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Abstract: The explosive growth of online short videos has brought great challenges to the efficient
management of video content classification, retrieval, and recommendation. Video features for
video management can be extracted from video image frames by various algorithms, and they have
been proven to be effective in the video classification of sensor systems. However, frame-by-frame
processing of video image frames not only requires huge computing power, but also classification
algorithms based on a single modality of video features cannot meet the accuracy requirements
in specific scenarios. In response to these concerns, we introduce a short video categorization
architecture centered around cross-modal fusion in visual sensor systems which jointly utilizes video
features and text features to classify short videos, avoiding processing a large number of image
frames during classification. Firstly, the image space is extended to three-dimensional space–time by
a self-attention mechanism, and a series of patches are extracted from a single image frame. Each
patch is linearly mapped into the embedding layer of the Timesformer network and augmented with
positional information to extract video features. Second, the text features of subtitles are extracted
through the bidirectional encoder representation from the Transformers (BERT) pre-training model.
Finally, cross-modal fusion is performed based on the extracted video and text features, resulting in
improved accuracy for short video classification tasks. The outcomes of our experiments showcase a
substantial superiority of our introduced classification framework compared to alternative baseline
video classification methodologies. This framework can be applied in sensor systems for potential
video classification.

Keywords: video classification; cross-modal fusion; video features; text features; Timesformer

1. Introduction

In the past few years, the emergence of short video applications has exploded, such as
Tiktok, YouTube Shorts, Likee, Bilibili. Most of the short videos in these video applications
are tagged when they are released, enabling users to browse videos by category and search
within a certain category [1]. These short videos are typically characterized by their brief
duration, diverse content, and a wide range of topics. However, the exponential increase in
the number of short videos poses significant challenges in terms of effectively classifying
and managing this vast video content.

At present, the application of deep learning methods in the classification of violent
videos [2] and social media videos [3,4] has achieved good results. However, due to the
unique characteristics of short videos, such as the short duration, large amount, and many
spliced contents, it is still a difficult task to classify short videos. Research on short video
classification predominantly employs single-modal approaches which utilize either visual
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or textual features for classification. Visual feature extraction involves the extraction of im-
age features from video frames, encompassing attributes such as color histograms, texture
features, and shape characteristics. Studies have demonstrated the high efficacy of visual
features in short video classification, as they facilitate the capture of visual information
within the videos, including objects, scenes, and actions. Traditional techniques for visual
feature extraction comprise the histogram of oriented gradient (HOG) [5], histogram of flow
(HOF) [6], and motion boundary histograms (MBH) [7]. To leverage the complementarity
of these three feature types and enhance the representational capacity of video features,
researchers have introduced the dense trajectories (DT) algorithm [8] and its improved
variant, the improved dense trajectories (IDT) [9]. These algorithms are both based on
decision tree classification approaches, and utilize HOG descriptors as image features
derived by statistically analyzing the gradient information of images.

In addition to visual features, textual features are also widely employed in the field of
short video classification. These textual features typically originate from metadata informa-
tion such as video titles, descriptions, and tags. The advantage of textual features lies in
their ability to provide semantic information about the video content, thereby enhancing
classification accuracy. Researchers have developed various methods for extracting textual
features, including those based on traditional natural language processing techniques such
as the bag of visual words (BOVW) model [10], as well as deep learning-based methods
such as recurrent neural networks (RNNs) and attention mechanisms. The core idea of
BOVW is to represent images as a collection of visual words and use the frequency of word
occurrences as the image’s feature vector [11]. Firstly, local features are extracted from the
image, such as scale-invariant feature transform (SIFT) [12], local binary patterns (LBP) [13],
color histograms, etc. Subsequently, all local features are clustered into several clusters,
with each cluster corresponding to a visual word. The frequency of each word’s occurrence
is computed, and finally, this feature representation is employed for tasks such as training
classifiers. The convolutional neural networks (CNNs) primarily decompose videos into
a sequence of frames and then extract features from each frame through multiple layers
of convolutional and pooling operations. These extracted features from all frames are
aggregated and used for classification with the assistance of a classifier.

However, at present, users upload short videos with great randomness and divergence,
and users’ understanding of video categories generally varies and there is more and
more false information, resulting in inconsistent categories marked by users [14]. This
inconsistency not only affects the accuracy of the search and recommendation results of
video content categories, but also in the face of these challenges, users are more inclined
to make subjective judgments through visual content to meet their personal needs. In
addition, there is a significant difference between video content features and hashtag text
features. It is difficult to match accurate hashtags to meet users’ content consumption
needs due to insufficient video text information in the method of searching for tags with
the same text in videos [15,16]. Moreover, some videos usually do not contain classification
information, and video feature analysis is mainly based on understanding visual image
information, but lacks text semantic mining, resulting in an underutilization of semantic
information [17,18].

