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Abstract: The conventional trust model employed in satellite network security routing algorithms
exhibits limited accuracy in detecting malicious nodes and lacks adaptability when confronted with
unknown attacks. To address this challenge, this paper introduces a secure satellite network routing
technology founded on deep learning and trust management. The approach embraces the concept
of distributed trust management, resulting in all satellite nodes in this paper being equipped with
trust management and anomaly detection modules for assessing the security of neighboring nodes.
In a more detailed breakdown, this technology commences by preprocessing the communication
behavior of satellite network nodes using D–S evidence theory, effectively mitigating interference
factors encountered during the training of VAE modules. Following this preprocessing step, the
trust vector, which has undergone prior processing, is input into the VAE module. Once the VAE
module’s training is completed, the satellite network can assess safety factors by employing the
safety module during the collection of trust evidence. Ultimately, these security factors can be
integrated with the pheromone component within the ant colony algorithm to guide the ants in
discovering pathways. Simulation results substantiate that the proposed satellite network secure
routing algorithm effectively counters the impact of malicious nodes on data transmission within
the network. When compared to the traditional trust management model of satellite network secure
routing algorithms, the algorithm demonstrates enhancements in average end-to-end delay, packet
loss rate, and throughput.

Keywords: trust management; D–S evidence theory; variational autoencoder; secure routing

1. Introduction

Satellite networks possess characteristics such as open media, dynamic topology,
and limited resources [1]. Consequently, the design of routing algorithms for satellite
networks is currently a hot research topic, and numerous researchers have made significant
contributions in this field. However, in terms of the security vulnerabilities inherent
to routing protocols themselves, most existing satellite network routing protocols have
not adequately addressed this issue. The existing efforts by researchers have primarily
focused on ensuring the availability of satellite network routing. Current research on
satellite network security mainly involves the transplantation of security techniques from
terrestrial networks to counter threats. Although technologies such as intrusion detection,
anomaly protocol detection, firewall techniques, and interference-eliminating channel
coding [2–5] have a significant research background in terrestrial networks, the scarcity of
resources at satellite nodes and the influence of the overall architecture of satellite networks
mean that many techniques applicable to ground networks cannot be directly applied in
satellite networks. Continuous research is necessary in the field of technological integration.
After researchers thoroughly consider the characteristics of satellite networks and the
applicability of security technologies, the field of satellite network security has gradually
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yielded numerous achievements. Among these, secure routing in satellite networks has
received considerable attention.

The security of satellite network routing is primarily considered from two aspects:
encryption and trust management [6]. Initially, researchers fortified routing data from
a cryptographic perspective, which constitutes an external defense. Employing such
defensive measures involves constant encryption and decryption of transmitted data by
satellite nodes, leading to relatively low efficiency. Moreover, a critical flaw in this approach
is its inability to prevent attackers from breaching encryption barriers and impersonating
legitimate nodes. Once a satellite node is compromised as a malicious entity, encryption
loses its protective effect on the satellite network, posing substantial threats to satellite
network routing and jeopardizing the overall system’s security [7]. Therefore, in the current
research on secure satellite network routing, countering internal attacks where attackers
mimic normal nodes is a central concern. Traditional approaches to defending against
internal attacks in satellite network routing involve trust management models, which
can be simplified trust models using weighting and more complex mathematical trust
models. With the emergence of various novel attack methods, the efficacy of traditional
trust models in detecting malicious attacks has declined. This is due to their simplistic
mathematical models that lack precision in modeling actual node attack behaviors. In
the face of evolving attack methods, traditional trust models struggle to extract attack
features effectively. Consequently, there is a pressing need to enhance traditional trust
models. Furthermore, integrating machine learning into traditional trust models has
been explored in the Internet of Things (IoT) [8]. However, using machine learning to
improve models presents challenges such as obtaining datasets with attack labels, as
many new attack types are unseen, making labeling difficult. Additionally, machine
learning’s capability to extract data features is limited, particularly for deep-level attack
methods. Deep learning, on the other hand, possesses high flexibility and adept data
feature extraction capabilities, particularly in the domain of anomaly detection. Thus, this
paper employs deep learning anomaly detection techniques [9] to reinforce and enhance
traditional trust models, forming a novel intelligent security model. In addition, considering
the focus on secure routing in satellite networks, the foundational routing algorithm
requires enhancement. In this regard, the ant colony algorithm is chosen as the benchmark
routing algorithm for satellite networks. This selection is due to the abundance of research
applying the ant colony algorithm to satellite network routing, indicating its suitability
within this context. Furthermore, as this paper intends to employ an intelligent security
model to assess satellite node security, traditional static routing algorithms are unable
to promptly integrate with the results of the intelligent security model. The ant colony
algorithm, being an intelligent optimization algorithm, can dynamically carry the security
assessment factor of the intelligent security model. Consequently, this paper combines the
ant colony algorithm with the intelligent security model to jointly counter internal attacks
in satellite networks while establishing a secure routing path. For the convenience of later
elaboration, the proposed algorithm is named TVAE in this paper.

The innovation points of this article include the following three aspects:

(1) Due to issues such as electromagnetic interference, network congestion, and satellite
node malfunctions, it is challenging to ascertain whether transmission failures are
caused by malicious attacks in satellite networks. Addressing this challenge, this paper
proposes the application of the Dempster–Shafer (D–S) evidence theory to handle
uncertainties in satellite network communication data. By quantifying interaction
data within the satellite network, direct trust vectors and indirect trust vectors are
formed. The D–S evidence theory integrates these vectors to create a comprehensive
trust vector, which mitigates the misjudgment of satellite network node behavior
caused by nonmalicious factors.

(2) Traditional mathematical models, when used as security trust models, exhibit low de-
tection accuracy and limited flexibility in identifying unknown attacks. Therefore, this
paper introduces the variational autoencoder (VAE) from the field of deep learning to
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discern malicious node behavior. Furthermore, to enhance the VAE’s ability to detect
anomalous behavior, an attention mechanism is incorporated into the VAE network.
Specifically, after the D–S evidence theory processes communication data, the VAE
network receives cleansed communication data as input to its encoder. By adjusting
the weights of latent variables provided by the encoder using attention mechanisms,
the VAE network can more accurately learn the underlying feature information of the
trust vector, thus improving the detection of malicious node behavior and enhancing
satellite network routing security.

(3) By incorporating the security scores derived from the VAE model into the pheromones
of the ant colony algorithm, the satellite network can dynamically guide ants to
circumvent malicious nodes during the routing process. Specifically, when ants choose
the next hop, they consider their pheromones along with the security assessment
factors of neighboring nodes. Ants are inclined to choose paths with higher products
of pheromones and security factors. Thus, improving the ant colony algorithm with
the security factor of the VAE model helps the satellite network establish secure
routing paths.

The remainder of this paper is organized as follows. In the Section 2, the relevant
research work on satellite network secure routing is introduced. In the Section 3, the
structure of the secure intelligent model is analyzed and applied to the ant colony algorithm
satellite network routing. In the Section 4, we carry out a simulation. The Section 5 is the
summary and prospect of the article.

2. Related Research

D–S evidence theory has been widely discussed and used in recent years because
it can combine uncertain information from different sources with different levels of ab-
straction. However, due to the problem of evidence conflict in this theory, many scholars
have conducted relevant research on it. Reference [10] improved on the traditional D–S
evidence theory by reassigning weight factors before evidence fusion to solve the problem
of counterintuitive results when D–S evidence theory fuses highly conflicting informa-
tion. Reference [11] proposed a new method for measuring global uncertainty, which not
only retains the advantages of previous measurements but also has higher sensitivity and
wider scope to changes in evidence. Reference [12] analyzed the relationship between
D–S evidence theory and classical probability theory and then proposed a generalized
evidence combination formula. The advantage of this method is that it can alleviate the
requirement of evidence independence and make D–S evidence theory perform better in
practical application. In addition, ref. [13] applied the D–S evidence theory to the sensor
system of unmanned vehicles, so that unmanned vehicles could make better decisions in
actual scenarios.

