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Abstract: A differential evolution particle swarm optimization (DEPSO) is presented for the design
of a high-phase-sensitivity surface plasmon resonance (SPR) gas sensor. The gas sensor is based on a
bilayer metal film with a hybrid structure of blue phosphorene (BlueP)/transition metal dichalco-
genides (TMDCs) and MXene. Initially, a Ag-BlueP/TMDCs-Ag-MXene heterostructure is designed,
and its performance is compared with that of the conventional layer-by-layer method and particle
swarm optimization (PSO). The results indicate that optimizing the thickness of the layers in the gas
sensor promotes phase sensitivity. Specifically, the phase sensitivity of the DEPSO is significantly
higher than that of the PSO and the conventional method, while maintaining a lower reflectivity. The
maximum phase sensitivity achieved is 1.866 × 106 deg/RIU with three layers of BlueP/WS2 and
a monolayer of MXene. The distribution of the electric field is also illustrated, demonstrating that
the optimized configuration allows for better detection of various gases. Due to its highly sensitive
characteristics, the proposed design method based on the DEPSO can be applied to SPR gas sensors
for environmental monitoring.

Keywords: surface plasmon resonance; gas sensor; phase sensitivity; differential evolution particle
swarm optimization; MXene; BlueP/TMDCs

1. Introduction

Surface plasmons (SPs) comprise a special mode of electromagnetic field that exists at
the dielectric–metal interface [1,2]. As the resonance absorption peak, resonance angle, and
resonance wavelength generated when the surface plasmon resonance (SPR) occurs are
closely related to the variation in the refractive index in the sensing medium, sensors find
widespread applications in fields such as cell analysis, metamaterial absorbers, and gas
detection [3–8]. The utilization of SPR in gas detection has garnered significant attention
due to its label-free and real-time characteristics [9,10]. However, most SPR sensors rely
on measuring the intensity change in the reflected beam, which is susceptible to environ-
mental influences and exhibits a low sensitivity to changes in the refractive index of small
molecules [11,12].

In order to promote the sensitivity and resolution of SPR sensors, phase-sensitivity
configuration has been proposed in several studies in the literature [13–15], based on
the fact that the phase of the TM-polarized component of the incident light wave un-
dergoes drastic changes, while the phase of the TE-polarized component remains essen-
tially unchanged [16]. The conventional phase-modulated SPR sensor, which employs the
Kretschmann prism coupler, typically utilizes monolayer gold (Au) [17], silver (Ag) [18],
aluminum (Al) [19], or copper (Cu) [20] film as the plasmonic metal. Among these metallic
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materials, Ag is widely favored due to its strong resonance peak resulting from the char-
acteristics of the bulk plasma frequency and low D-electron band [21,22]. However, the
inherent absorption of the metal layer broadens the response, and the Ag film is vulnerable
to oxidation at ambient temperatures, which negatively affects the phase-sensitivity of the
SPR sensor. To mitigate these issues, researchers have proposed the use of two-dimensional
(2D) materials. These materials offer a high photoelectric performance, promoting light
absorption and providing an improved biological compatibility.

Blue phosphene (BlueP) is a promising 2D material produced by Zhu and Tomanek,
following the experimental discovery of black phosphorus [23]. The lattice arrangement
of phosphorus atoms in BlueP is located in the lower curved honeycomb of its lattice [24].
BlueP demonstrates thermal stability comparable to black phosphorus, and also features a
band gap of 2ev, making it highly suitable for application in SPR sensors [25]. Additionally,
due to the hexagonal crystal structure shared by the BlueP and TMDC monolayers, it is
possible to construct a van der Waals (vdw) hybrid structure of BlueP/TMDCs [26]. This
vdw heterostructure exhibits novel optoelectronic characteristics previously unseen in
2D materials. BlueP-based SPR phase sensors have been utilized in practical biosensing
due to their superior sensitivity compared to traditional monolayer biosensors [27–29].
Liao successfully developed an SPR sensor using ITO and BlueP/MoS2, achieving a max-
imum phase sensitivity of ~3.600 × 106 deg/RIU [30]. Furthermore, Li proposed an
SPR biosensor based on BlueP–graphene, which achieved the highest phase sensitivity of
1.473 × 105 deg/RIU [31].