Thus, short video classification is essential to determine the category of a video so
that videos without user-labeled categories can also be organized in the same way as
videos with category labels. A distinct video classification framework is introduced herein
which leverages both textual and visual features in a new way. We bring together visual
features obtained from the training dataset with text features extracted from subtitles
across modalities, and integrate them into joint features for downstream classification
tasks. Specifically, the text feature uses the bidirectional encoder representation from the
Transformers (BERT) pre-training model, adds context using the attention mechanism,
and solves the parallel calculation between sentences [19–21]. Video features are extended
from image space to spatio-temporal three-dimensional volume through a self-attention
mechanism, which treats video as a series of patches extracted from a single frame. Like
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the vision Transformer (VIT), each patch undergoes linear mapping into an embedding, to
which positional data are subsequently incorporated [22]. The proposed framework uses
textual and visual features to classify short videos, which improves the accuracy of short
video classification. The related techniques can be applied in sensor systems for potential
video classification, so the subject of this paper belongs to data fusion and analysis in sensor
systems. The main contributions are as summarized below:

1. We propose an improved hierarchical clustering approach for keyframe extraction.
Unlike traditional keyframe extraction algorithms, hierarchical clustering does not
require a predefined number of keyframes to be extracted. Instead, it adaptively deter-
mines which frames are keyframes through clustering to offer greater flexibility. This
method is capable of preserving essential information from the video while effectively
reducing redundant frames, resulting in more representative extracted keyframes.

2. We investigate the extraction methods of visual features and textual features within
videos. The method of combining visual information and text information for video
classification is used in this paper. The visual information is first processed by the
key frame extraction method to divide the video into multiple images representing
the main content. The pre-trained Timesformer network is used for feature extraction
to obtain the visual features of the video. At the same time, the text information is
also extracted by the fine-tuning-based method in BERT. Finally, these two kinds of
features are fused by the feature aggregation algorithm for video classification.

3. We propose a cross-modal fusion short video classification (CFVC) framework. This
framework utilizes text features and visual features in a new way, combining the
integration of visual attributes extracted from the training dataset and text features
extracted from subtitles to achieve cross-modal fusion and integrate them into joint
features for downstream classification tasks.

The subsequent sections of this paper are structured as follows. Section 2 summarizes
the existing work related to this paper. Section 3 introduces the proposed cross-modal
fusion short video classification framework. Section 4 evaluates the proposed framework
through experiments. Section 5 concludes our work.

2. Related Work

Despite considerable progress having been achieved for image representation archi-
tectures over recent years, the realm of video architecture remains devoid of a distinctly
defined forefront structure. The current main video classification architectures are shown
in Figure 1, where k represents the count of frames within a video, and N represents a
subset of adjacent frames of the video. The main differences between these frameworks
are: (1) The first differentiation lies in determining whether the convolution and layer
operators utilize 2D (image-based) or 3D (video-based) kernels [23–25]. (2) Another key
variation involves the nature of the input provided to the network. This can be limited
to just an RGB video or expanded to encompass both an RGB video and pre-computed
optical flow [26–28]. (3) In the context of 2D convolutions, a significant consideration is
how information propagates across frames. This can be achieved through the incorporation
of temporary recurrent layers such as SlowFast or the application of feature aggregation
over time [29–31].
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Figure 1. Different types of video classification architectures (a) 3D-ConvNet, (b) Two-Stream and
(c) SlowFast.

2.1. I3D Networks

Traditional 2D convolutional neural networks have been a huge success in tasks
such as image classification, but there are some challenges in video classification tasks.
To make the most of temporal information and motion features in videos, researchers
proposed a variety of three-dimensional convolutional network (3D ConvNet) models
as shown in Figure 1a [23]. The inflated 3D ConvNet (I3D) model is extended on the
basis of a two-dimensional convolutional network. Specifically, it constructs a three-
dimensional convolutional network structure by copying and filling the weights of the pre-
trained two-dimensional convolutional network in the time dimension [24]. This approach
enables the I3D model to simultaneously process features in both spatial and temporal
dimensions, thereby better capturing dynamic information in videos. To efficiently train the
I3D model, two strategies are adopted: pre-training of the second-rate network and multi-
scale cropping [25]. First, by pre-training on a large-scale video dataset, the I3D model can
learn rich visual features. Then, it is fine-tuned on the dataset of the target task to improve
its performance on the specific task. In addition, to take advantage of the spatio-temporal
information in the video, a multi-scale cropping strategy is also introduced, which is trained
by extracting multiple cropped segments of different scales from the video. Applications of
I3D models have achieved remarkable results in several video understanding tasks.