Since satellite nodes are exposed to an open space environment, satellite network
routing protocols are inevitably subject to many attacks [14], which can be roughly divided
into two types: although the encryption mechanism can effectively protect against external
attacks, it cannot deal with the internal attacks of the satellite network. Therefore, a security
protection method against internal attacks has been put forward by the people—trust
management mechanism. With the development of malicious attack mode, the structure of
the trust model has also risen from the simple weighted principle to the construction of
various complex mathematical models. Reference [15] adopted a simple mathematical trust
model, and its trust management model was based on the weighted average of trust values.
In this paper, direct trust values, indirect trust values, and comprehensive trust values were
established by using simple mathematical formulas for the interaction behaviors between
satellite network nodes and neighbors, to determine the security of satellite network nodes.
The advantage of this scheme is that it makes full use of the dynamic characteristics of the
satellite and adopts adaptive adjustment strategies to adjust the trust value to detect mali-
cious behaviors and respond quickly when the network fails. However, the trust evaluation
model of this scheme uses the weighted average method to calculate the comprehensive
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trust value, so the evaluation of trust value is highly subjective and the evaluation results
are not accurate. Reference [16] discussed the inference model based on the Bayesian
network, which uses a set of current observations (i.e., direct experience) in Bayesian theory
to predict the future state of the route, and its nodes estimate the parameters of the prior
distribution through the collected recommendation information and combine the direct
interaction to obtain a posterior distribution, based on which the trust value of each interval
can be predicted. Since this scheme uses Bayesian theory to deduce the solution of trust
value, its accuracy in the security assessment of nodes is greatly improved. However, the
adoption of Bayesian theory requires the provision of prior probability and conditional
probability, which may not be fully provided in the establishment of the security trust
model. Reference [17] proposed a fuzzy trust model based on experience and rationality,
which accesses the accuracy and integrity of messages through fuzzy logic. It uses ID
authentication to evaluate whether a message is authorized and uses the relevant data
stored in the nearest node to measure the accuracy of the message. This scheme adopts
a fuzzy trust management model, which has the advantage that it can make a more ac-
curate judgment on the evaluation of the node trust value, but its disadvantage is that
the accuracy of the evaluation results begins to decline as the object scale expands. To
solve the routing security of low-Earth-orbit satellites, ref. [18] proposed the secure routing
algorithm of the LEO satellite network based on node trust (SLT) algorithm, which is
based on the distributed trust evaluation model. It calculates the direct trust, indirect trust,
and comprehensive trust values among satellite nodes through the D–S evidence theory,
and then combines the comprehensive trust value with the basic routing algorithm Orbit
Prediction Shortest Path First Routing for Resilient LEO Satellite Networks (OPSPF) to
effectively reduce the influence of malicious nodes. It improves the security of satellite
network routing, but its disadvantage is that its satellite network routing algorithm is static
and difficult to deal with faults. In [19], a decentralized trust management scheme (DTMS)
was designed to filter out malicious nodes in satellite networks. This scheme combines the
amount of forwarded evidence and the energy consumption rate of nodes to form direct
trust and then establishes a trust framework. The novelty of this scheme is that the energy
factor of satellite nodes is considered. However, a drawback of this method is that the
calculation process of trustworthiness recommendation is complex, consuming a significant
amount of computational and time resources. In the paper [20], the proposed algorithm
improves the AODV protocol of ground networks based on the characteristics of satellite
networks. Additionally, it combines this protocol with a security trust model to effectively
counteract malicious attacks in satellite networks. However, the drawback of this algorithm
is that the trust evaluation model it employs uses a Bayesian estimation model. The prior
probabilities in the Bayesian estimation model need to be predetermined, which could
lead to difficulties in achieving an optimal detection level for the established security trust
model. Reference [21] introduced the trust mechanism into the vehicle joint network. Since
the vehicle network has the problem of inconsistent trust in different regions, this paper
proposed the combination of active detection, blockchain technology, and trust model to
improve the effectiveness of the vehicle network system in detecting malicious nodes signif-
icantly. The drawback of this algorithm is that it applies to the field of the Internet of Things.
The trust model in [22] was used to improve the security of wireless sensor networks. Due
to the limitation of computing resources and energy resources of wireless sensors, a trust
model scheme based on the Pareto frontier optimal solution was proposed in this paper,
so that the security of wireless sensors could be better guaranteed. The drawback of this
algorithm is that it involves significant computational and energy resource consumption.
In [23], the trust model was applied to underwater acoustic sensors. To identify underwa-
ter malicious nodes more accurately, deep reinforcement learning was adopted to detect
malicious behaviors in this study. Experimental results showed that, due to the adoption of
deep learning, this method could detect malicious attacks at a deep level, which greatly
ensures the safety of underwater acoustic sensors. The downside of this algorithm is that
utilizing deep reinforcement learning to construct underwater sensors requires a substan-
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tial amount of computational power and energy consumption. Reference [24] proposed a
secure routing scheme that activated trust. The main innovation of this scheme is to avoid
black holes by actively creating multiple detection paths, quickly detecting and obtaining
node trust, so as to improve the security of data paths. The drawback of this algorithm is
that constructing multiple secure paths is not only time-consuming but also consumes a
significant amount of node storage resources. Reference [25] proposed a space information
network secure routing protocol based on intrusion detection. To enhance the accuracy
of attack detection, this technique employs multiple nodes to identify malicious behavior,
thus establishing a collaborative intrusion detection system. Additionally, this approach
introduces a trust management system, which, by integrating intrusion detection and trust
management, enables more precise identification of malicious nodes, thereby enhancing the
security of satellite node routing. The advantage of this technique lies in its use of proactive
intrusion detection, which offers heightened sensitivity and accuracy in detecting malicious
behavior. However, its drawback is that the application of collaborative intrusion detection
technology consumes a significant amount of satellite resources. Reference [26] proposed
that in satellite networks, the trust measurement mechanism and routing selection strategy
work effectively when the network load is balanced and light. However, uneven network
load distribution is an inherent characteristic of satellite networks. Once the load increases,
nodes with higher trust levels may forward an increasing number of packets, leading to
congestion in certain nodes and degrading network performance. To address this, the
paper introduced load-balancing techniques to enhance the trust management system. This
enabled the satellite network to consider both network load and security simultaneously.
However, a drawback of this approach is that the trust management system employed a
simple mathematical model, resulting in lower accuracy in identifying malicious nodes.
Reference [27] proposed a trust management model based on generative adversarial net-
work (GAN) in an underwater sensor environment. This approach combined artificial
intelligence and trust management models to effectively detect malicious behavior. Addi-
tionally, the paper considered the energy consumption of underwater sensors, achieving
a balance between energy and security during the routing process. The advantage of
this method lies in its utilization of an intelligent security trust model, providing strong
assurance for the routing security of underwater sensors; however, its drawback is the
relatively high resource consumption.

