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Abstract: In order to improve the real-time performance of the trajectory tracking of autonomous
vehicles, this paper applies the alternating direction multiplier method (ADMM) to the receding
optimization of model predictive control (MPC), which improves the computational speed of the
algorithm. Based on the vehicle dynamics model, the output equation of the autonomous vehicle
trajectory tracking control system is constructed, and the auxiliary variable and the dual variable
are introduced. The quadratic programming problem transformed from the MPC and the vehicle
dynamics constraints are rewritten into the solution of the ADMM form, and a decreasing penalty
factor is used during the solution process. The simulation verification is carried out through the
joint simulation platform of Simulink and Carsim. The results show that, compared with the active
set method (ASM) and the interior point method (IPM), the algorithm proposed in this paper can
not only improve the accuracy of trajectory tracking, but also exhibits good real-time performance
in different prediction time domains and control time domains. When the prediction time domain
increases, the calculation time shows no significant difference. This verifies the effectiveness of the
ADMM in improving the real-time performance of MPC.

Keywords: trajectory tracking; model predictive control (MPC); alternately direction multiplier
method (ADMM); quadratic programming; real-time performance

1. Introduction

Autonomous driving is the main direction of development in the future automobile
field. Its advantages have been demonstrated in many aspects and attracted wide attention
and recognition from society. The main content of autonomous driving technology includes
perception, decision-making, planning, control and other aspects [1]. Among them, trajec-
tory tracking is the main content of the control level and one of the core technologies of
autonomous vehicles, which determines the performance indicators such as the safety and
comfort of vehicle operation [2].

Trajectory tracking is a fundamental function of autonomous vehicles that ensures that
the vehicle travels along a preset path. Proportional integral derivative (PID) control, pre-
view control theory, sliding mode control, deep learning, model predictive control (MPC),
and other methods have provided numerous trajectory tracking strategies for autonomous
vehicles [3–8]. MPC is widely used by researchers to address the trajectory tracking control
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problems for intelligent vehicles. MPC is characterized by predictive modeling, receding
optimization, feedback correction, and the ability to handle constrained optimization prob-
lems [9–13]. Aiming at the trajectory tracking problem of distributed drive vehicles, based
on the MPC and vehicle dynamics model, a method combining the trajectory tracking
preview time control and differential torque control based on the reference angle has been
proposed, which improved the trajectory tracking performance [14]. In order to improve
the tracking ability of autonomous vehicles, fuzzy control is used in combination with MPC
to improve the weight of the cost function in MPC through the fuzzy adaptive algorithm.
This not only improves the accuracy of trajectory tracking, but also improves the steering
smoothness of the vehicle [15]. Using the Kalman filter algorithm combined with the
MPC controller, the online estimation of the vehicle’s nonlinear curvature response can
reduce the wear and tear of vehicle components while ensuring comfort [16]. Feedforward
compensation is integrated with MPC. The error from the expected path is calculated using
a pure tracking algorithm as the input for feedback tracking control. The control output is
then determined through MPC calculations, resulting in improved accuracy and robustness
in trajectory tracking [17]. The weights of MPC are dynamically adjusted using a PSO-BP
neural network, which improves the tracking performance of the autonomous vehicle
under different speeds and road curvatures [18]. A vehicle model with steering dynamics
is proposed. The cascaded MPC structure is used to separate the steering system of the
vehicle dynamics model from the trajectory tracking controller. The simulation and test
results show better performance than only considering the vehicle dynamics. However,
integrating the steering system into the dynamics model can achieve optimal performance,
but leads to higher computational requirements [19]. The above methods improve the
tracking accuracy, but do not consider the complexity of MPC calculation.

MPC has significant advantages in solving trajectory tracking problems with various
constraints. Extensive research has also been conducted to study the accuracy, stability,
and robustness of vehicle trajectory tracking based on MPC [20,21]. However, MPC has
a large online computation workload and low real-time performance. In addition, if the
controlled model is too complex, it will significantly increase the MPC online iterative
calculation, which will hinder the application of MPC in practice.