2.2. Two-Stream Networks

Simulations of high-level changes can be achieved by the long short-term memory
(LSTM) networks based on features extracted from the final convolutional layer, but the
capturing of essential fine-grained low-level motion, pivotal in numerous scenarios, might
be hindered [26]. Training also incurs significant costs, given the necessity for the network
to be unrolled across multiple frames to facilitate time-based backpropagation. An en-
hanced methodology entails the modeling of brief temporal video snapshots, achieved
by combining forecasts originating from an individual RGB frame and a compilation of
10 externally generated optical flow frames. This is subsequently followed by the traversal
of two iterations of an ImageNet-pre-trained ConvNet [27]. An adapted input convolutional
layer is integrated within the two-stream architecture, boasting double the number of input
channels in comparison to the frames within the stream as shown in Figure 1b. During
the testing phase, numerous video snapshots are sampled and subsequently aggregated to
yield action predictions. Experiments validate the achievement of exceptional performance
on established benchmarks, concurrently showcasing remarkable efficiency during both
training and testing intervals.

Two-stream models have achieved remarkable performance in various computer vi-
sion tasks. It has been widely used in action recognition, outperforming previous methods
on benchmark datasets such as UCF101 and HMDB51 [28]. Moreover, the two-stream
model has also found applications in other domains such as gesture recognition, video
captioning, and video segmentation, demonstrating its versatility and effectiveness. Future
research directions may focus on developing more efficient architectures, exploring atten-
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tion mechanisms, and using unsupervised or weakly supervised learning paradigms to
further build up the performance and generalization capabilities of two-stream models.

2.3. SlowFast Networks

During the preceding years, an array of video action recognition networks has been
put forth by researchers, including 2D CNN, 3D CNN, and I3D network. However, these
methods have certain limitations when dealing with challenging scenarios such as long-
term dependencies and fast actions. The SlowFast network as shown in Figure 1c addresses
the problem of spatio-temporal scale differences in videos by introducing two branches,
slow and fast [29,30]. The slow branch is used to process low-frequency information to
capture long-term timing dependencies by reducing the frame rate of the input video.
The fast branch is used to process high-frequency information to capture instantaneous
actions by preserving the high frame rate of the input video. This design can effectively
balance information on both temporal and spatial scales. It primarily comprises two main
components: the slow path and the fast path [31]. The slow path is processed at a lower
frame rate, typically 1/8 or 1/16 of the input video. The fast path is processed at native
framerate. The two paths extract feature representations, βC and C, at different scales,
respectively, and integrate information through the fusion module. Finally, after global
average pooling and classification layers, βT and T, the network outputs the behavior
category of the video. The SlowFast network achieves significant performance gains on
video action recognition tasks [32]. Compared with the traditional 2D CNN network and
3D CNN network, the SlowFast network can better handle long-term dependencies and
fast actions, and improve the accuracy and robustness of behavior recognition. In addition,
the SlowFast network structure is simple and efficient, with low computing and storage
overhead, and is suitable for training and reasoning on large-scale video data [33,34].

3. System Model and Problem Formulation

In the context of viewing brief video content, the assessment of the video’s substance
based solely on subtitles is not universally definitive. Particularly for elements devoid of
auditory components, visual data assume an integral role. Consequently, a proposition
emerges wherein visual attributes are incorporated within each subtitle segment to prog-
nosticate video content. The crux of this approach pertains to the harmonious alignment
of features originating from video frames and subtitle text. Subsequently, a process of
multi-classification ensues, conducted upon the act of mapping subtitle spans into an equiv-
alent vector space as their corresponding video frames. For the text mode, we input the
subtitle text into the BERT pre-training model, and obtain the text features by fine-tuning
the parameters. The best results across various tasks within the field of natural language
processing (NLP) have been achieved by the BERT pre-training model. For the visual
pattern, we extract raw frames from the video by down-sampling. Then, we use the Times-
former feature extraction method to obtain visual features, which reaches state-of-the-art
results on several large datasets. We perform contextual query concatenation to jointly
adjust textual and visual features for the final multi-class prediction.

In this chapter, an elaborate exposition is provided regarding the method introduced
for the task of video classification. Since the approach of pre-training language has the
capacity to augment the performance of semantic representation for textual subtitle queries,
we designed a two-channel cross-modal fusion video classification method, and the process
framework is shown in Figure 2 specifically.
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Figure 2. Two-channel classification framework based on cross-modal fusion.