The anomaly detection module in the field of deep learning has a very good effect
on the detection of malicious nodes, so many scholars have researched it. Reference [28]
used the combination of the generative adversarial network (GAN), VAE network, and
long short-term memory (LSTM) model to solve the problem that it takes a long time to
find the optimal mapping from real-time space to potential space in the anomaly detection
stage. To improve the performance of security monitoring, ref. [29] proposed a two-stage
algorithm (S2-VAE) stacked fully connected variational autoencoder network model, which
obtained excellent detection results on four public datasets. To solve the problem of poor
interpretability of anomaly detection methods in satellite remote sensing test data, ref. [30]
proposed an anomaly detection framework using causal network and feature-attention-
based long short-term memory (CN-FA-LSTM). The proposed method is more interpretable
than other commonly used prediction models, and its general applicability was verified on
two common datasets. It was proposed in [31] that errors in satellite remote sensing test
data would lead to false anomalies. To solve this problem, the deviation divide mean over
neighbors (DDMN) was used in this study to model multivariate time series data by using
a long short-term memory network, effectively avoiding false positives.

It is necessary to study the development of the ant colony algorithm because the ant
colony algorithm is used in the basic routing in this paper. In [32], an improved ant colony
algorithm was used to optimize the dynamic path given the shortcomings of the dynamic
path optimization method. The experimental results showed that the running time of the
optimal path obtained by this algorithm was obvious. In [33], an ant colony optimization
algorithm based on the small-window strategy was proposed to solve the routing and
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wavelength allocation problems in satellite optical networks. The results showed that, com-
pared with Dijkstra’s algorithm, this algorithm improved the system resource utilization by
45%. To meet the quality of service (QOS) requirements of end-to-end delay, link utilization,
and bandwidth, ref. [34] proposed a combination of heuristic algorithm and ant colony
algorithm to provide a better QOS guarantee. Experiments showed that this algorithm can
provide more QOS guarantees than the shortest path algorithm.

The subject of this paper is secure routing in satellite networks. To provide a clearer
explanation, the bullet points of the methods proposed in the literature for secure routing
are presented in the form of a table below.

In Table 1, Internet of Things represents algorithms applicable to the field of the
Internet of Things. Satellite network represents algorithms applicable to the field of satel-
lite networks. Traditional trust model indicates that the algorithm uses a trust model
without employing artificial intelligence algorithms. Intelligent trust model signifies that
the algorithm employs a trust model utilizing artificial intelligence algorithms. Energy
factor signifies that the algorithm takes both security and energy consumption factors into
account. Lastly, resource consumption signifies that the algorithm has a relatively higher
consumption of computational resources.

√
indicates that the reference in the row of

√

matches the characteristics of the column in which it resides.

Table 1. Comparison of secure routing.

Literature Internet
of Things

Satellite
Network

Traditional Trust
Model

Intelligent
Trust Model

Energy
Factor

Resource
Consumption

[14]
√ √

[15]
√ √

[16]
√ √

[17]
√ √

[18]
√ √ √ √

[19]
√ √

[20]
√ √

[21]
√ √ √

[22]
√ √ √ √

[23]
√ √ √

[24]
√ √ √

[25]
√ √ √

[26]
√

[27]
√ √ √

3. Problem Modeling
3.1. Satellite Network Model

As shown in Figure 1, the satellite network routing attack architecture consists of the
low-Earth-orbital satellite (LEO) network and the corresponding ground infrastructure
(urban building and satellite receiving stations). Among them, the nodes of the LEO
will be attacked by routing, which will pollute the data flow, and then affect the data
communication of the entire space–Earth network. The red satellite node in the figure
indicates that it has been invaded and become a malicious node. The yellow satellite node
indicates a communication interruption or information loss due to a malicious attack by
a red satellite node. The remaining blue satellite nodes indicate normal satellite nodes.
Because the satellite network will be attacked by malicious nodes during the routing
process, this article uses a trust model to strengthen the routing algorithm. In this way,
the satellite network route established by the trust model can actively identify and avoid
malicious nodes, and can effectively establish a secure route, thus improving the security
of the satellite network route.
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3.2. Security Trust Model

Since the satellite network is subject to internal attacks during the routing process, to
cope with such malicious attacks, this paper proposes to build a security trust model on
the satellite to reinforce the routing. The structure is shown in Figure 2. To identify the
malicious attack behavior, the interaction information between nodes should be collected
and should be used as trustworthy evidence by the quantity of interaction information,
then the direct trust and indirect trust vectors can be established. When the VAE network
is trained, it needs a clean trust vector as a dataset, so this paper first uses D–S evidence
theory to clean the trust vector. After the VAE network is trained successfully, the VAE
network is used to identify the collected trust evidence for malicious purposes. Finally,
the ant colony algorithm can use the security factor to combine with its pheromone in the
routing process, so as to identify malicious nodes and establish a secure route.
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3.3. Trust Evidence Data Cleaning

To assess the security of satellite network nodes, it is necessary to collect interaction
information among the nodes. For internal attacks on the satellite network, the most
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commonly used credible evidence is the number of successful communication instances
and the number of communication failures between nodes.

Due to the unique environment of satellite networks, it is not suitable to utilize a
centralized trusted authority to compute the trust values of satellite nodes. Consequently,
this paper employs a distributed collaborative approach among satellite nodes to calculate
their trust values. When a satellite node evaluates the trustworthiness of its neighboring
forwarding satellite nodes, it needs to track their historical packet forwarding behavior.
Therefore, to track the historical forwarding behavior of the evaluated satellite node, this
paper introduces a two-hop acknowledgment mechanism [18]. The mechanism operates as
follows: If the evaluating node receives acknowledgment messages from both its neigh-
bors and the neighbors of its neighbors within a specified timeframe, it indicates that
the evaluated neighboring node has successfully forwarded the packet. If, within the
specified timeframe, the evaluating node neither receives acknowledgment messages from
its neighbors nor from the two-hop neighbors, it implies that the evaluated neighboring
node explicitly refused to forward the packet. If the evaluating node within the specified
timeframe only receives acknowledgment messages from its neighbors but not from the
two-hop neighbors, it cannot determine whether the neighboring node successfully for-
warded the packet. Therefore, based on the utilization of the two-hop acknowledgment
mechanism, this paper initially defines the following formula:

a =
s

s + f + u
(1)

b =
f

s + f + u
(2)

c =
u

s + f + u
(3)

where s represents the count of successful forwarding, f represents the count of failed
forwarding, and u represents the count of cases where successful forwarding is uncertain.
Additionally, a stands for the success forwarding rate, b stands for the failure forwarding
rate, and c stands for uncertainty.

To alleviate the influence of satellite networks due to factors such as electromagnetic
radiation and cybersecurity, the D–S evidence theory is used to correct the above trust
evidence. Given a recognition framework Ω = {T,∼ T}, where T means trust, ∼ T means
dislike, m{T} represents the probability ratio of successful communication, m{∼ T} repre-
sents the probability ratio of failed communication, and m{T,∼ T}means the probability
ratio of uncertain environmental factors, the calculations of the three can be calculated
based on the above Formulas (1)–(3).

The definition of a direct trust vector is DR = {m{T}, m{∼ T}, m{T,∼ T} . In the
beginning, because the nodes in the satellite network have not had interaction with other
nodes, the result of the DR here is {0, 0, 1}. The three components of the vector, respectively,
represent the probability ratio of trust, the probability ratio of distrust, and the probability
ratio of uncertainty. Here, 1 indicates that no communication evidence has been collected
at the beginning, and it is impossible to determine whether the satellite node should
be trusted.

The trust model of this article adopts a periodic update method, so the node update
cycle can be set to ∆t. If the current DRij (tn) passes after ∆t, it will change to DRij (tn+1).
DRij represents the direct trust vector, and tn represents the current time point.