MXene consists of metal carbide and metal nitride materials with a 2D layered struc-
ture [32]. It is exfoliated via the MAX phase and has a universal chemical formula Mn+1AXn
(n = 1, 2, or 3), where M represents early transition metals, A usually represents chemical
elements of the third or fourth main group, and X represents nitrogen or carbon [33–35].
Due to its large surface-to-volume ratio and metal level conductivity, MXene significantly
enhances the detection limit of small molecules for SPR sensors modified with MXene.
However, the sensors discussed in the aforementioned literature employ a conventional
method (CM) based on layer-by-layer optimization. As the number of SPR sensor layers
increases, this method becomes time-consuming and makes it challenging to determine the
optimal thickness of all the layers simultaneously.

An intelligent optimization algorithm is developed to design a multi-layer SPR sensor
for high sensitivity and resolution. The structure and performance of SPR sensors are
optimized using the particle swarm optimization (PSO) algorithm. Sun proposed a SPR
biosensor structure with the PSO algorithm and analyzed its sensing performance under
four different modulation modes (wavelength, angle, phase, intensity) [36]. The results
demonstrate that the optimization structure based on the PSO algorithm outperforms the
experimental structure. Additionally, Amoosoltani used the PSO algorithm to optimize
the thickness of the metal layer in an SPR gas sensor [37]. The simulation results show
a significant improvement in the Q-factor and FWHM using this method. However, the
PSO algorithm is prone to parameter selection and multi-objective parameter optimization,
leading to a faster convergence in the early stage and slower convergence in the later
stage, and a higher likelihood of being trapped in the local optima [38]. To address these
limitations, the differential evolution (DE) algorithm introduces mutation and crossover
concepts into the particle position update, enabling the algorithm to escape local optima
and effectively handle a large number of design parameters.

The DEPSO algorithm is used in this article to design a high-phase-sensitivity SPR
gas sensor based on the Ag-BlueP/TMDCs-Ag-MXene hybrid structure for gas detection.
The DEPSO algorithm uses an objective function with a restraint condition of minimum re-
flectivity. By optimizing the layer thickness in the Ag-BlueP/TMDCs-Ag-MXene modified
structure, the phase sensitivity of the SPR gas sensor can be increased while maintain-
ing a low reflectivity, making it more suitable for gas detection. The performance of the
optimized structure is then evaluated via detecting different gases. Finally, the ultrasensi-
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tive properties of the optimized structure are further analyzed via illustrating the electric
field distribution.

2. Theoretical Modeling and Design Consideration

The schematic diagram of the phase-sensitivity SPR gas-detection setup is shown in
Figure 1. The proposed SPR gas sensor consists of a BK7 prism (nBK7 = 1.5151); a Ag film
with RI is nAg = 0.0803 + 4.2347i based on the Drude–Lorentz model as the plasmonic
metal. Table 1 shows the RIs and monolayer thicknesses of the BlueP/TMDCs and MXene
at the wavelength of 633 nm. The sensing medium is air, and its RI is 1. To provide a
basis for the numerical simulation method, Figure 1 shows the feasibility of the proposed
method in the experiment. Firstly, the He-Ne laser passes through a laser beam expander
and polarizer to obtain 45◦ linear polarization for the P-wave and S-wave. Then, the light
is incident upon the SPR gas sensor at angle θ, which is controlled by the 3-axis rotation
stage. At last, it enters the Mach–Zehnder interference to obtain the interference patten and
calculate the actual phase sensitivity of the SPR gas sensor.
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Figure 1. Schematic diagrams of the proposed phase-sensitivity SPR gas-detection setup.

Table 1. The monolayer RI and thickness of BlueP/TMDCS and MXene at λ = 633 nm [26,32].