During the observation of a video, the evaluation of its content based on subtitle text
does not invariably constitute the sole criterion. Particularly for non-verbal components,
the visual information assumes paramount importance. Therefore, for each subtitle span,
we can add visual features to predict video content. As illustrated in Figure 2, an intricate
cross-modal video classification model is devised. Specifically, we focus on the feature joint
alignment of video frames and subtitle text. Following this alignment, the classification
of videos is executed subsequent to the transformation of subtitle spans and their corre-
sponding video frames into a unified vector space. For the textual modality, the subtitle
text is introduced to a pre-trained language model to derive textual attributes. On the other
hand, for the visual modality, the raw frames undergo down-sampling, with keyframes
being captured at regular intervals within each video. The subsequent procedure involves
the utilization of an attention mechanism to obtain visual attributes. The integration of
contextual query concatenation facilitates the synergistic alignment of textual attributes (Q)
and visual attributes (C), culminating in the ultimate prediction for video classification.

BERT and Timesformer have demonstrated outstanding performance in extracting text
and visual features. They are capable of generating high-quality feature representations
for text and images, respectively. Therefore, utilizing their output vectors can provide
a powerful feature basis for video classification. At the same time, end-to-end error
updates can require significant computing resources and time, while using only the output
vectors of BERT and Vision Timesformer can significantly reduce computing costs. This
is particularly advantageous for large-scale video classification tasks when resources are
limited or efficient processing is required. In conclusion, considering only the output
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vectors from BERT and Vision Timesformer to find a joint feature space is feasible. This
approach can provide high-quality feature representations and reduce computational costs.

3.1. Visual Feature Extraction

As deep learning continues to evolve, the architecture of the neural network exhibits
as more diversified, the network structure is more complex, its feature expression ability
becomes stronger and stronger, and it can learn image and video features very well.

At present, there are two main ways to extract visual features. One is to directly use
the 3D convolutional network to extract the features of the entire video. The other is that
overall video features are formed by feature aggregation. Due to 3D convolution, compared
with 2D convolution, it adds one dimension (time dimension) to the input and then directly
expands 2D convolution to 3D convolution. Although it can capture the time information
of the video, at the same time it increases the parameters of the network, resulting in a
larger amount of calculation, which is not conducive to real-time feature extraction. As the
length of the video increases, its calculation speed will become slower and slower. Based on
the above considerations, we use the method of selecting and extracting key frame features
to extract video features.

Whether the selection of key frames is reasonable or not directly affects the accuracy
of classification tasks. The K-means clustering algorithm is the most commonly used key
frame extraction algorithm based on clustering, which has the advantages of simplicity
and fast convergence speed. However, because the K-means clustering algorithm is very
sensitive to the initial parameters, it is easy to fall into a local optimal solution. This paper
proposes an improved hierarchical clustering algorithm based on it. This method mainly
uses the characteristics of image information entropy to measure the similarity of two
frames. If the similarity reaches a certain value, they will be merged into the same cluster
and the extracted cluster center is used as the initial clustering result. Subsequently, the
K-means algorithm is used to optimize the initial clustering result to obtain key frames.

Figure 3 is the overall frame diagram of the visual feature extraction in this experiment.
The video data have the characteristics of different time lengths. This paper mainly studies
the classification of short videos. At present, the videos in various application platforms
are basically edited and contain information. More parts can increase the number of views
of the video. Most of the video data selected in this article are about 5 s long clips, and
frame images are extracted by ffmpeg every second. In the process of data preprocessing,
for videos whose original video data length is less than 5 s, that is, the video frame is less
than 300 frames, we adopt the method of filling 0 to keep it consistent. For an original
video data length greater than 5 s, that is, the video frame is greater than 300 frames, we
use truncation processing.
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After the video is processed by the frame extraction operation, multiple pictures can
be obtained, and then feature extraction needs to be performed on the images. At present,
image features with generalization ability are widely used. At present, the commonly
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used convolutional neural networks for extracting image features mainly include the I3D
network, SlowFast network, etc. 2D and 3D convolution are still the core algorithms for
spatio-temporal features across different tasks. However, the convolutional structure has
translation invariance and cannot link the image context information well, so we choose the
Timesformer network model based on the attention mechanism. Since videos and sentences
are both continuous, coupled with the intrinsic nature of word comprehension, which often
necessitates contextual referencing within the sentence, an inclination arises to combine
a certain frame of action in a short video with the rest. To completely disambiguate, the
choice of a self-attention model is also completely effective for video modeling, and its
structure is shown in Figure 4.
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Figure 4. The Timesformer coding flow chart.

The Timesformer model stands as a video-based structure crafted exclusively upon
the foundation of self-attention mechanisms. The VIT image model is adapted for video
classification in the way of expanding the self-attention mechanism from its original image-
based realm to spatio-temporal 3D volumes. When the VIT model has enough data for pre-
training, the performance of VIT will exceed that of CNN, breaking through the limitation
of the Transformer’s lack of inductive bias, and a better migration effect in downstream
tasks. In the context of the Timesformer model, the perception of video occurs through the
lens of a sequential compilation of patches, each drawn collectively from distinct frames.
Similar to VIT, the transformation of each sequence of patches undergoes linear mapping
within an embedding layer, which is further enriched with positional particulars, and
then each sequence is projected into a fixed-length vector and sent to the Transformer for
subsequent encoder operations.

