑vehicle dialogue, then uses the IABCL framework to
verify it, and finally yielded superior outcomes. The experimental results show that the
transfer learning can also be centered on the Chinese language and transfer to other lan‑
guages to obtain a comparable effect.

However, the current results in English andArabic need to be improved, andwe have
found that there is a certain correlation between different languages of the same language
family, and that the universality of cross‑language transfer learning for one or more lan‑
guages needs to be improved. In the future, based on the Chinese language family, we
will further improve the cross‑language transfer learning ability of the proposed method
to improve the generalization ability of the model.
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