2D Materials Thickness (nm) Refractive Index

BlueP/MoS2 0.75 2.81 + 0.32i
BlueP/MoSe2 0.78 2.77 + 0.35i
BlueP/WS2 0.75 2.48 + 0.17i
BlueP/WSe2 0.78 2.69 + 0.22i

MXene 0.99 2.38 + 1.33i

For the sake of validating the performance of the sensor, the transfer matrix method
(TMM) is used to compute the total reflection coefficient r of p-polarized and s-polarized
light, as follows:

r =
(M11 + M12qN)q0 − (M21 + M22qN)

(M11 + M12qN)q0 + (M21 + M22qN)
(1)
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The characteristic matrix of the N-layer structure is given by:

M =
N
∏

m=1
Mm =

[
M11 M12
M21 M22

]

=

[
cos βm − i

qm
sin βm

−qm sin βm cos βm

] (2)

 qk =
(εk−n2

0 sin2 θ0)
1
2

εk
P-wave(TM)

qk = (εk − n2
0 sin2 θ0)

1
2 S-wave(TE)

(3)

βm =
2πdm

λ
(εm − n2

0 sin2 θ0)
1
2 (4)

In these equations, λ represent the wavelength of the incident light, and qk is the
optical admittances. dm and εm represent the thickness and dielectric constant of each film
layer, respectively. From the above equation, the reflectance Rp is Rp =

∣∣rp
∣∣2, and the phase

of the p-polarized and s-polarized light can be expressed as:{
φp = arg(rp)
φs = arg(rs)

(5)

Furthermore, the phase difference (φd) between the p-polarized (φp) and s-polarized
(φs) light can be described as:

φd =
∣∣φp − φs

∣∣ (6)

Therefore, the phase sensitivity of the sensor is given by:

S =
∆φd

∆nbio
(7)

where ∆φd is the differential phase corresponding to changes in the refractive index of gas.
In this work, a high-phase-sensitivity SPR sensor based on a Ag-BlueP/TMDCs-Ag-

MXene hybrid structure is designed and numerically investigated using MATLAB software
(R2021a), based on differential evolution particle swarm optimization and the transfer
matrix method with the Fresnel equation for the detection of various gases.

3. Differential Evolution Particle Swarm Optimization

The particle swarm optimization (PSO) is a group-based intelligence optimization
algorithm that simulates the foraging behavior of birds. It achieves this by imagining each
bird as a particle and representing each possible solution as a particle in the population [39].
Each particle has its own velocity and position. The updating of the particle position and
velocity is mainly achieved via comparing itself with the surrounding particles and the
current optimal value of the population. Due to these characteristics, it can be seen that
the PSO is suitable for optimizing the solution of multi-dimensional problems. However,
the PSO has the problem of a fast convergence speed in the early stage. Additionally, the
information exchange between each particle is unidirectional, which causes the population
to lack diversity in the later stages of the algorithm and easily fall into the local optimum.

To address this issue, this paper designs a differential evolution particle swarm opti-
mization algorithm. The idea is to introduce mutation and crossover strategies from the
differential evolution algorithm into the process of particle updates. This integration aims
to maintain the diversity of the particle swarm in the later stage of the search, thereby
improving the global optimization performance of the algorithm.
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The specific steps of designing the phase-sensitivity SPR gas sensor based on the
DEPSO are as follows. At first, the population positions and velocities need to be randomly
initialized, and then the positions and velocities of the particles are updated after a compar-
ison. Afterwards, we perform mutation operations on the updated population to generate
temporary intermediate individuals:

ωi,G+1 = xbest,G + F · (xr1,G − xr2,G + xr3,G − xr4,G) (8)

where the randomly selected serial numbers r1, r2, r3, and r4 are different from each other,
and F denotes the scaling factor, which determines the degree of variation.

Similar to the crossover operator in genetic algorithms, in order to enhance the popu-
lation diversity, the crossover operation in the differential algorithm can be represented as:

µij,G+1 =

{
ωij,G+1, i f randb(j) ≤ CR or j = jrand

xij,G+1, otherwise
(9)

where CR represents the crossover probability, and jrand is a random integer between [1, 2, . . ., D].
Finally, new populations are generated through the above mutation and crossover

operation, and the new populations are evaluated and the global optimal solution is
updated until the termination condition is satisfied. The pseudocode of the DEPSO can be
described as below (Algorithm 1):