(1) Step 1: Clip input. The input to the Timesformer model consists of a clip comprising
F RGB frames of size H ×W sampled from the initial video input.

(2) Step 2: Break down into patches. Following the VIT method, each frame is divided
into N non-overlapping patches, each with dimensions P× P, in a manner where these N
patches span the entire frame; that is, N = HW/P2. These patches are flattened into vector
x(p,t) ∈ R3P2

, where p = 1, · · · , N represents the spatial position; t = 1, · · · , F represents
an index on a frame.
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(3) Step 3: Linear embedding. Each patch x(p,t) is linearly mapped to a vector

z(0)
(p,t) ∈ RD by a learnable matrix E ∈ RD×3P2

:

z(0)
(p,t) = E · x(p,t) + epos

(p,t) (1)

where epos
(p,t) ∈ RD denotes a location embedding that is subject to learning, and this

embedding serves to encode the spatio-temporal coordinates of each individual patch.
When p = 1, · · · , N and t = 1, · · · , F, the obtained embedding vector z(0)

(p,t) is sent to
the Transformer as the input, and its function is similar to the embedded word sequence
of the input text converter in natural language processing. This paper adds a special
learnable vector z(0)

(0,0) ∈ RD at the first position of the sequence to represent the embedded
classification label.

(4) Step 4: Query (q)—key (k)—value (v) computation. The Transformer architecture
employed within this paper encompasses L encoding blocks as shown in Figure 4. At each
block `, a vector value of (q, k, v) is computed from the representation z(`−1)

(p,t) encoded in
the previous block.

q(`,α)
(p,t) = W(`,α)

Q LN(z (`−1)
(p,t) ) ∈ RDh (2)

k(`,α)
(p,t) = W(`,α)

K LN(z (`−1)
(p,t) ) ∈ RDh (3)

v(`,α)
(p,t) = W(`,α)

V LN(z (`−1)
(p,t) ) ∈ RDh (4)

where W represents the weight vector, LN(·) represents LayerNorm, α = 1, · · · , A signifies
an index corresponding to various attention heads, and A signifies the aggregate number
of attention heads. Each attention head possesses a latent dimension set at Dh = D/A.

(5) Step 5: Self-attention calculation. The computation of self-attention weights is
achieved through the dot product operation. The self-attention weight α

(`,α)
(p,t) ∈ RNF+1 of

query block (p, t) is obtained by the following equation:

α
(`,α)
(p,t) = SM

 q(`,α)T

(p,t)√
Dh
·

k(`,α)
(0,0)

{
k(`,α)
(p′ ,t′)

}
p′ = 1, · · · , N
t′ = 1, · · · , F


 (5)

where SM(·) signifies the activation function known as Softmax. When attention com-
putation is confined to a dimension, such as exclusively in time or space, it culminates
in substantial computational reduction. For instance, in spatial attention, the number of
query key-value pair comparisons stands at only N + 1, wherein unique keys reference the
same frame.

α
(`,α)space
(p,t) = SM

 q(`,α)T

(p,t)√
Dh
·
[

k(`,α)
(0,0)

{
k(`,α)
(p′ ,t)

}
p′=1,...,N

] (6)

(6) Step 6: Coding. The encoding z(`)
(p,t) in block ` is obtained by weighting the vector

of values computed by the self-attention system of each attention head.

s(`,α)
(p,t) = α

(`,α)
(p,t),(0,0)v

(`,α)
(0,0) +

N

∑
p′=1

F

∑
t′=1

α
(`,α)
(p,t),(p′ ,t′)v

(`,α)
(p′ ,t′) (7)
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Subsequently, these vectors from all attention heads are subjected to projection and
directed through an MLP layer, utilizing the residual connections in each operation.

z′(`)(p,t) = Wo


s(`,1)
(p,t)

...
s(`,A)
(p,t)

+ z(`−1)
(p,t) (8)

z(`)
(p,t) = MLP(LN(z′(`)(p,t))) + z′(`)(p,t) (9)

(7) Step 7: Categorical embedding. The final clip embeddings are obtained from the
class-labeled final block.

y = LN(z(L)
(0,0)) ∈ RD (10)

After being processed by multiple Transformer encoder layers, the output of the
model’s last position is considered as a representation of the entire image.

