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Abstract: Source counting is the key procedure of autonomous detection for underwater unmanned
platforms. A source counting method with local-confidence-level-enhanced density clustering using
a single acoustic vector sensor (AVS) is proposed in this paper. The short-time Fourier transforms
(STFT) of the sound pressure and vibration velocity measured by the AVS are first calculated, and a
data set is established with the direction of arrivals (DOAs) estimated from all of the time-frequency
points. Then, the density clustering algorithm is used to classify the DOAs in the data set, with which
the number of the clusters and the cluster centers are obtained as the source number and the DOA
estimations, respectively. In particular, the local confidence level is adopted to weigh the density of
each DOA data point to highlight samples with the dominant sources and downplay those without,
so that the differences in densities for the cluster centers and sidelobes are increased. Therefore, the
performance of the density clustering algorithm is improved, leading to an improved source counting
accuracy. Experimental results reveal that the enhanced source counting method achieves a better
source counting performance than that of basic density clustering.

Keywords: acoustic vector sensor; source counting; DOA estimation; density clustering; local
confidence level

1. Introduction

Acoustic vector sensors (AVSs) can co-pointedly and synchronously measure sound
pressure and particle velocity vectors [1-4]. AVSs are widely used in underwater target
detection, direction finding, tracking, and communication [5-7] due to their abilities of
spatial filtering [8], DOA estimating [9], and resisting the interference of isotropic noise [10].

The target directing methods based on AVSs include the average sound intensity
detector, sound intensity flow DOA histogram, cross-spectral DOA histogram, and so
on [11,12]. AVSs can also be used in multi-channel arrays [13]. Each of these methods has
its advantages and disadvantages. The histogram algorithm is widely used in engineering
due to its better robustness compared with other algorithms. It can suppress narrowband
and strong line spectrum interference and has a certain degree of multi-target resolution
ability [14,15]. In [11], a DOA histogram based on sound intensity flow was used to
estimate the DOA of targets, and the weighted DOA histogram of the line spectrum was
used to realize the resolution and DOA estimation of multiple line spectrum targets. In [16],
a DOA histogram was used to realize the resolution and DOA estimation of multiple
wideband targets in the time—frequency domain and instantaneous frequency domain of
the Huang transform. In an AVS sea trial experiment based on the Argo buoy platform
in [17], it was also found that the DOA histogram could distinguish two wideband targets,
the test ship and the engineering ship, whose adjacent interval was about 80 degrees. In
reference [18,19], the windowed-disjoint orthogonality (WDO) of the target signal was
further introduced to explain the mechanism of the wideband multi-target resolution ability
of the DOA histogram.
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The components of ship-radiated noise are very complex, including line spectrum,
stationary ergodic random signals, and transient signals [20]. Therefore, it is considered to
be broadband noise with energy distribution at any time and any frequency from the macro
point of view. However, from the micro point of view, the energy intensity at different time—
frequency points varies, which leads to a significant difference in the energy of different
sources at some time-frequency points when multiple sources are synthesized at the sensor
receiver, and a target playing a dominant role. This phenomenon is called the window-
disjoint orthogonality (WDO) of signals and is widely used in blind signal separation for
multi-source resolution and separation [21,22]. The higher the WDO characteristic of the
signal in a certain time frequency point, the greater the energy of the dominant signal is
compared to the sum of other signals, and the direction estimation result of the frequency
point will be biased to the target direction of the dominant signal. If significant numbers of
TF points possess the WDO property, in the DOA histogram the DOA estimates will cluster
around the actual DOAs of the sources to achieve multi-target resolution of the histogram.

With multi-target resolution, it is possible to achieve source counting through mul-
tiple source detection. Traditional multiple source detection methods such as Minimum
Description Length (MDL) [23], Akaike Information Criterion (AIC) [24], and Random
Matrix Theory (RMT) [25] are overdetermined. They work well when the sensor channels
outnumber the sources. However, for two-dimensional AVSs, these methods will fail
when there are more than two sources, in which case the applicability of the AVS will be
greatly limited.