Algorithm 1: DEPSO

Initialize:
(1) Population N, dimension D, iteration T, Scaling factor F, Leaning factor C, hybrid probability
(2) Randomly initialize particle position x_pso, velcolity v, mutation operator w, selection operator
u, Pi and Pg of particles
(3) Cycle
(4) For i = 1:N
(5) For j = 1:D

(6)


vij(t + 1) = vij(t) + c1r1(pij(t)− x_psoij(t))

+c2r2(pgj(t)− x_psoij(t))
x_psoij(t + 1) = x_psoij(t) + vij(t + 1)
%Update the velocity and position of the particle

(7) If func(x_psoij) > func(pij) then pij = x_psoij
(8) End If func(x_psoij) > func(pgj) then pgj = x_psoij
(9) End

% Mutation and Crossover operation

(10) F = F0 · 2e1− T
T+1−t

(11) ωi = xbest + F(xr1 − xr2 + xr3 − xr4)
(12) uij = Crossover (x_psoi,ωi)
(13) If func(ui) > func(x_psoi) then xi = ui
(14) else xi = x_psoi
(15) End

% Update globe values
(16) If max(func(pg)) > max(func(xi)) then
(17) [fmax,r]= max(func(pg)); bestx=x_pso(r,:);()
(18) else [fmax,r]= max(func(xi)); bestx=xi(r,:);
(19) End
(20) End
(21) End
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The DEPSO is used to optimize the thickness of the proposed structure to simultane-
ously obtain a high phase sensitivity and low reflectivity at the resonance angle. Therefore,
the objective function is defined as:

OF =

{
S, Rmin < 0.01
0, others

(10)

where S is the phase sensitivity, and Rmin represents the minimum reflectivity. The aim is to
find the maximum value of the objective function in the search region. Apart from that, the
process of finding the maximum phase sensitivity is also the process required to minimize
the value of Rmin; if the Rmin is larger than 0.01, then the solution will be discarded.

4. Results and Discussion

In order to verify the effectiveness of the proposed method, the conventional method
and particle swarm optimization (PSO) are used to optimize and verify the same het-
erostructure. First of all, in the conventional method, the thickness of the first layer(d1)
and the third layer(d3) of the Ag film are randomly set to 20 nm, the RI of the gas is
changed to 0.0001, and the phase sensitivity with respect to different SPR sensor structures
at the same change in RI are obtained. As shown in Figure 2, the sensor structures (I~IV)
represent Ag-BlueP/TMDCs (BlueP/MoS2, BlueP/MoSe2, BlueP/WS2, BlueP/WSe2)-Ag-
MXene hybrid structure, N stands for BlueP/TMDCs, and L is for the MXene layer. It can
be seen from Figure 2 that, without the layer of BlueP/TMDCs and MXene, the sensor
structure has the lowest phase sensitivity, with 4.875 × 104 deg/RIU. Then, by adding
monolayer BlueP/TMDCs or MXene, the phase sensitivity significantly increases compared
to the sensor structure that only has the coated Ag film. Moreover, the sensor structures
(I~IV) show the highest phase sensitivity, with 1.582 × 105 deg/RIU, 1.611 × 105 deg/RIU,
1.514 × 105 deg/RIU, 1.542 × 105 deg/RIU when both the monolayer of BlueP/TMDCs
and MXene are added. Through a comparison of the corresponding data, it can be con-
cluded that the phase sensitivity of the hybrid structure (I~IV) N = 1&L = 1 is more
than three times that of N = 0&L = 0, whereas the improvement in phase sensitivity for
N = 1&L = 0 over N = 0&L = 0 is more than 2%, and the phase sensitivity of structure
N = 0&L = 1 is less than three times that of N = 0&L = 0. Therefore, the proposed SPR gas
sensor exhibits a greater enhancement compared to the sensor structure that only has a
monolayer of BlueP/TMDCs, MXene, or Ag film.
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In addition, to better illustrate the improvement in the phase sensitivity of the SPR
sensor through the addition of the BlueP/TMDCs and MXene layer, the influence of the