3.2. Text Feature Extraction

In neural machine translation, the Seq2Seq model is a widely used architecture. Typi-
cally, a Seq2Seq model consists of two recurrent neural networks (RNNS) for processing
sequential data. However, such a model suffers from the obvious limitation of not being
able to perform parallel computations, as it requires processing each element of the se-
quence in turn. The word vector model tool, Word2vec, can efficiently train on millions
of dictionaries and huge datasets, and use the word vectors obtained by it to effectively
determine the similarity between different words [10]. The Word2vec model is based on
two algorithms, Skip-Gram and CBOW. The former predicts the surrounding context word
by giving the target word, and the latter predicts the target word by given the context
of the surrounding word. One disadvantage of these algorithms is that the expression
of the same word in different contexts does not change after pre-trained word vectors.
To solve the above problems, this paper considers using the BERT word vector model to
replace the sequence model and the Word2vec word vector model, as shown in Figure 5,
where x0, x1 and x2 are word embeddings of different words, h0, h1 and h are the content
streams after passing through the attention network, (q1, k1, v1) and (q2, k2, v2) are the
query—key—value vector values, and wq, wk and wv represent the weight vectors.
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Language model pre-training has demonstrated its effectiveness in enhancing a spec-
trum of natural language processing tasks encompassing a natural language inference.
Presently, two strategies underpin the application of pre-trained language models to down-
stream tasks: feature-based and fine-tuning-based. In the feature-based approach, exempli-
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fied by ELMo [35], task-specific architectures are enhanced with supplementary pre-trained
representations as additional attributes. Conversely, fine-tuning-based methods, typified
by a generative pre-training Transformer (OpenAI GPT) [36], incorporate minimal task-
specific parameters. These models then undergo training on downstream tasks through a
straightforward fine-tuning of all pre-trained parameters.

While pursuing distinct methodologies, both strategies share the same pre-training
objective function, utilizing a singular-term language model to acquire a universally appli-
cable language representation. The text feature extraction framework is shown in Figure 5.

It is contended that the prevailing techniques impose constraints on the potential
of pre-trained representations, particularly in the context of fine-tuning based methods.
The primary constraint stems from the fact that conventional language models adhere
to a unidirectional nature, thereby constraining the available options for pre-training
architectures. These limitations are not optimal for sentence-level tasks, which ignore the
incorporation of contexts from different directions of the sentence. The BERT can be used
to extract text features. Its framework has two steps: pre-training and fine-tuning based
methods. In this paper, we use the fine-tuning-based method in BERT as shown in Figure 6.
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Figure 6. Text feature extraction framework.

The input text type of this article is subtitle information, which consists of a group of
sentence pairs A and B. Firstly, word segmentation is performed on the sentence pair, and a
piece of text is divided into N or M individual words or sub-words. The input length is
fixed to 512. If the length of the input text is greater than 512, it truncates the input text,
and if the length of the input text is insufficient, it takes a special symbol to fill. A special
tag [CLS] is added at the beginning of the input text to indicate that the text belongs to a
classification task, and [SEP] tags are used to indicate the segmentation between sentences.
The BERT model optimizes its weight through multiple rounds of pre-training iterations.
Finally, each input tag corresponds to a 1024-dimensional vector denoted by E or E′. These
vectors constitute the hidden state representations T and T′ of the last layer and can be used
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as feature representations, masked language modeling (LM) and next sentence prediction
(NSP), for downstream tasks.

3.3. Cross-Modal Feature Fusion Framework

In this paper, cross-modal fusion techniques are introduced to fuse information from
different modalities together to address the problem of multimodal information processing
and analysis. In the fusion process, early fusion will inhibit the links within or between
modalities, resulting in the loss of video semantics, and the interaction between different
modalities cannot be achieved. Therefore, this paper adopts the late fusion method, which
inputs each modality information into the clustering network and uses the dot product
operation to obtain the final video feature vector. This late fusion way helps to preserve
the richness of multimodal information and realizes the interaction between different
modalities, which improves the model performance.

After the visual features and text features of video frame-level images are extracted
by Timesformer and BERT, the frame-level features need to be aggregated to obtain video-
level features before video classification. Previously, the long short-term memory network
LSTM and gated recurrent unit (GRU) can obtain the timing information of the video.
However, the next vector of the locally aggregated descriptors (NextVLAD) network and
the AttentionCluster network, which are conducive to scene recognition, are more effective
for aggregating visual features and text features.