As a result, an underdetermined method based on the density clustering algorithm
was formed to solve the source counting problem for single AVSs in [18]. The density
clustering algorithm was used to classify the DOAs of all the time—frequency points, where
the cluster centers and the number of the clusters were obtained as the DOA estimations
and target number, respectively. However, WDO is the inherent characteristic of the signal.
With the increase in targets, the WDO decreases, which limits the multi-target resolu-
tion performance of the DOA histogram, and the performance of the density clustering
algorithm deteriorated.

For this reason, a multi-source detection based on multimodal fusion was developed
in [10]. The output of the AVS was decomposed into multiple modes by intrinsic time-scale
decomposition (ITD), so that the source number in each mode decreased. For each mode,
the WDO increased, leading to a better source counting accuracy. Therefore, the fused
source counting performance was improved. However, the counting performance varied
with the number of modes employed and it was difficult to determine the optimal number
of employed modes.

In this paper, the local confidence level is adopted to weigh the density of each DOA
data point to highlight the samples with the dominant source and downplay those without,
so that the differences in densities for the cluster centers and sidelobes are increased.
Therefore, the performance of the density clustering algorithm is enhanced. An analysis of
lake trial data is conducted by comparing the proposed local-confidence-level-enhanced
density clustering method with the methods in [10] and [18]. The results confirm the
availability of the proposed local-confidence-level-enhanced density clustering method in
improving source counting performance. The source counting accuracy of the proposed
method is better than the methods it is compared with. The probability distribution
of the source counting result for the local-confidence-level-enhanced method is more
concentrated to the source number. As the SNR decreases, the proposed method undergoes
slower degradation.
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2. Model and Cross-Spectral DOA Histogram of Single-Vector Sensor

The output of an AVS contains information on both sound pressure and vibration
velocity. The model of two-dimensional AVSs in the horizontal free sound field can be
expressed as:

N

Y oxn(t) +np(t)

P(t) N N 1
y(t) = |Vx(t)| = | & xn(t)cosa, +ny(t)| = Z X (t) [cos txn] +e(t), (1)
Vy(t) "El n=1 sinwy,
ngl xn(t) sinay, + ny(t)

where N is the number of sources, P(t) is the sound pressure component of the AVS output,
and Vi (t) and V;(t) are the components of vibration velocity on two axes, respectively.
x, (t) represents the signal radiated from the nth source to the AVS, a,(t) indicates the
angle of the nth sound source relative to the vector hydrophone (x axis is zero-degree
orientation), e(t) = [np(t), nx(t), ny(t)]T is the noise vector, and 1, (t), nx(t), and ny(t) are
noises of the sound pressure, x-axis, and y-axis vibration velocities, respectively.

By taking the short-time Fourier transform (STFT) of each channel of the mixture, the
AVS model can be expressed in the time—frequency domain as:

1

Xp(w, m) [cos an] +E(w,m), (2)
sin a,

Y(w,m) = [P(w,m),Vx(w,m),Vy(w,m)]T =

M=

n=1
where w and m are the frequency bin and time frame indices, respectively. P(w,m),
Vi(w,m), Vy(w,m), Xy(w,m), and E(w,m) are the STFTs of P(t), Vi(t), Vy(t), and e(t),
respectively. The DOA estimation at each time—frequency point can be obtained by:

0(co,m) = £[Re{P(co,m)V; (w,m)} +]-Re{ Pleo,m) Vi (w,m) }], 3)
where Z represents the phase angle, and V} (w, m) and Vy (w, m) represent the complex
conjugates of Vy(w, m) and V; (w, m), respectively. The DOA histogram can be obtained by
counting the estimation results of all time—frequency points. Supposing that the azimuth
interval of histogram statistics is Af, we count the number of DOA estimation results in the
interval [0 — A68/2,0 + A0 /2]: when 6 — A8/2 < 6(w, m) < 6 + AB/2, the amplitude of the
histogram at the corresponding position is increased by 1:

H,(6) = 297A9/2<9(w,m)§9+A9/2 L. @)
3. Local-Confidence-Level-Enhanced Density Clustering Source Counting
3.1. Density-Clustering-Based Source Counting

The density clustering algorithm depends on two important hypotheses: (1) The
density for the center of a cluster is higher than that of the neighboring points; (2) The
minimum distance between the center of a cluster and a higher-density point is relatively
large [26,27]. The data set © = [01,6,,...,0k] is established with the DOA estimations
obtained by Equation (3) in the time—frequency domain, where K is the number of the DOA
estimations. Since the distance between two DOA estimations does not exceed 180°, the
distance dy; between each two samples in © is defined as:

_ 0, — 0kl, 16— 6| < 180
A = {360—|91 Zol 10— 6y > 1807 L E L K ®)

where 6 and 6; are two different samples in the data set @. They are angles limited within
the interval of [—180°,180°]. The absolute difference between two angle values |6; — ;| is
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within the interval of [0°,360°]. The distance between two angles is periodic with the period
of 180°. So, when |6; — 6| < 180, the distance dy; is |6; — 0| itself. When |6; — 6| > 180,
the distance dy; is 360—|6; — 6|

Then, the local density of each sample py is calculated as:

Pk = Yyeqy, g X(du — dec), ©)

where x(x) = 1if x < 0and x(x) = 0 otherwise, and d. > 0 represents the cut-off distance
used to keep a region for each sample. pj is the number of the samples within a limited
distance of d. from the sample 0y, i.e., pi is equal to the number of points that are closer
than d, to the sample 6;. The more samples there are near the sample 6y, the larger the local
density of the sample 6y is. d. can be chosen so that the average number of neighbors is
around 1 to 2% of the total number of points in the data set [28]. A sample is assigned to
the same cluster of its nearest sample with a higher density only if their distance is smaller
than d.. The minimum distance J; between the sample 0, and any other sample with a
higher density is measured as:

o = min (dy). 7)

Lior>px

For the point with the highest density, we conventionally take J; as:

O = e {T,_C’_?‘,K}(dkl)' ®)

The product vy, = pidr, k =1,2,...,Kis used as the feature, and its value for a cluster
center sample is obviously larger than that for the other sample. Thus, the differences
among the ordered feature sequence are used to find the samples with significantly larger
features, whose number corresponds to the number of clusters or targets [29]. In this
procedure, the features v, k = 1,2, ..., K are sorted in descending order, i.e.,

MZ72 > >k ©)

Suppose that there are L targets in the detection range of the AVS. Since the features
of the cluster center samples are much larger than the other samples, the first L features
{71, 72,--.,7L} are significantly larger than the other K — L features {yr+1, YL+2,---, YK }-
Consequently, the difference between < and <y 1 is relatively large. To obtain L, the
differences in the ordered features are computed as:

A’)/i:’)/i—’)’H_l,i:1,2,...,K—1, (10)

And the variance of the sequence {A’yi}f;nl is calculated as:

) 1 K-1

K-1 2
1
In =% _n Z<A%_K_”z§z A')’i) , (11)

i=n
wheren = 1,2,...,K — 2. Further, the second-order statistic of the features is defined as:

‘7;3+1 2
Sp={ oz >0 (12)
+oo, 02=0

Finally, the target (or cluster) number is estimated as:

L = argmin S, (13)
n=1,...,K-=3

And the L DOA samples with the L largest features are obtained as the final multi-
target DOA estimation results.
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3.2. Local-Confidence-Level-Enhanced Density Clustering Algorithm

With the increase in sources, the WDO decreases, which limits the multi-target reso-
lution performance of the DOA histogram. DOA estimations of different time—frequency
points have different contributions to density clustering. For a certain time—frequency point,
the larger the proportion of the dominant signal energy is, the closer the DOA estimation is
to the truth value, and the greater the contribution this sample provides to the clustering.
A local-confidence-level-based density enhancement algorithm is proposed in which the
contribution of the samples with a high proportion of the dominant signal energy are
exaggerated, so that the accuracy of the clustering and the precision of the target number
estimation are improved.