Sensors 2023, 23, 8401 7 of 16

number of layers of BlueP/TMDCs and MXene on the phase sensitivity is shown in Figure 3.
It is clear from the figure that the phase sensitivity is related to the number of BlueP/TMDCs
and MXene layers, with the increase in layers, the phase sensitivity is not a monotone
function. The highest phase sensitivities are 5.983 × 105 deg/RIU, 5.767 × 105 deg/RIU,
9.155 × 105 deg/RIU, 9.492 × 105 deg/RIU for the five-layer Blue/MoS2, four-layer Blue/
MoSe2, seven-layer Blue/WS2, and eight-layer Blue/WSe2 with a monolayer of MX-
ene, respectively.
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It can be concluded from the above analysis that the sensor structure with the BlueP/
TMDCS and MXene layer is feasible in improving the phase sensitivity. However, the
number of BlueP/TMDCs and MXene layers cannot be arbitrarily determined. Therefore,
it is necessary to use an algorithm to simultaneously optimize the thickness of each layer of
the SPR sensor.

A Ag-BlueP/TMDCs-Ag-MXene hybrid-structure-based SPR gas sensor is designed
via the PSO and the DEPSO to verify the effectiveness of the method. In Equations (1)–(8),
it is evident that the value of the objective function is related to the thickness of Ag d1 and
d2, the thickness of BlueP/TMDCs N1–N4, and the number of layers in MXene L1. Thus,
there are seven design parameters, which are as follows: x = [d1, d2, N3, N4, N5, N6, L7]T =
[x1, x2, x3, x4, x5, x6, x7]T. The search range for each variable is set as 0 < d1, d2 < 50 nm,
0 < N1 . . . N4, L1 ≤ 10 layers. At 633 nm, silver film thicknesses (d1, d2) less than 50 nm
usually have a good sensing performance [16,18] and, for N1 . . . N4, L1 > 10 layers, the
resonant dip vanishes. Before invoking the algorithm, the initialization variables are listed
in Table 2, all of which are set based on experience to enable the algorithm to perform
optimally [40].

After 100 iterations, the change in the optimized layer thickness of the Ag-BlueP/
TMDCs-Ag-MXene structure-based SPR sensor via the PSO is shown in Figure 4. The
corresponding structural parameters, including the minimum reflectivity at the resonance
angle and the phase sensitivity, are presented in Table 3. From Figure 4 and the relevant
data in Table 3, it can be seen that as the number of iterations increases, the thickness of the
optimized SPR biosensor oscillates first and then converges to a stable value. For Figure 4a
and Table 2, the optimized Ag-BlueP/MoS2-Ag-MXene heterostructure reaches the highest
phase sensitivity of 1.824 × 106 deg/RIU, the minimum reflectivity of 2.360 × 10−4, when
the thickness of the first and third Ag are 19.064 nm and 22.244 nm, and the BlueP/MoS2
and MXene are bilayer and monolayer, respectively. For the Ag-BlueP/MoSe2-Ag-MXene
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heterostructure, when the BlueP/MoSe2 and MXene are both monolayer, the thickness
of the first and third Ag layer are 16.310 nm and 25.367 nm, the highest phase sensitivity
is 1.808 × 106 deg/RIU, and the minimum reflectivity is 5.289 × 10−5. In Figure 4c,
the optimized Ag-BlueP/WS2-Ag-MXene hybrid structure achieves the highest phase
sensitivity of 1.821 × 106 deg/RIU, the minimum reflectivity of 1.271 × 10−4, when the
thickness of first and third Ag layer are 16.310 nm and 25.367 nm, and the layer of both the
BlueP/WS2 and graphene is a monolayer. Finally, the SPR sensor of the Ag-BlueP/WSe2-
Ag-MXene heterostructure is optimized when the BlueP/WSe2 and MXene are monolayer,
the thickness of first and third Ag layer are 21.502 nm and 20.142 nm, the highest phase
sensitivity can achieve 1.816 × 106 deg/RIU, and the minimum reflectivity is 1.395 × 10−4.
The above results demonstrate that, by optimizing the thickness of each layer, the phase-
sensitivity to RI change can be promoted in the SPR gas sensor.

Table 2. The setting of the parameters for the algorithms.