To enable the node to dynamically adjust the direct trust value of the neighbor node,
the corresponding reward and punishment function can be set:

DRij(tn+1) = (1− v)DRij(tn) + v · DRij(tn+1) (4)



Sensors 2023, 23, 8474 9 of 24

The reward and penalty function uses parameter v to adjust the ratio between the past
direct trust value and the next time point direct trust value. This allows satellite network
nodes to dynamically assess the behavior of nodes and, consequently, evaluate whether the
node’s behavior is secure. For the setting of two direct trust values, m{T} can be used to
compare the difference with zero. If it is less than zero, a larger value will be assigned to v,
so that the direct trust of the satellite node to the target node will soon slip down; if it is
greater than zero, a smaller value will be assigned to v, so as to improve the direct trust
value of the target node.

For the calculation of the recommendation trust vector IRij, we can use the direct trust
vector of all neighbors of the evaluated target node. The recommended trust vector can be
obtained by designing a special routing package to request the direct trust evaluation of
the neighbor nodes.

Finally, comprehensive trust vectors synthesize the direct trust value and the recom-
mended trust value through the following formula to obtain the comprehensive trust value.{

m∗ij(A) = ((mn1,j(A)⊕ . . .)⊕mnk.j(A))⊕mij(A), A ∈ Ω
m∗ij(∅) = 0

(5)

In Formula (5), the following two formulas are used for calculation when different
evidence is synthesized:

m1(A)⊕m2(A) =

∑
X∩Y=A

m1(X)m2(Y)

1− K
(6)

K = ∑
X∩Y=ϕ

m1(X)m2(Y) (7)

Finally, a comprehensive trust vector can be obtained through D–S evidence theory,
and then its comprehensive trust value can be obtained. To obtain the dataset of training
variational autoencoder networks, trust vectors need to be designed. The trust vector is
formed by recording the comprehensive trust value with length lw, and a large number of
such trust vectors can be accumulated for the training of deep learning network models.
Since the VAE-based anomaly detection model requires the input of normal data, a large
number of trust vectors can be generated as normal datasets without malicious node
interference at the initial stage of satellite network construction, and these data can be input
into the variational autoencoder for model training.

3.4. Intelligent Security Trust Model

The variational autoencoder is an unsupervised model. Although its structure is
similar to the self-coder, the principle is very different. The potential vector obtained by
VAE is determined, and it cannot generate vectors that differ from the original input, so its
generation process can be regarded as a discrete situation, while the encoder of variational
autoencoder learns the distribution of input data, including mean and variance, and in this
process, the noise of normal distribution can be added to enhance the uncertainty of the
system. And because it learns the distribution of the data, the intermediate variables are in
a continuous state, so there can be small changes when generating the output. Because of
this, reconfiguration probability can be used to calculate outliers during anomaly detection,
which is more conducive to the accuracy of results.

The principle of the variational autoencoder model framework with attention mecha-
nism can be divided into the following processes: first, multiple intermediate continuous
potential vectors are generated in the coding process; secondly, by introducing the attention
mechanism to record the temporal relationships of different intermediate vectors, the VAE
network can perform a weighted summation of intermediate latent variables to obtain
the final latent variable. Among them, the vector that records the correlation between
time is qc. The weighted product of the qc vector and multiple intermediate vectors can
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obtain the potential vector with the time-important information. Then, the final potential
vector is input into the decoder for training to obtain the final intelligent security trust
model. In a word, the method extracts the time importance information of the original
sample, and the detection accuracy is improved compared with the VAE network without
the attention mechanism.

The trust vectors have been cleaned by D–S evidence theory to be Tc = {l1, l2, l3 · · · lw},
which has w dimensional, where the component of the trust vector represents the compre-
hensive trust value of the continuous different moments. Multiple historical trust vectors
can be used in Figure 3 and fed to the encoder of the VAE module, which can reduce their
dimensions to generate multiple compressed potential vectors that record the characteristic
information of the original trust vector.
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Figure 3. VAE abnormal detection model. 
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To capture the temporal relationship between trust vectors using the attention mecha-
nism, the encoder can generate multiple intermediate potential variables after processing
the trust evidence, that is:

g(xi) = {p1, p2, · · · , pn} (8)

where pj(j = 1, 2, · · · , n) are the compressed vectors obtained by the encoder. Assume
that the query in the attention mechanism follows the standard Gauss distribution, which
can generate the final potential variable by extending the attention mechanism into an
intermediate potential variable. This process is divided into three steps.

In the first step, we calculate the cosine similarity of qc and pj:

Sj =
qc × pj∣∣∣∣qc
∣∣∣∣×∣∣∣∣pj

∣∣∣∣ (9)

Due to the limited resources in satellite networks, this paper employs the 2-norm to
calculate the values of ||qc|| and

∣∣∣∣pj
∣∣∣∣ in Equation (9). The calculation formula is shown

as follows:

||y|| = (
∣∣∣y1

∣∣∣2 + . . .+
∣∣∣yn

∣∣∣2) 1
2 (10)

In the second step, the required weight of the attention mechanism can be calculated
as follows:

hj =
exp (Sj)
n
∑

j=1
exp(Sj)

(11)

In the third step, after obtaining and corresponding alignment rights, the final potential
variables z can be obtained as follows:

z =
n

∑
j=1

hj × pj (12)
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In the fourth step, the loss function is set as follows:

L(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x|z, c∗)]− DKL(qϕ(z, c∗|x)||p(z, c∗)) (13)

The training of the VAE model can be carried out by a backpropagation algorithm,
and the reconstruction probability is generally calculated by the Monte Carlo technique
and reparameterization method. According to other studies, VAE can be calculated by the
average reconstruction error of multiple sampling times based on prior probability, which
can be expressed as follows:

m =
1
L

L

∑
i=1

pθ(x|µi(x), σi(x)) (14)

where L represents the number of sampling times. A variable division self-encoder can
obtain an average reconstruction error of m. The m can be directly transmitted to the ant
colony algorithm to guide the ants to find the way.

3.5. Safe Ant Colony Algorithm

In the process of using the traditional ant colony algorithm to find the way, the satellite
network does not consider security, and its initialization process is not efficient, so it is
prone to stagnation. Therefore, the formula for selecting the next hop node can be modified
to improve the efficiency of the ant colony algorithm.

First of all, when the satellite node starts to initialize the routing table, we do not
forward the ant packet with random probability, because according to the predictability
of the topology of the satellite network, the distance and direction of the current target
satellite and the source satellite can be calculated in advance. The distance and direction
between the target node and the source node can be calculated in advance to select the
nearest neighbor node to forward the packet, which can reduce the initial pathfinding time
of satellite network nodes and improve the overall efficiency of the system.

In the routing process of the ant colony algorithm, the formula of finding the next
hop node is modified in this paper, so that the ant colony algorithm not only considers the
influence of pheromone but also the security of the next hop node in the routing process.
The following formula is improved:

Pk
ij =

τij
α·wβ

ij

∑
j∈M

τij
α·wβ

ij

(15)

Pk
ij =

(τij·mij)
α·wβ

ij

∑
j∈M

(τij·mij)
α·wβ

ij

(16)

where Pk
ij represents the probability of the ant k moving from node i to node j, indicating that

the current ant is at node i. M represents the set of nodes that the kth ant has not yet visited.
τij represents the concentration of pheromones on path ij. wij represents the heuristic factor
of the ant colony algorithm on path ij. α and β are two predefined parameters used to
weigh pheromones and visibility, respectively. wij is calculated as follows:

wij =
1

dij
(17)

where dij indicates the distance from node i to j.
The original ant pathfinding Formula (15) only considers the pheromone concentration

and the visibility between nodes in the pathfinding process, where the visibility between
nodes can be recorded in the form of a matrix at the beginning. The revised Formula
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(16) combines the security assessment factor mij stored in the node i with its pheromone.
Specifically, this paper adopts a distributed trust management model, so the node i only
records the security evaluation factors of neighboring nodes and does not obtain the security
evaluation factors of other nodes across the neighbors. When the ant is pathfinding, the
node where the ant is located has stored the security assessment factor of the neighboring
nodes for a period of time, and the ant can comprehensively consider the probability of
the next hop according to the pheromone concentration, security assessment factor, and
visibility of node i and node j. If visibility is low or the product of the safety assessment
factor and pheromone goes to zero, the ant abandons the path and tries to find a more
efficient and safer path.