For a certain time—frequency point (w, m) (read circle) in the STFT domain, define the
rectangular area (), (Dotted Box) around it, as illustrated in Figure 1. The width and
length of this area are [, time points and [, frequency points, respectively. Therefore, there
are I, 1, time—frequency points in the rectangular area (), ;. The local confidence I'(w, m)
of this time—frequency point (w,m) is estimated by performing a principal component
analysis (PCA) [30] on the snapshot vector Y(Q, ) in the region Q) ;, which reflects the
strength of the dominant signal at the time—frequency point (w, m).

b frequency bin @ £

time bin: m

Figure 1. Time—frequency point (w, m) and the surrounding rectangle area Q.

For each time-frequency point, a snapshot Y(Q, ) is formed with all snapshots
Y(w, m) in the region Oy, . Itis a 3 x Iy,1,; matrix with columns Y(w, m), (w,m) € Qg m.
A positive semidefinite complex Hermitian matrix is then constructed with Y(Q, ) for
the region Q) as:

R(w,m) = Y(Qo )Y (Quoi). (14)

For a two-dimensional AVS, the rank of the matrix R(w,m) is 3. Performing an
eigenvalue decomposition on R(w, m), we obtain three real-valued positive eigenvalues
in decreasing order Aj(w,m) > Ay(w,m) > Az(w,m) of the matrix R(w,m). The local
confidence level of the time—frequency point (w, m) is expressed as:

2M1 (w, m)

I(w,m) = Ay (w, m) + Az(w,m) -

If there is only one dominant signal whose power is much larger than the noise in the
time—frequency point (w, m), A1 is the eigenvalue of the dominant signal which is much
larger than A, and A3, which are the eigenvalues of the noise. Otherwise, if there are two
similar signals whose power is much larger than the noise, A, will be much larger than
A3, and the local confidence will become much smaller than the one dominant signal case.
Therefore, it can be used to represent the WDO.
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It is obvious that the local confidence level is proportional to the ratio of the domi-
nant signal.

Then, the local confidence is used to enhance the cross-spectral DOA histogram. In
the original orientation histogram statistics, the density of each sample is 1. The local-
confidence-weighted DOA histogram with a sample density of I'(w, m) is:

H,(6) = 29—A9/2<9(w,m)§9+A9/2 T(Quwm)- (16)

Substituting Equation (4) into Equation (16) yields:

He(6) = Hy(6) - | I(Qum)| = HyO)T®),  (17)

297A9/2<9(w,m)§9+A9/2
where T'(6) is the average local confidence level.

The enhanced local density p; of the kth sample is weighted with the corresponding
local confidence level I'(k) as:
o = T (k)px. (18)

The minimum distance is calculated according to the weighted local density p;, and
the target number is estimated by the ordered feature sequence afterward. The remaining
steps are the same as in Section 3.1.

With the enhanced local density, the density of the sample points that are closer to
the cluster center will increase while the density of the sample points far away from the
cluster center will decrease. Consequently, the performance of the density-clustering-based
multi-target detection is improved. To summarize, the proposed source counting method
based on the local confidence-enhanced density clustering is depicted in Algorithm 1.

Algorithm 1: Local-confidence-level-enhanced density clustering source counting

Input: Output y(t) of AVS.

Output: Target number L and the DOAs (91, by,..., éL) of the targets.