Parameters
Algorithm

PSO DEPSO

Particle number 100 100
Maximum iterative times 100 100

Acceleration constants c1/c2 2/2 /
Inertia weight coefficient range [0.6, 0.9] [0.6, 0.9]

Scale factor F0 / 0.1
Crossover probability CR / [0.2, 0.9]

Table 3. The performance parameters of the optimized Ag-BlueP/TMDCs-Ag-MXene structure via
the PSO.

Type of
BlueP/TMDCs

First Layer
Ag (nm)

Third Layer
Ag (nm)

BlueP/TMDCs
Layer (N)

Mxene
Layer (L)

Minimum
Reflectivity

Incident
Angle (deg)

Phase Sensitivity
(deg/RIU)

Iterations
(Times)

BlueP/MoS2 19.064 22.244 2 1 2.360 × 10−4 43.09 1.824 × 106 58
BlueP/MoSe2 16.310 25.367 1 1 5.289 × 10−5 43.06 1.808 × 106 67
BlueP/WS2 17.806 23.932 1 1 1.271 × 10−4 43.06 1.821 × 106 60
BlueP/WSe2 21.502 20.142 1 1 1.395 × 10−4 43.07 1.816 × 106 93

Figure 5 presents the schematic of the implementation of the DEPSO algorithm in
conjunction with TMM. Initially, a population of 100 configurations is generated, and the
phase difference and minimum reflectivity for each configuration are computed. Sub-
sequently, the configurations are sorted based on their phase sensitivity, given that the
minimum reflectance is less than 0.01. Following this, the position and velocity of the
particles are updated, and mutation and crossover operations are performed to generate the
offspring population. Furthermore, TMM calculates the phase sensitivity of the offspring
population and compares the OF value with the current optimal solution to determine
the configuration to be transferred to the next generation. Ultimately, the entire process
is repeated until the termination condition is achieved, leading to the identification of the
best solution.

Figure 6 and Table 4 gives the change in the optimized layer thickness of the Ag-
BlueP/TMDCs-Ag-MXene structure-based SPR sensor via the DEPSO. Under the premise
of ensuring a minimum reflectivity of less than 0.01, it can be seen that, compared with the
PSO and the conventional method, the phase sensitivity based on the DEPSO is greatly
improved, and the number of iterations of the algorithm to reach the stable optimal value
is significantly reduced. For the BlueP/MoS2 structure, for the highest phase sensitivity of
1.833 × 106 deg/RIU, the minimum reflectivity is 1.824 × 10−4, when the thickness of the
first and third Ag film are 18.401 nm and 22.609 nm, the BlueP/MoS2 is three layers, and the
MXene is one layer. Subsequently, the optimized Ag-BlueP/MoSe2-Ag-MXene structure
via the DEPSO is shown as Figure 6b. The highest phase sensitivity is 1.811 × 106 deg/RIU,
the minimum reflectivity of 3.597 × 10−5, when the thickness of the first and third Ag are
17.668 nm and 22.948 nm, the BlueP/MoSe2 is four layers, and the MXene is one layer. Then,
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when the BlueP/WS2 is three layers, the MXene is one layer, and the thickness of the first
and third Ag layers are 18.513 nm and 22.712 nm, the maximum phase sensitivity can reach
1.866 × 106 deg/RIU for the Ag-BlueP/WS2-Ag-MXene hybrid structure. Finally, for the
SPR gas sensor of the Ag-BlueP/WSe2-Ag-MXene heterostructure, when the BlueP/WSe2
is bilayer and the MXene is monolayer, and the thicknesses of the first and third Ag films are
17.226 nm and 24.236 nm, the maximum phase sensitivity can reach 1.821 × 106 deg/RIU,
and the minimum reflectivity is 1.283 × 10−4. In comparing Figure 5 with Figure 6, and
Table 3 with Table 4, it can be seen that the DEPSO algorithm requires fewer iterations
to reach an optimal solution, which shows better convergence characteristics. Moreover,
the DEPSO algorithm exhibits a superior global search ability, which enables it to jump
out of the local optimal value and more fully utilize the high electron concentration and
mobility of BlueP/TMDCs and MXene, thus enhancing the performance of SPR sensors,
making them suitable for detecting mixed gases. At the same time, as the number of SPR
sensor layers increases, the DEPSO algorithm can find the optimal thickness of all layers
simultaneously and save time, which has the advantage of working with a large number of
design parameters.
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Table 4. The performance parameters of the optimized Ag-BlueP/TMDCs-Ag-MXene structure via
the DEPSO.