To avoid the ant colony algorithm falling into local optimal without exploring new
routes, the random probability q is set to compare with the fixed threshold r. If this q > r,
then we randomly read the security information of the next jump node. We choose a
neighbor node; if q≤r, we still choose the way according to the above formula.

pk
ij =


Uniform probability i f q > r
(τij ·mij)

α ·wβ
ij

∑
j∈M

(τij ·mij)
α ·wβ

ij

i f q ≤ r (18)

Moreover, when returning to the backward ant, security factors should also be consid-
ered and the formula should be updated to the backward ant:

τij(t + 1) = (1− ρ) ∗ τij(t) +
n

∑
k=1

∆τk
ij(t) (19)

Formula (20) is a security-enhanced version of Formula (19):

τij(t + 1) = (1− ρ) ∗ τij(t) +
n

∑
k=1

∆τk
ij(t) ∗mij (20)

where ρ represents the evaporation factor of pheromones in the ant colony algorithm. The
calculation formula of ∆τij is as follows:

∆τk
ij =

Q
Lk

(21)

where Q represents the constant and Lk represents the total distance traveled by the ant k.
In Formula (19), ∆τk

ij(t) represents the pheromone concentration contributed by the
ant i on the path ij. The formula updates pheromone concentrations without recording
safety factor information obtained by other ants. The ants in Formula (16) take security into
account when they find the way, but Formula (19) for updating the pheromone does not take
security into account, which will lead to deviations when the ants update the pheromone.
In order to correspond to the pheromone in Formula (16), Formula (20) combines the
pheromone left by N ants on path ij with the safety assessment factor. The meaning of
this formula is the product result of the pheromone and safety assessment factor left by n
ants passing through this path, and the product result and the pheromone volatile factor ρ
jointly determine the concentration of the updated pheromone.

In this way, when the ants were renewed to update the pheromone, the security factors
were considered to make the results more reasonable.

In short, the idea of virtual topology is used to convert the dynamic topology of a
satellite network into static topology with time slice changes. The advantage of this is
to simplify the interference of many complex factors in the topology changes as much as
possible so that the traditional ant colony algorithm can run in different time slice ranges.
The operation period of the satellite group of the polar orbit constellation is T, and there
are Ns satellite nodes in the same orbit. According to the theorem in [35], when a satellite
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node enters the polar circle within a certain time and closes the link between different
orbits, another satellite node must move out of the polar circle and open the link between
its different orbits within this time range. Therefore, we can follow the conclusion above
and divide the scope of the time slice into T/Ns, and the topology of the satellite network
in a time slice can be regarded as unchanged.

3.6. Satellite Network Security Routing Algorithm

For clearer expression, in the table below (Algorithm 1), the symbol e refers to the
iteration count of the ant colony, emax represents the maximum value of the ant colony
iteration count, N represents the number of ants, and M represents the set of nodes that the
current ants have not yet traversed.

Algorithm 1: Satellite network security routing algorithm

Input: Set the source node S and destination node D
Output: a satellite network security routing
1. The satellite network is initialized and the nodes collect communication data
2. Generating a Comprehensive Trust Vector SR Using D–S Evidence Theory
3. Use SR to generate Tc = {l1, l2, l3 · · · lw} and form a dataset for training VAE
4. The satellite node uses the VAE network to collect the security evaluation factor m of the theoretical node.
5. While e < emax
6. Set the tabu list to empty
7. For i = 1 to N do
8. While Ant i has not reached D
9. If M is not null
10. Select the next hop j based on the Formula (17)
11. Add j to the tabu list
12. End if
13. Terminate this search
14. update pheromones according to Formula (19)
15. End while
16. i = i + 1
17. End for
18. e = e + 1
19. End while
20. Generate a secure route

4. Experimental Simulation and Analysis

This article uses NS2 simulation software(ns-allinone-2.35) to achieve simulation
testing of Algorithm 1. The parameters of the satellite network are shown in Table 2:

Table 2. Experimental simulation parameters.

Parameter Name Parameter Value

Orbital altitude (km) 780
Number of orbital planes 6
Number of satellites in orbit 11
Orbital inclination (◦) 86.4
Orbital plane spacing (◦) 31.6
Interstellar link latitude threshold (◦) 60
Number of interplanetary links per satellite 4

The basic idea of simulation is to first use Python tools to build a VAE neural network
for training. As the VAE model adopted in this paper is used to detect data security at the
routing level of the satellite network, the traditional ground open dataset is not suitable for
use here. Therefore, the dataset needs to be made manually during the training of the VAE
model, that is, the routing evidence of the ant colony algorithm is collected and processed
by D–S evidence theory, and the synthetic vector is obtained and then provided to the VAE
model. After that, the training results are input into NS2, and then the safe ant colony
algorithm is established to find the way, and various parameters in the satellite network
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routing process are obtained by adding malicious attacks. Finally, the experimental results
are exported, and the data are read and plotted using Python.

For VAE, the learning rate is an important parameter in the VAE model; a too-high
learning rate will lead to rapid loss, while a too-small learning rate will lead to slow
convergence or overfitting of the model. For the setting of the learning rate, this paper
tries to use 0.1, 0.01, 0.001, 0.0001, 0.00001, and other test values, and determines that the
learning rate is 0.001 after the test. We set n in the attention mechanism to 3.

In this study, we employed NS2 simulation software to model attack scenarios among
satellite nodes, and the relevant parameters of the satellite network were shown in Table 3.
Specifically, we initially constructed a regular node topology within NS2 using code to
simulate communication between normal nodes. To introduce malicious nodes among
the normal ones, we integrated relevant Tcl code for malicious attacks into the code of
normal nodes. These malicious codes are preinstalled with the NS2 software. When the
nodes execute the ant colony algorithm, malicious nodes intentionally discard received
data packets, thereby introducing the effects of malicious attacks and disrupting the normal
operation of the network.

Table 3. Experimental simulation parameters.

Parameter Name Parameter Value

Total number of satellite nodes 66
Number of malicious satellite nodes 16
Data packet length 100 B
Ant colony population size 100
Number of ant colony iterations 500
Trust vector length passed to VAE network lw 10
Direct trust vector adjustment parameter v 0.5
Fixed threshold r 0.8
Trust evaluation model execution cycle(s) 2

These malicious nodes can initiate different types of attacks. A black hole attack
involves discarding data packets with a 100% probability upon receipt. A slander attack
provides false trust recommendations while computing indirect trust values. Additionally,
a selfish attack deliberately drops data packets at a certain rate to conserve energy.

In our paper, we assigned black hole attacks to 5 nodes, slander attacks to another
5 nodes, and selfish attacks to the remaining 6 nodes within a network of 16 nodes. These
malicious nodes integrated into the normal network are then utilized to assess the reliability
of the intelligent security trust model proposed in this study. To test the situation where the
satellite network is in the lower route of the malicious attack environment, malicious nodes
need to be added in the process of its routine, and different types of attack behavior will be
launched by malicious nodes. NS2 simulation software itself has a malicious attack code, so
the number of malicious nodes can be set in the satellite network node environment from
0 to 16. These malicious nodes can launch witch attacks, black holes attacks, defamation
attacks, selfish attacks, and other attacks. Therefore, under different types of malicious
attacks, the performance of different algorithms can be compared and analyzed under
evaluation indexes such as average end-to-end delay, packet loss rate, and throughput.