1 Compute the STFT Y(w, m) of y(t) with Equation (2);

2 Define the rectangle area Q,,, for each (w, m) point;

3 Compute positive semidefinite complex Hermitian matrix R(Qy,» ) with Equation (14);

4 Perform eigenvalue decomposition on R(Q,,m) to obtain the eigenvalues A1 (w, m), Ay (w, m),
and Az (w, m);

5 Compute the local confidence level I'(w, m) with Equation (15);

6 Compute the DOA estimations 6(w, m) at all the time—frequency points with Equation (3);
7 Consist data set ©® with the DOA estimations;

8fork=1to K

9  Compute the enhanced local density p; of each sample with Equation (18);

10 forl=1toK

11 Compute the distance dy; between each two samples in ® with Equation (5);
12 end for
13 end for

l4fork=1to K

15 Compute the minimum distance é; with Equations (7) and (8);

16 Compute features as vy, = p,’{ék;

17 end for

18 Sort the features v, (k = 1,2,...,K) in descending order;

19 Compute A+; of the ordered features with Equation (10);

20 Compute the variance of {A’yi}lK:_”l with Equation (11);

21 Compute the second-order statistic S, of the ordered features with Equation (12);
22 Estimate the target number L with Equation (13);

23 Search DOAs (6,65, ...,0;) with the L largest features.
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4. Lake Trial and Analysis
4.1. Experimental Settings

The experimental data were collected in FuXian Lake. The experimental scenario is
depicted in Figure 2, in which the location of a two-dimensional co-vibration AVS is in
the middle of the lake. The sensitivity of the velocity channel decreased with increasing
frequency (as the slope of —6 dB/octave), and there was a 90-degree phase difference
between the vibration velocity channel and the sound pressure channel. The AVS was
rigidly fixed about 4 m underwater on the side of the survey ship. The output signals of
the AVS were collected and stored by a multi-channel synchronous data acquisition system.
In the experiment, four ships (yachts) acted as moving targets located 1-2 km around the
AVS. The ships were distributed in four directions of about 40°, 140°, 210°, and 330° at the
beginning. The sampling rate was 48 kHz, the length of the STFT window was 8192 points,
the frequency band was 0.5-8 kHz, the integral length of the azimuth histogram was 1 s
(six windows), the sliding step was 8192 points (one window), and the rectangular area
was I, = Iy = 3. The signals of two vibration velocity channels were compensated in the
frequency domain according to the slope and phase of sensitivity after STFT.

[
(<=

boat 1 boat 2 boat 3 boat 4
targetl
g 40
v 10|
E£”
AVS =
20 -
/V 107
0 1 1 1 1 1 1
target4 0 50 100 150 200 250 300
bearing /°
(a) (b)

Figure 2. Experimental setup and traces of 4 boats: (a) Experimental setup; (b) Experiment azimuth
waterfall map.

4.2. Resolution Performance

Figure 3 illustrates the temporal course of the cross-spectral DOA histogram computed
with Equation (4) at each time bin. Four targets marked as <1>, <2>, <3>, and <4> are
presented in the histogram. The red color stands for the peaks of the histogram, which
indicate the locations of the targets. Continuous peaks in time compose the time-bearing
course of a target, which is illustrated roughly with straight black, red, green, and blue
dash-dot lines, respectively, for each target. As shown in Figure 3, the azimuths of targets 3
and 4 gradually become closer over time, so the spectral peaks of these two targets become
hard to distinguish (red color connects in one piece around time (d)). Since the signal from
the target ship is weak when the ship decelerates or stops, the spectral peaks of targets 1
and 2 are unapparent or even submerged by the background during 38—40 s in the DOA
histogram, as with the time points 44-50 s of target 3 and 50-53 s of target 4 (red color
absent). Thus, the target courses have obvious discontinuity.
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0 a0 100 180 200 280 300 350

Bearing™

Figure 3. The temporal course of the cross-spectral DOA histogram of vector hydrophone from lake
trial. ((a), (b), (c) and (d) denote the time of 6.7 s, 11.6 s, 21.3 s and 36.0 s).