The NextVLAD network reduces the overall parameters of the model by reducing the
input dimension and splitting it into multiple groups. It first increases the dimension of y
to obtain

.
y, and then divides

.
y into groups to obtain ỹ, and then calculates the weights with

the cluster centers, respectively. Finally, the global features are aggregated by grouping
results. Assume that the video has M frames, and the feature description y of each frame is
N-dimensional. For the K cluster centers included, NetVLAD first encodes the features of
each frame into an N × K feature vector, as shown in Equation (11).

vijk
g = αg(

.
yi)αgk(

.
yi)(ỹij

g − ckj)
g ∈ {1, . . . , G}, i ∈ {1, . . . , M}, k ∈ {1, . . . , K} (11)

where ck is the N-dimensional eigenvector coordinates of the cluster center k, G is the
number of groups, and the similarity measure calculation equation is as follows:

agk(
.
y) =

eWT
gk

.
yi+bgk

∑K
S=1 eWT

gs
.
yi + bgs

(12)

αg(
.
yi) = σ(wT

g
.
yi + bg) (13)

where σ is the sigmoid function, αg(
.
yi) computes attention weights for all groups.

The encoding feature l of the entire video is expressed as follows:

ljk = ∑
i,j

vg
ijk (14)

NextVLAD divides video features into multiple groups for clustering operations,
and introduces an attention mechanism to add weights to different groups. It uses At-
tentionCluster attention clustering while adding offset operations, thereby increasing the
weight of frames strongly related to tags in video content. Finally, several local features are
aggregated into a video global feature.

4. Experimental Results and Discussion

To realize the short video classification task, we extract its text information features
and visual information features from the video. In our experiments, the textual attributes
obtained from videos encompass elements such as video titles, subtitle information, and
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descriptions of videos. We stem these textual features and remove stop words using the
standard BERT contextual attention mechanism. We use the filtering mechanism to perform
a zero-fill operation for those that are not long enough, and directly truncate those that
are too long to remove interference [37,38]. For the visual features of the video, we use
the Timesformer method to extract video features using the spatio-temporal self-attention
mechanism. First, the model obtained by the Timesformer network pre-trained on the
ImageNet dataset is used to extract the features of each image. The 1024-dimensional
vector obtained by the last fully connected layer of Timesformer is used as the feature of
each image.

In the experiments, we use Pycharm as the development tool. Based on the Pytorch
1.13.0 deep learning framework, we use Python 3.7 as the development language. The main
configuration of the computing server is as follows: (1) Operating system: Ubuntu21.04,
(2) CPU: Intel(R) Core(TM) i7-11700K CPU @ 2.50 GHz, (3) Memory: 32 GB, (4) GPU:
RTX2080Ti.

4.1. Experimental Dataset

To explore the scalability of the model, the dataset of this experiment is the BOVText
dataset, which is a large-scale bilingual open video text dataset [39]. First of all, it has
more than 2000 videos and more than 1,750,000 + frame fragments, which is 25 times
larger than the existing largest dataset with text in videos, and the model can have a
good generalization effect on it. Second, the dataset covers 31 open categories and one
unknown category, with wide application options. Additionally, it contains the public
dataset Kinetics-400 [40]. Kinetic stands as an extensively utilized dataset for the recognition
of video actions, encompassing 400 distinct categories of human actions, with each category
featuring approximately 400 video clips. These video clips are around 10 s in length and
originate from real-world Internet videos. Each clip contains a single human action, such
as running, jumping, cycling, etc.

4.2. Performance Evaluation Index

With the objective of assessing the efficacy of multimodal classification results, four
prevalent metrics are introduced: Accuracy (AC), Precision (PE), Recall (RE), and F1 Score.
The larger the value of these performance indicators, the better the classification effect, and
their definitions are as follow equations.

AC =
TP + TN

n
(15)

PE =
TP

TP + FP
(16)

RE =
TP

TP + FN
(17)

F1 =
2PE× RE
PE + RE

(18)

where TP means that the judgment is positive and it is actually positive, TN means that it
is judged as negative and it is actually negative, FP means that it is judged as positive and
it is actually negative, and FN means that it is judged as negative and it is actually positive,
n = TP + TN + FP + FN.

4.3. Experimental Results and Analysis

The experiments mainly include single-feature experiments, multi-feature experiments,
and public dataset comparison experiments. The accuracy rate commonly used in video
classification datasets is the Top@k accuracy rate. In this experiment, the classification
model performance evaluation indicators use Top@1 and Top@5. The dataset in this article
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is divided into 32 categories, so the model will output a one-dimensional vector containing
32 values. Each value indicates the probability that the video belongs to each category,
where Top@1 refers to the correct classification of the results predicted by the model, the
accuracy rate when the sample proportion is the highest. Top@5 refers to the accuracy rate
in the first five categories of the predicted results when the proportion of correctly classified
samples is the highest in the predicted results of the model. The accuracy requirement of
the latter is wider than that of the former, so the value of the latter is generally greater than
that of the former. At the same time, we use F1 Score which takes Precision and Recall into
account to evaluate the model performance.