4.1. Settings of Ant Colony Algorithm Parameters

In the ant colony algorithm, the selection of different parameters has an important
impact on the performance of the algorithm.

A larger information prime weight factor α will weaken the ability to search for other
paths in the ant colony algorithm, while the smaller α value can easily cause the ant colony
algorithm to fall into a locally optimal solution. Similarly, a larger inspiration factor β will
weaken the role of pheromone in the algorithm process, leading to the local optimal solution;
and the smaller β will turn the ant colony algorithm into a simple random search. Therefore,
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the appropriate value of α and β should be determined by experiments. According to the
experimental results (Figure 4), we found that when α = 1, β = 2, the ant colony algorithm
has the minimum number of iterations, so we chose this set of parameter values.
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In addition, the value of the volatilization coefficient of the pheromone ρ in Figure 5
directly affects the global search ability and convergence speed of the ant colony algorithm.
The larger value will lead to the rapid volatilization of the searched path, increasing the
probability of the ants choosing the duplicate path. The smaller ρ value will make the
pheromone play slowly, thereby weakening the convergence of the algorithm.
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The value of the pheromone volatilization coefficient is determined by experiments.
We find that when ρ = 0.5, the ant colony algorithm can achieve the optimal solution with
the least iteration. Therefore, in the experiments of this article, the parameters of the ant
colony algorithm are ρ = 0.5.

The settings of the ant colony algorithm’s hyperparameters, denoted as α and β,
correspond to Formulas (18) and (20) mentioned earlier. The parameter α determines
the weight of the product of pheromones and the security evaluation factor, while the
parameter β determines the weight of the heuristic factor. The parameter ρ determines the
magnitude of the pheromone evaporation factor. In the ant colony algorithm, when ants
choose the next hop, they rely on Formula (18) to calculate probabilities. Ants are more
inclined to search for paths with larger pheromone levels and higher security. Without the
constraint of β, ants would disregard the distances between nodes during path selection.
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This could lead to most ants following certain fixed routes, potentially missing the optimal
path. β, however, takes into account the distances between nodes. Consequently, ants have
the opportunity to explore alternative paths during path selection, enabling the discovery
of superior routes.

Furthermore, ρ primarily determines the update of ant pheromones. As indicated
by Formula (20), the ant pheromones are not retained permanently on traversed paths;
their evaporation is determined by the magnitude of ρ. Setting ρ too large or too small is
unreasonable, as explained in the preceding text. Therefore, experimental data suggest
that when α = 1, β = 2, and ρ = 0.5, the ant colony algorithm achieves optimal performance,
ensuring the reliability of satellite network routing.

4.2. Analysis of Results

During the experiment, to simulate the malicious attack of the nodes in the satellite
network, the route nodes can be randomly selected to become malicious nodes. The
performance of the design scheme is tested by different performance indicators, and the
average end-to-end delay, packet loss rate, and network throughput of the network are
analyzed, respectively.

1© Average end-to-end delay: The time taken from the source end node where the
data packet starts to the destination node is calculated to completely accept the total time
spent on the packet [18]:

tdelay = tend − tstart (22)

2© Package rate: The packet loss rate refers to the ratio of the number of packets lost in
the process of data transmission to the number of packets sent [18]:

tplr =
nloss
nsend

(23)

3© Network throughput: Network throughput refers to the amount of node trans-
mission data during the unit time without data packet loss [20]:

th =
Sdata
Ut

(24)

4.2.1. Average End-to-End Delay

To evaluate the efficacy of the algorithm utilized in this paper, it is designated as
TVAE. Subsequent simulations will then compare the performance of TVAE with three
other algorithms: ACO (Ant Colony Optimization) [32], TAODV (Trust Ad hoc on-Demand
Distance Vector Routing) [20], and SLT (Secure Routing Algorithm of Leo Satellite Network-
Based Node Trust) [18].

Average end-to-end delay refers to the time it takes for a packet to be sent from the
source node to the destination node. After setting the number and type of malicious nodes
in NS2 simulation software, the end-to-end delay data of satellite network routing can be
obtained. As shown in the figure below, when there are no malicious nodes in the network,
the benchmark algorithm ACO does not introduce a security trust model to harden it, thus
saving additional computing time of trust value. Therefore, the average end-to-end delay
of the ACO algorithm is the lowest among the four curves. TAODV, SLT, and TVAE all need
to carry out security hardening of the trust model. Therefore, when there is no malicious
node, the average end-to-end delay has a corresponding time consumption.

In the beginning, because the number of malicious nodes is zero, the average end-to-
end delay at this time is based on the execution time of the baseline routing algorithm and
trust model. As evident from Figure 6, the average end-to-end delay of the ACO algorithm
is 9 ms lower than that of the TAODV algorithm, 15 ms lower than the TVAE algorithm,
and 18 ms lower than the SLT algorithm. The reasons for the trend of the four curves are as
follows: Because the ACO algorithm does not have trust model reinforcement, it simply
routes satellite network, so its average end-to-end delay is the smallest, while TAODV,
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because of the trust model adopted, is a traditional mathematical model which is relatively
simple in trust calculation, so its average end-to-end delay is also small. In addition, when
the SLT algorithm is running, in addition to running a basic routing module and dynamic
trust evaluation processing module, it also uses a dynamic health diagnosis processing
module to detect ISL faults, so its time consumption is larger than that of the TVAOD
algorithm. The benchmarked algorithm of TVAE, the ant colony algorithm, needs to obtain
the safety factors of the VAE module to guide its further routing in the routing process.
However, TVAE does not consume the time of the dynamic health diagnosis processing
module, so its final average end-to-end delay is slightly smaller than the SLT algorithm.
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According to the illustration in Figure 6, as the number of malicious nodes increases
to three, the curve of the TVAE algorithm crosses the curve of the TAODV algorithm.
From this point onwards, when the number of malicious nodes exceeds three, the TAODV
algorithm’s ability to counter malicious attacks becomes weaker than TVAE’s, consequently
resulting in its average end-to-end delay surpassing that of TVAE.

Additionally, as the number of malicious nodes increases from zero to four, the ACO
algorithm maintains a consistently low average end-to-end delay. The reason behind this
outcome is that the ACO algorithm lacks a security trust model; therefore, it does not
incur time overhead from security mechanisms. Moreover, due to the inherent capability
of the ACO algorithm’s pheromones to dynamically perceive the quality of paths, it can
dynamically choose alternative paths in the face of malicious attacks. Specifically, when
a malicious node initiates a packet-dropping event, the ants in the ACO algorithm notice
during multiple path exploration instances that this path is not viable, leading to minimal
pheromone deposition on that path. Consequently, the ants abandon this path and prefer
paths with higher pheromone levels. Ultimately, the other three algorithms need to account
for the delay introduced by the security trust model. As a result, the ACO algorithm
maintains a lower average end-to-end delay compared to the other three algorithms.

When the number of malicious nodes reaches five, the ACO algorithm’s self-regulation
capability through pheromones is no longer competitive against the other three algorithms
that possess security trust models. As depicted in Figure 6, it is evident that when the
number of malicious nodes exceeds five, the curve of the ACO algorithm experiences a
steep rise, indicating its inability to withstand malicious attacks.