Figure 4 depicts the temporal course of the local-confidence-level-enhanced cross-
spectral DOA histogram computed with Equation (16) at each time bin. It can be seen that
the course of target 3 is significantly enhanced (red color is more continuous in time and
peaks are higher than those in Figure 3), and the course of other targets is also enhanced
relative to the original ones in Figure 3. It indicates that by using the local confidence level
enhancement, the DOA courses of these targets become apparent, and both the resolution
of targets and the continuity of the courses are improved (red color areas are thinner in
bearing axis direction and more clearly separated compared to Figure 3).

0 50 100 150 200 250 300 .350
Bearing/®

Figure 4. The temporal course of the local-confidence-level-enhanced cross-spectral DOA histogram.
((a), (b), (c) and (d) denote the time of 6.7 s, 11.6 s, 21.3 s and 36.0 s).

Figure 5 shows the comparative results between the cross-spectral DOA histogram
and the enhanced cross-spectral DOA histogram at different time points corresponding
to (a), (b), (c), and (d) in Figures 3 and 4, respectively. As shown in Figure 5, both the
original and the enhanced histograms present spectral peaks at the directions of the targets,
while the enhanced one possesses glaringly obvious peaks. This reveals that the enhanced
histogram is able to estimate the azimuths of targets at a higher resolution. In particular,
when the signal from the target ship is weak, such as target 3 in Figure 5c, the enhanced
cross-spectrum can significantly upgrade its peak, which makes it possible to detect weak
targets. Additionally, as depicted in Figure 5d, the distinguishability of adjacent targets
(targets 3 and 4) is also promoted by the enhanced cross-spectrum.
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| Target 1

Target 3

Target 4

Target 3
E £ 0.8 Target 1 Target 2
£ 2 05
04
1
02t i
----- Cross-spectral DOA histogram —=--- Cross-spectral DOA histogram
Enhanced cross-spectral DOA histogram Enhanced cross-spectral DOA histogram
% 50 100 150 200 250 300 350 % 50 100 160 200 250 300 350
Bearing/® Bearing/®
(@) (b)
12} Target 2 Target 4 i 12 Target 3
1r i 1t
Target 1 Target 3 Target 1 Target 2
£ 08 £ 0.8
2 s T 06
0.4 0.4
0.2} 1 02t _
----- Cross-spectral DOA histogram —=--- Cross-spectral DOA histogram
Enhanced cross-spectral DOA histogram Enhanced cross-spectral DOA histogram
% 50 00 150 200 260 300 350 % 50 100 150 200 250 300 360
Bearing/® Bearing/®
(c) (d)
Figure 5. Comparison of cross-spectral DOA histograms and local-confidence-level-enhanced cross-
spectral DOA histograms at different times. (a) DOA histograms at time (a); (b) DOA histograms at
time (b); (c) DOA histograms at time (c); (d) DOA histograms at time (d).
Figure 6 explains the enhancement performance of the local confidence level by the
DOA histogram at time (c). The average local confidences of the directions of the targets
are larger than the others. As a result, the peaks of the targets become higher and sharper.
16 ; ; ; . ‘ ‘ . ; ; ; :
Target 2 Target 4
M Target 4 121 A 5 i
Target 2 3
1.2 Target 1 1k Target 3 B
Target 1 D
c
g § 08
T £ 08
04
0.2+ ] 02t J
: mia— Cross-spectral DOA histogram
< Average local confidence level Enhanced cross-spectral DOA histogram
% 50 100 150 200 250 300 350 % 50 100 150 200 250 300 350
Bearing/® Bearing/®

(a) (b)

Figure 6. DOA histogram: (a) The cross-spectral DOA histogram and average local confidence level;
(b) The enhanced cross-spectral DOA histogram. (The circles a—d and A-D denote the data samples

considered as the clusters centers).
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4.3. Source Counting Performance