Type of
BlueP/TMDCs

First Layer
Ag (nm)

Third Layer
Ag (nm)

BlueP/TMDCs
Layer (N)

Mxene
Layer (L)

Minimum
Reflectivity

Incident
Angle (deg)

Phase Sensitivity
(deg/RIU)

Iterations
(Times)

BlueP/MoS2 18.401 22.609 3 1 1.824 × 10−4 43.11 1.833 × 106 13
BlueP/MoSe2 17.668 22.948 4 1 3.597 × 10−5 43.13 1.811 × 106 21
BlueP/WS2 18.513 22.712 3 1 1.271 × 10−4 43.10 1.866 × 106 32
BlueP/WSe2 17.226 24.236 2 1 1.283 × 10−4 43.08 1.821 × 106 18

At the same time, the objective function curves of the Ag-BlueP/TMDCs-Ag-MXene
hybrid structure of the SPR gas sensor via the PSO and the DEPSO are shown in Figure 7.
It is observed that, with increasing iterations, the value of the objective function of the
DEPSO increases much more rapidly than the PSO, and the higher value of OF has been
stable for about 30 times when the value of the objective function of the PSO has been
stable for about 65 times. Based on the above analysis, it can be seen that the DEPSO
algorithm not only effectively improves the phase sensitivity of the SPR gas sensor, but also
reduces the number of iterations. Therefore, the DEPSO has a high efficiency and accuracy
in optimizing the multi-layer sensor structure.

To further illustrate the performance of the optimized sensor, the electric field distri-
bution has been investigated in Figure 8. From (a) to (d), one can see that, after coating
the BlueP/TMDCs and MXene onto the surface of the traditional SPR sensor, there is a
great increase in the electric field intensity, which means a stronger excitement of SPs.
Furthermore, the electric field intensity shows tremendous changes at the MXene–sensing-
medium interface when the RI of the air changes from 1 to 1.001, which illustrates that a
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small change in the sensing medium will result in dramatic variation in the surface wave
characteristics.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 17 
 

 

of SPR sensors, making them suitable for detecting mixed gases. At the same time, as the 
number of SPR sensor layers increases, the DEPSO algorithm can find the optimal thick-
ness of all layers simultaneously and save time, which has the advantage of working with 
a large number of design parameters. 

  
(a) (b) 

  
(c) (d) 

Figure 6. The change in optimized layer thickness of the designed SPR gas sensor versus generation 
via the DEPSO. (a) Ag-BlueP/MoS2-Ag-MXene structure; (b) Ag-BlueP/MoSe2-Ag-MXene structure; 
(c) Ag-BlueP/WS2-Ag-MXene structure; (d) Ag-BlueP/WSe2-Ag-MXene structure. 

Table 4. The performance parameters of the optimized Ag-BlueP/TMDCs-Ag-MXene structure via 
the DEPSO. 

Type of 
BlueP/TMDCs 

First Layer 
Ag (nm) 

Third Layer 
Ag (nm) 

BlueP/TMDCs 
Layer (N) 

Mxene 
Layer (L) 

Minimum 
Reflectivity 

Incident Angle 
(deg) 

Phase Sensitivity 
(deg/RIU) 

Iterations 
(Times) 

BlueP/MoS2 18.401 22.609 3 1 1.824 × 10−4 43.11 1.833 × 106 13 
BlueP/MoSe2 17.668 22.948 4 1 3.597 × 10−5 43.13 1.811 × 106 21 
BlueP/WS2 18.513 22.712 3 1 1.271 × 10−4 43.10 1.866 × 106 32 
BlueP/WSe2 17.226 24.236 2 1 1.283 × 10−4 43.08 1.821 × 106 18 