As the number of malicious nodes in the satellite network increases, the ACO algo-
rithm does not consider the security of routing. As can be seen from the following figure,
the performance of the satellite network decreases sharply due to the attack behavior of
malicious nodes, and the delay of data packets reaching the destination node increases
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significantly. This is because malicious nodes launch witch attacks, black hole attacks,
forwarding attacks, and other attacks so that packets are maliciously intercepted and then
transferred to the destination node, or malicious packet discarding causes the source node
to retransmit packets, which will bring huge delay consumption. In contrast, because the
other three algorithms adopt the security trust model to harden the routing process, they
can cope with these malicious attacks better after malicious nodes launch attacks, so that
the delay consumption is still within the acceptable range. Among them, TAODV and SLT,
as the trust model adopted is the traditional mathematical model, have a large missing
rate of malicious nodes. Therefore, as the number of malicious nodes increases, its effect is
no longer as pronounced as in the TVAE used by neural networks. Therefore, TVAE has
the lowest average end-to-end delay when dealing with malicious node attacks. Further
observing the curve, it can be found that with the increase of malicious nodes, the growth
rate of the SLT algorithm and TVAE does not change much, while the effect of TAODV is
slightly worse. This is because the SLT algorithm consumes a certain amount of time in the
calculation of trust value, but the benchmark algorithm of the SLT algorithm is OPSPF. It
adopts a predictive way to calculate the routing table in advance, so it saves the calculation
time of routing, and its speed is also very fast.

4.2.2. Packet Loss Rate

The packet loss rate refers to the ratio of the number of packets lost in the process of
data transmission to the number of packets sent. As can be seen from the figure below,
when there are no malicious nodes in the satellite network, the packet loss rates of the
ACO algorithm, TAODV algorithm, SLT algorithm, and TVAE algorithm are not much
different. At this point, packet loss may occur due to normal factors such as network
topology changes, or it may be caused by queue congestion.

As the proportion of malicious nodes in the network increases gradually, the packet
loss rate of each algorithm also increases. Because the ACO algorithm does not consider
security factors, it is unable to cope with malicious node attacks. Malicious nodes usually
launch behaviors such as black hole attacks to discard packets, or for selfish attacks to
discard certain specific packets. These attacks will cause the packet loss rate of the algorithm
to rise sharply, seriously affecting the normal communication of data. Therefore, the packet
loss rate of the ACO algorithm can be seen in the figure with a large increase. When the
number of malicious nodes increases to 14, the packet loss rate exceeds 50%. At this time,
the algorithm is already in a functional failure state, and the network built by it cannot
carry out data communication.

However, the other three algorithms use the trust model to harden their routing
algorithms, so they can avoid malicious nodes as much as possible in the routing process,
to reduce the damage of malicious nodes to the satellite network. Therefore, the packet loss
rate increases slightly when the number of malicious nodes increases. When four malicious
nodes begin to appear in the network, the packet loss rate of the SLT algorithm and TVAE
algorithm is almost 5%, the packet loss rate of the TAODV algorithm is 11%, and the packet
loss rate of the ACO algorithm has reached 18%. Later, with the increase of malicious nodes,
when malicious nodes reach 16, the packet loss rate of the TAODV algorithm is 28%, the
packet loss rate of the SLT algorithm is 18%, and the packet loss rate of the TVAE algorithm
is 12%.

The above results show that the TAODV algorithm, SLT algorithm, and TVAE al-
gorithm all have a certain ability to resist malicious nodes in the network, so the packet
loss rate of these three algorithms shows the same trend with the increase of the number
of malicious nodes. However, since the TVAE algorithm adopts a novel neural network
to detect malicious nodes, it can identify malicious nodes well and guide ant colonies
to actively avoid these harmful nodes in the process of pathfinding in advance, so the
possibility of being attacked is minimized. Therefore, its packet loss rate can be stabilized
in a small range with the increase of malicious nodes.
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Furthermore, as depicted in Figure 7, the four curves exhibit separation and no longer
intersect as the number of malicious nodes increases. In terms of the overall trend, with
a greater number of malicious nodes, the ACO algorithm’s curve experiences a larger
upward incline, while the curves of the other three algorithms rise more gradually. The
reasons behind these outcomes are as follows:

Sensors 2023, 23, 8474 20 of 25 
 

 

 

Figure 7. The impact of a malicious attack on the package rate. 

The ACO algorithm lacks a security trust model to reinforce the security of its rout-

ing, which positions its curve at the top of Figure 7. The TAODV algorithm, due to its 

utilization of a trust model belonging to traditional mathematical models, demonstrates 

limited effectiveness against malicious attacks and cannot match the capabilities of the 

SLT and TVAE algorithms. 

Additionally, although the trust model of the SLT algorithm also employs traditional 

mathematical models, the algorithm itself is equipped with a fault detection mechanism, 

providing supplementary assistance to the trust model in combating malicious attacks. 

The TVAE algorithm adopts an intelligent security trust model, allowing it to effectively 

bypass malicious nodes when facing malicious attacks. Consequently, it maintains a lower 

packet loss rate, positioning its curve at the bottom of Figure 7. 

4.2.3. Network Throughput 

The amount of network throughput refers to the maximum rate the system can accept 

without losing data packets. Bit/second or byte/second represent the throughput test re-

sults. In the following graphs, the number of malicious nodes affects the throughput of 

the network. As the number of malicious nodes increases, the average network through-

put of the network exhibits a decreasing trend. 

When the network was maliciously attacked, because the ACO algorithm did not 

adopt any security trust mechanism, it was difficult to deal with the attack behavior of 

malicious nodes. Therefore, the number of throughputs increased by the number of mali-

cious nodes. It is equipped with a trust mechanism, so it can be identified in advance when 

dealing with malicious attacks to slow down the effect of malicious attacks. Therefore, the 

three algorithms decreased without the ACO algorithm when there was an increase of 

malicious nodes. 

In the same way, because the TAODV algorithm’s trust model is relatively simple, it 

has a general effect when dealing with malicious attacks. Therefore, its throughput was 

compared to SLT and TVAE algorithms. The SLT algorithm and its trust model are more 

complicated than TAODV, and there is a dynamic health detection module. Therefore, its 

throughput decreased moderately. Finally, the TVAE algorithm is used for abnormal de-

tection and its trust model is more sensitive when detecting malicious nodes’ attacks, so 

it can effectively avoid the malicious packet loss attack launched by malicious nodes. 

Thus, its throughput declines the slowest. 

As indicated in Figure 8, when the number of malicious nodes is 0, the ACO algo-

rithm exhibits the highest network throughput, surpassing the TAODV algorithm by 7 

kbps, the TVAE algorithm by 8 kbps, and the SLT algorithm by 11 kbps. The reason behind 

Figure 7. The impact of a malicious attack on the package rate.

The ACO algorithm lacks a security trust model to reinforce the security of its routing,
which positions its curve at the top of Figure 7. The TAODV algorithm, due to its utilization
of a trust model belonging to traditional mathematical models, demonstrates limited
effectiveness against malicious attacks and cannot match the capabilities of the SLT and
TVAE algorithms.

Additionally, although the trust model of the SLT algorithm also employs traditional
mathematical models, the algorithm itself is equipped with a fault detection mechanism,
providing supplementary assistance to the trust model in combating malicious attacks. The
TVAE algorithm adopts an intelligent security trust model, allowing it to effectively bypass
malicious nodes when facing malicious attacks. Consequently, it maintains a lower packet
loss rate, positioning its curve at the bottom of Figure 7.

4.2.3. Network Throughput

The amount of network throughput refers to the maximum rate the system can accept
without losing data packets. Bit/second or byte/second represent the throughput test
results. In the following graphs, the number of malicious nodes affects the throughput of
the network. As the number of malicious nodes increases, the average network throughput
of the network exhibits a decreasing trend.