To explain the advantage of the local-confidence-level-enhanced density clustering
algorithm, Figure 7 illustrates the decision graphs of the basic and enhanced density
clustering algorithms with the data in Figure 6. Due to the inconspicuousness of the
peaks of targets 1 and 3 (i.e., points c and d in Figure 6a), the cluster centers (i.e., decision
points ¢ and d in Figure 7a) of the basic density clustering are close to the cluster halos,
which are recognized as the background. Nevertheless, in the enhanced density clustering
algorithm, the local density is enhanced with the corresponding local confidence level which
is represented by the size of the points in Figure 7. The local confidence level is higher
around the cluster center than that in the cluster halo. Therefore, the background becomes
more clustered and the cluster centers are far away from the background, especially for
targets 1 and 3 (i.e., points C and D in Figure 7b). Therefore, the enhanced local density
leads to a clearer distinction between the cluster centers and the background in the decision
graph, which makes it easier to achieve correct counting.

200 7
@ C
a Al
150
cluster centers: g
w
B! cluster centers
b = 100 A
9 g 5
,,,,,,,,,,,,,,,,,,,,, =
£
gap i
=i
7777777777777777777777777777777777777777777777777777777 504
ocC
background o ad
@
o o oagBildas o]
VI VVVVVVVVVVVV l - 77\ 777777777777 I — [ 1 T T T T T 1
0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.3 ) 1.2
The local density The local density
(a) (b)

Figure 7. The decision graphs of the basic and enhanced density clustering algorithms for the data
in Figure 6: (a) Basic density clustering; (b) Enhanced density clustering. (The points a-d and A-D
denote the data samples considered as the clusters centers).

Figure 8 demonstrates the second-order statistic S;, of the basic and enhanced density
clustering algorithms with the data in Figure 6. Obviously, the basic density clustering
obtains the wrong counting result while the enhanced density clustering obtains the correct
one. These results are consistent with the analysis of Figure 7.

Figure 9 illustrates the courses of the multi-target DOA estimations obtained by
the basic density clustering and the local-confidence-level-enhanced density clustering.
Compared with the courses estimated by the basic density clustering, the outliers in the
courses estimated by the enhanced density clustering significantly reduce by weighting the
density with the local confidence level, and the continuity of the courses of the multi-target
detection is remarkably improved, especially in Regions A and B. Moreover, the distribution
of the DOA estimations of targets is more compact for enhanced density clustering.

Figure 10 depicts the results of the source number estimations obtained by the basic
density clustering and the local-confidence-level-enhanced density clustering. Obviously,
in Regions A, B, and C, the enhanced density clustering achieves the correct estimation
results while the basic density clustering does not. In Region D, although both methods
obtain incorrect results, the outcomes of the enhanced density clustering are closer to the
true value. Targets 3 and 4 stop for a while during the periods of 44-50 s and 50-53 s,
respectively. During these periods, there are only three targets in the field. As a result, the
source number estimation result in the period before 44 s was used to calculate the source
counting accuracy.
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Figure 10. Courses of the source number estimations obtained by the basic density clustering and

the local-confidence-level-enhanced density clustering. (The enhanced density clustering achieves
the correct estimation results while the basic density clustering does not in Regions A, B, and C. The

outcomes of the enhanced density clustering are closer to the true value in Regions D).
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A comparison was conducted between the proposed local-confidence-level-enhanced
density clustering method, the multimodal-fusion-based method in [10], and the ba-
sic density-clustering-based method in [18]. As shown in Figure 11, the basic density-
clustering-based method obtained 48.82% accuracy of target number estimation, the
multimodal-fusion-based method obtained an accuracy of 51.15% with four modes em-
ployed, while the local-confidence-level-enhanced method achieved 63.39% accuracy.
The probability distribution of the source counting result for the local-confidence-level-
enhanced method is more concentrated to the source number.