At the same time, the objective function curves of the Ag-BlueP/TMDCs-Ag-MXene 
hybrid structure of the SPR gas sensor via the PSO and the DEPSO are shown in Figure 7. 
It is observed that, with increasing iterations, the value of the objective function of the 
DEPSO increases much more rapidly than the PSO, and the higher value of OF has been 
stable for about 30 times when the value of the objective function of the PSO has been 

Figure 6. The change in optimized layer thickness of the designed SPR gas sensor versus generation
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In addition, Figure 9 shows that the visible wavelength range has been utilized to
study the effect of changes in phase difference on sensitivity. From the figure, it can be
observed that the highest phase sensitivity can be obtained around 633 nm but, in other
visible regions, the proposed sensing structure in this paper also achieves a high phase
sensitivity. This indicates that the proposed sensor structure can be used not only to detect
gases at 633 nm, but also to detect gases at different wavelengths.



Sensors 2023, 23, 8401 12 of 16

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17 
 

 

stable for about 65 times. Based on the above analysis, it can be seen that the DEPSO algo-
rithm not only effectively improves the phase sensitivity of the SPR gas sensor, but also 
reduces the number of iterations. Therefore, the DEPSO has a high efficiency and accuracy 
in optimizing the multi-layer sensor structure. 

  
(a) (b) 

  
(c) (d) 

Figure 7. The change in the optimized OF of the designed SPR gas sensor versus the generation of 
the DEPSO and the PSO. (a) Ag-BlueP/MoS2-Ag-MXene structure; (b) Ag-BlueP/MoSe2-Ag-MXene 
structure; (c) Ag-BlueP/WS2-Ag-MXene structure; (d) Ag-BlueP/WSe2-Ag-MXene structure. 

To further illustrate the performance of the optimized sensor, the electric field distri-
bution has been investigated in Figure 8. From (a) to (d), one can see that, after coating the 
BlueP/TMDCs and MXene onto the surface of the traditional SPR sensor, there is a great 
increase in the electric field intensity, which means a stronger excitement of SPs. Further-
more, the electric field intensity shows tremendous changes at the MXene–sensing-me-
dium interface when the RI of the air changes from 1 to 1.001, which illustrates that a small 
change in the sensing medium will result in dramatic variation in the surface wave char-
acteristics.  

Figure 7. The change in the optimized OF of the designed SPR gas sensor versus the generation of
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structure; (c) Ag-BlueP/WS2-Ag-MXene structure; (d) Ag-BlueP/WSe2-Ag-MXene structure.

Moreover, different gases are used to benchmark the adaptivity of the proposed
sensor at 633 nm. From Table 5, it can see that the sensor structures optimized in this
paper had a high phase sensitivity when detecting different gases, which indicates that the
BlueP/TMDCs and MXene are suitable for SPR gas sensor due to their unique characteristics.

Table 5. The performance parameters of the Ag-BlueP/WS2-Ag-MXene structure for various gases.

Gas RI Minimum Reflectivity Phase Sensitivity (deg/RIU)

Helium He 1.000035 [41] 9.177 × 10−5 1.822 × 106

Ethane C2H6 1.000748 [42] 4.901 × 10−5 1.833 × 106

Propane C3H8 1.00108 [43] 1.022 × 10−4 1.836 × 106

Hydrogen H2 1.000132 [41] 1.552 × 10−4 1.829 × 106
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5. Conclusions

A novel method for designing SPR gas sensors with a high phase sensitivity using
bilayer metal film, BlueP/TMDCs, and MXene is proposed in this work. It has been
proven that the DEPSO method, with restrained conditions to simultaneously optimize
the thickness of each layer of the SPR gas sensor, exhibits a better efficiency and accuracy
compared to the conventional and PSO methods. The results indicate that the sensor
with the Ag-BlueP/TMDCs-Ag-MXene structure, where BlueP/WS2 has three layers and
MXene is monolayer, achieves the maximum phase sensitivity of 1.833 × 106 deg/RIU,
1.811 × 106 deg/RIU, 1.866 × 106 deg/RIU, and 1.821 × 106 deg/RIU. Furthermore, the
ultrasensitive properties are demonstrated by the distribution of the electric field and the
detection of different gases, which support the suitability of the proposed structure for
gas-sensing applications.
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