When the network was maliciously attacked, because the ACO algorithm did not
adopt any security trust mechanism, it was difficult to deal with the attack behavior
of malicious nodes. Therefore, the number of throughputs increased by the number of
malicious nodes. It is equipped with a trust mechanism, so it can be identified in advance
when dealing with malicious attacks to slow down the effect of malicious attacks. Therefore,
the three algorithms decreased without the ACO algorithm when there was an increase of
malicious nodes.

In the same way, because the TAODV algorithm’s trust model is relatively simple, it
has a general effect when dealing with malicious attacks. Therefore, its throughput was
compared to SLT and TVAE algorithms. The SLT algorithm and its trust model are more
complicated than TAODV, and there is a dynamic health detection module. Therefore,
its throughput decreased moderately. Finally, the TVAE algorithm is used for abnormal
detection and its trust model is more sensitive when detecting malicious nodes’ attacks, so
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it can effectively avoid the malicious packet loss attack launched by malicious nodes. Thus,
its throughput declines the slowest.

As indicated in Figure 8, when the number of malicious nodes is 0, the ACO algorithm
exhibits the highest network throughput, surpassing the TAODV algorithm by 7 kbps, the
TVAE algorithm by 8 kbps, and the SLT algorithm by 11 kbps. The reason behind this
outcome is the absence of time overhead due to a security trust model in the ACO algorithm,
allowing it to process more task requests within a unit of time. However, as the number
of malicious nodes reaches four, the network throughput of the ACO algorithm becomes
lower than that of the TAODV and TVAE algorithms. Furthermore, with an increase in the
number of malicious nodes, the ACO curve steadily declines. Ultimately, when the number
of malicious nodes reaches 16, the network throughput of the ACO algorithm drops to only
60 kbps.
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This outcome is attributed to the fact that in the presence of packet loss caused
by malicious attacks, the ACO algorithm’s probability of timeout and retransmission
significantly increases. As a result, the quantity of tasks processed per unit of time by the
ACO algorithm experiences a substantial decrease.

4.3. Analysis of Transmission Delay under Data Pressure

To test the latency of data transmission under different traffic conditions, this study
increases the length of the packets themselves to provide a performance comparison of
various algorithms in this scenario. Since the comparative algorithms require the running
of a secure trust model, this paper selects a malicious node count of eight for process-
ing here. Ensuring the presence of malicious interference makes the simulation results
more convincing.

From the graph, it can be observed that as the packet size increases, the transmission
latency of each algorithm also increases. Moreover, when the packet size reaches 800 B,
the ACO algorithm’s transmission latency reaches 1560 ms, indicating that it consumes
significant time in countering malicious attacks and may not be suitable for satellite network
transmission. On the other hand, the other three algorithms, despite experiencing an
increase in transmission latency, can maintain their latency stable at around 800 ms due
to their security mechanisms in defending against malicious attacks. This ensures reliable
data transmission even as data packet sizes increase.

4.4. Model Complexity Analysis

Time complexity analysis: To analyze the time complexity of the algorithm proposed
in this paper, we break down the algorithm’s operational steps and gradually analyze their
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time complexities. As the D–S evidence theory’s time consumption in handling communi-
cation data is fixed, its time complexity is O(1). The VAE network’s time consumption in
processing trust evidence data is also fixed, resulting in an O(1) time complexity during
processing. In the context of the ant colony algorithm, let us discuss specific results based
on the parameters established earlier in this paper. From the previous context, the number
of satellite network nodes is Ns, the number of ants is N, and the number of iterations
for the ant colony is emax. Considering the worst-case scenario, given the number of Ns
satellite network nodes, the lower limit for ants to find the destination node is NP steps.
Meanwhile, when ants choose the next hop during their journey, there are Ns − 1 potential
scenarios. This implies that the worst-case scenario involves Ns ∗ (Ns − 1) operations for a
single ant’s pathfinding, resulting in a time complexity of O(N2

s ). Considering that the ant
colony comprises N distinct ants, the time complexity for N ants’ pathfinding is O(N2

s ∗ N).
Moreover, since a single iteration through the ant colony’s pathfinding process might
not yield the optimal solution, continuous iterations are necessary to achieve the optimal
solution. With emax iterations, the overall time complexity of the ant colony algorithm
becomes O(emax ∗ N2

s ∗ N).
The above is an analysis of the time complexity of the algorithm proposed in this

paper. Additionally, the additional time overhead introduced by the algorithm (TVAE)
during practical operation is not significant and falls well within an acceptable timeframe.
The specific reasons are as follows: The algorithm (TVAE) proposed in this paper operates
in two distinct phases. The first phase involves satellite nodes assessing the security of
their neighboring nodes. In the second phase, the satellite network executes the secure ant
colony optimization algorithm. These two phases are executed separately, meaning that
satellite nodes periodically evaluate the security of their neighboring nodes and store the
security assessment factor m locally. When the secure ant colony algorithm is engaged in
pathfinding, it solely requires the prestored local security assessment factor m. Furthermore,
this action of accessing the security assessment factor m is executed with exceptional speed,
resulting in minimal time consumption during the secure ant colony algorithm’s operation.
Moreover, as depicted in Figure 6, when the number of malicious nodes is zero, the
TVAE algorithm exhibits slightly higher average end-to-end latency compared to the ACO
algorithm but lower than the SLT algorithm. Consequently, its runtime remains within
acceptable limits.

Further, according to [32], the time complexity of the ACO algorithm is also O(emax ∗
N2

s ∗ N), which is the same as the time complexity of the TVAE algorithm proposed in this
paper. However, because the TVAE algorithm introduces additional time overhead for
looking up the security assessment factor m and combining it with pheromones compared
to the ACO algorithm, the TVAE algorithm consumes slightly more time than the ACO
algorithm. According to [20], the time complexity of TAODV is O(N2

s + X). Here, Ns
represents the number of satellite nodes, and X denotes the additional time overhead
involved in trust calculations. The time complexity of this algorithm is lower than that of
the TVAE algorithm, so the average end-to-end delay during the operation of the TVAE
algorithm is slightly higher than that of TAODV. Finally, based on [18], the time complexity
of the SLT algorithm is O(N2

s ∗ M) + O(Ns ∗ M), which is equivalent to O(N2
s ∗ M). Its

time complexity is similar to that of the TVAE algorithm, but due to the addition of the fault
detection time overhead denoted by O(Ns ∗M), its runtime is slightly slower compared to
the TVAE algorithm.

As shown in Figure 9, when increasing the length of data packets and in the presence
of malicious attacks, the TVAE algorithm can still maintain itself within an acceptable
range. Therefore, the time consumption brought about by its security assessment module
is not significant.
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5. Conclusions

This article represents an advancement in the conventional trust model widely utilized
in satellite network security routing. Given the open nature of satellite networks and
their vulnerability to electromagnetic radiation interference, this paper takes a twofold
approach. Firstly, it employs D–S evidence theory to mitigate these interference factors,
thereby enhancing the accuracy of the trust vector. Secondly, it leverages the variational
autoencoder architecture for identifying malicious behavior. Subsequently, the discriminant
results are integrated into the ant colony algorithm to guide satellite network routing.

Currently, research at the intersection of satellite network security routing and deep
learning remains relatively limited, and this paper presents pioneering efforts in this
direction. In the future, further enhancements can be made to optimize the speed of
satellite network security detection, thereby reducing time consumption during satellite
network routing. Additionally, introducing the energy utilization factor of satellite network
nodes into the network’s security model can strike a balance between energy efficiency and
security detection. This can ultimately lead to an improved security routing strategy for
satellite networks.
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