100 T T T T T T T
B G::ic density clustering
90} I Multimodal fusion with 3 modes ]
[ nultimodal fusion with 4 modes
[ Multimodal fusion with 5 modes
I Enhanced density clustering
63.39
60 B

80

T0r

sl 887" ]

40t .
85

30r B

Percentage/%

7.31 .
Tl 67038089 p o
5 6 7

1 2 3 4
Source number

Figure 11. The estimated source number histogram of the basic density-clustering-based method, the
multimodal-fusion-based method, and the enhanced density-clustering-based method for the experiment.

The multimodal-fusion-based method significantly reduces the probability of underes-
timating the errors of one and two sources and worsens the probability of overestimating
errors of five sources. The WDO increases and sources are more detectable in each mode,
so the probability of missed detections is reduced. However, a source signal may be di-
vided into parts and be distributed in more than one mode. These parts may not be fully
recognized as the same source during the fusion step, leading to an overestimation. As a
result, compared to the basic density-clustering-based method, despite an advantage in
the estimation accuracy, the probability distribution of estimated results is much better for
the multimodal-fusion-based method. In addition, the estimation accuracy varies with the
number of modes employed. Therefore, it can be seen that the presetting of the number of
employed modes is quite important.

In contrast, the local-confidence-level-enhanced density clustering dramatically im-
proves the accuracy of the source counting. In the enhanced method, the local density of
the samples around the cluster centers with high local confidence is increased. Therefore,
the clusters become more compact, which improves the source counting accuracy.

In order to evaluate the effect of the noise on the proposed method, an experiment
with different SNRs was performed. The real SNR of the lake trial is unknown. It was
assumed, empirically, to be 24 dB. The SNR was adjusted by adding simulated Gaussian
white noise to the lake trial signal. The performance of the basic density-clustering-based
method and the enhanced density-clustering-based method for 8, 12, 16, 20, and 24 dB
(without simulated noise) is displayed in Figure 12 comparatively. As the SNR decreases,
the performance of both methods degenerates gradually. However, the enhanced density-
clustering-based method performs better than the basic density-clustering-based method
and undergoes slower degradation.
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Figure 12. Source counting performance vs. SNR.

To investigate the frequency bands of the targets in the experiment, each TF point was
assigned to a target according to its dominant signal. If the DOA estimation of a certain TF
point was 2° away from the nearest cluster center, it was assigned to this target. Otherwise,
it is considered that there is no dominant signal in this time-frequency point. Figure 13
shows the assignment of the first 1.4 s. The frequencies of all four targets spread over
the whole broadband of 500-8000 Hz randomly, and clearly cannot be divided into four
different separated sub-bands. This result indicates that the WDO assumption holds in
this experiment.

wasamie i se & - T )

#*  Target<3>

®  Target<2>

12 WU N RO N DR D Target<d>
#*  Target<1i>

1 B S R s L S - R

08 AT 1 S R M i L N BN L

Timels

VA e S T N At D2 R e A
0.6 b
AREDBNE T W S -0 - S b s e

04 B
W DI ENNNEEED B HN BO e

02

A

WD A B RN B W R e ] |

— - S A — - - — i N M - — i —
1000 2000 3000 4000 5000 6000 7000 8000
Frequency/Hz

Figure 13. Frequency distribution of targets in time-frequency domain.

5. Conclusions

An underwater source counting method with local-confidence-level-enhanced density
clustering is proposed. In this method, the STFT of the AVS output signal is calculated,
and the DOAs of all time—frequency points consist of a data set. Then, the DOAs in the
data set are classified with density clustering, where the cluster centers and the number of
clusters are obtained as the DOA estimations and the target number, respectively. Finally,
the local confidence level is applied to further enhance the performance of the density
clustering algorithm. A lake trial is conducted to verify the local-confidence-level-enhanced
source counting method which achieves a better source counting performance than the
multimodal-fusion-based method and the enhanced density-clustering-based method.
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