(1) Single-mode feature

The single-feature experiment is an experiment in machine learning and statistical
modeling that uses only one feature to train and test a model. In single-feature experiments,
other features are usually considered irrelevant or ignored, because the purpose is to
understand the impact of a single feature on model performance, and it is mainly used to
compare the accuracy of a single network and a combined network. Based on the outcomes
in Table 1, it is evident that the accuracy by the amalgamated network model surpasses
that of the individual network, and the accuracy of the combined network is 1% higher
than that of the single network. It can be seen that the effect of the same feature on a single
network may be good or bad, but the performance of the combined network model is better
than that of the single network model regardless of the feature of that modality. At the
same time, comparing the impact of different features of video data on its classification
task, it is found that the most critical data is visual information, and the impact of text
information on classification accuracy is slightly lower than that of visual information.

Table 1. Experimental results of single mode.

Mode Feature Top@1 (%) Top@5 (%) F1 (%)

NextVLAD Video frame 60.1 70.9 65.3
NextVLAD Subtitle 55.9 63.2 58.7

AttentionCluster Video frame 58.2 69.4 63.3
AttentionCluster Subtitle 52.0 62.3 56.2

NextVLAD-AttentionCluster Video frame 61.1 79.0 67.9
NextVLAD-AttentionCluster Subtitle 57.3 63.1 59.4

(2) Cross-modal fusion

The cross-modal fusion experiment refers to the fusion of the video-level features
of the data of multiple modalities in the video through the clustering network each time,
and then input them into a single network or combined network for classification. This
experiment is mainly used for comparing the classification performance between a single
modality and a fusion of two modalities. It can be seen from Table 2 that the effect of
combining the features of video visual information and text information into joint features
as video features for video classification is better than that of any single-modal feature, and
the accuracy of the combined network model is the best. Compared with the accuracy rate
of a single network, the accuracy rate is increased by 2%, and the effect of the NextVlAD
model is better than that of the AttentionCluster model. Compared with the single-feature
experiment, the accuracy rate increased by 4% to 11%.

Table 2. Experimental results of cross-modal fusion.

Mode Feature Top@1 (%) Top@5 (%) F1 (%)

NextVLAD Video frame and Subtitle 64.3 72.8 68.2
AttentionCluster Video frame and Subtitle 63.2 71.2 65.9

NextVLAD-AttentionCluster Video frame and Subtitle 65.8 82.2 73.2
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(3) Comparison of public datasets

Table 3 provides the comparison of the experimental results with public datasets. The
results presented in Table 3 highlight the superiority of the CFVC model introduced in
this paper over other existing models within the public dataset context. In comparison to
the dual-stream network that also uses modality fusion, the accuracy rate is improved by
more than 10%, because the Transformer-based Timesformer is used as the video feature
extraction network. For the VIT-L model trained end-to-end [29], the accuracy rate also
increased by 7.1%. To sum up, it is not difficult to see that the method proposed in this paper
is superior to the current mainstream convolutional neural network-based method, because
they use different structures for feature extraction, and it also proves that the Transformer-
based model extraction ability is better than CNN. Although CNN has advantages in
extracting low-level features and structures, how to associate with high-level semantic
information is a difficult problem, and Transformer uses the attention mechanism to capture
global context information to increase their relevance.

Table 3. Comparison results with other methods.

Mode Feature Top@1 (%) Top@5 (%) F1 (%)

I3D [23] Video 70.1 90.1 78.1
R [2 + 1]D-Two-Stream [27] Video + stream 73.6 90.5 81.1

Two-Stream I3D [28] Video + stream 75.7 92.6 83.3
SlowFast [29] Video 77.4 93.2 84.5

VIT-L (64 frames) [34] Video 80.5 94.5 86.9
CFVC (Our method) Video + text 87.6 96.3 91.7

5. Conclusions

In this paper, we first study the video features of different modalities and the adopted
feature extraction methods. According to the information characteristics of each video
modality, different network models are used to extract the corresponding features, so that it
can represent the information of the modality well. Then, through the clustering algorithm,
the features of the two modalities are fused to obtain the features of the video, thereby
improving the representation of the overall features. The final features are made more
useful for classification tasks by means of modality fusion. In experiments, classification
evaluation is performed on our dataset. The comparison experiment mainly studies the
difference between our model and different models. The experiment results show that
visual information has the greatest impact on video classification tasks, and the accuracy of
the model can be effectively improved by modality fusion, thus improving the accuracy of
classification. Correlative results reveal the effectiveness of our model, which has certain
advantages over other models. Due to the limited types and number of videos in the
training dataset, the impact of different training datasets on the classification performance
has not been further investigated. In future work, we will try to expand the type and
number of videos to improve the classification performance.
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