Therefore, improving the real-time performance of MPC has received increasing
attention, and many research results have emerged [22,23]. A dynamic optimization toolkit
can improve the computational speed and reduce the computation time of MPC [24,25].
A genetic algorithm is used to compute the optimal time domain parameters for real-
time vehicle speed and road conditions, which improves the real-time performance of
the controller [26]. But, it uses a relatively simple kinematic model. To improve the real-
time performance of vehicle longitudinal speed planning, a nonlinear space-domain MPC
(SMPC) is proposed to accelerate the nonlinear SMPC computation by generating thermal
initialization and subsequently forming SMPC-RTI. However, it considers the longitudinal
motion of the vehicle as well as the energy it saves [27]. In [28], the real-time performance
and accuracy of vehicle trajectory tracking are improved by reducing the number of control
steps or reducing the control frequency domain. Reducing the control frequency domain
can meet the real-time requirements but may result in a slightly higher error compared
to reducing the number of control steps. Using the linear parameter time-varying MPC
and designing a linear quadratic regulator can reduce the computational cost of the dynamic
control of the vehicle [29]. Alternating the direction multiplier method (ADMM) is favored
by many researchers because of its good scalability. It has been successfully applied to
machine learning, distributed computing, and other fields [30–32]. ADMM can divide the
optimization variables into two parts and solve them in a separate framework, which can
reduce the computational burden caused by the large scale of the system. In [33], a class of
ADMM with nonlinear equality constraints is empirically studied and its convergence is
analyzed. To enhance the real-time performance of the iterative linear quadratic regulator
(iLQR), an optimization is conducted using the ADMM. When employing a logarithmic
barrier function, this algorithm can circumvent the feasibility requirements of the initial
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trajectory during the first iteration, thereby expediting the optimization process [34]. It
shows good real-time performance in different driving scenarios.

In summary, many methods have been proposed to improve the real-time performance
of MPC, and some research results have been obtained. However, there are still some issues
regarding improving the real-time performance of MPC for autonomous vehicle trajectory
tracking. The combination of optimization algorithm and MPC can improve the real-time
performance of MPC to a certain extent, but it will take up additional computational
resources when solving the optimal parameters of MPC [34]. Simplifying the vehicle
model can also improve the real-time performance of the controller, but it may not achieve
ideal control effects in complex road conditions [28]. When using optimization algorithms
or simplified models in conjunction with MPC controllers, the MPC problem is usually
transformed into a quadratic programming (QP) problem [35]. The interior point method
(IPM) or the active set method (ASM) are commonly used to solve the QP problem, but the
ASM cannot utilize the sparsity of the MPC problem, and has to perform the active set
operation at each iteration, which is suitable for the case of a small number of controls and
constraints [36]. The IPM can utilize the sparsity of the MPC problem, but each iteration
needs to solve the Karush–Kuhn–Tucker (KKT) system, and when the KKT system changes
during the iteration, the solution process needs to decompose or inverse the matrix. When
the number of constraints is large or the prediction time domain increases, the matrix
dimension becomes larger and the computation time becomes longer [37]. This paper
focuses on the problem of a long MPC solution time. Starting from the MPC problem-
solving process, based on the framework of trajectory tracking control for autonomous
vehicles, an auxiliary variable method is introduced to transform the quadratic problems
in MPC into a separable structured optimization problem. The ADMM is used to solve it,
and a decreasing penalty factor is used to ensure the convergence of the ADMM algorithm
during the solution.

The organization of this article is as follows. The vehicle dynamic model and the MPC
controller are presented in Section 2. The combination of the ADMM algorithm and MPC
is introduced in Section 3. The simulation results of the controller are shown in Section 4.
Finally, a brief conclusion is given in Section 5.

2. MPC-Based Trajectory Tracking Control
2.1. Vehicle Dynamics Model

To ensure that the vehicle follows its desired trajectory, the bicycle model in [38] is
adopted to represent the vehicle dynamics. In this model, we do not consider the effects of
suspension and aerodynamics, the state variables are defined as ξ(t) = [ẋ, ẏ, ψ, ψ̇, Y, X]T ,
and the control input vector is the front wheel angle, defined as u(t) = δ f . The three-
degrees-of-freedom dynamics model of the vehicle is shown in Figure 1. The x axis
represents the longitudinal axis in the vehicle coordinate system, the y axis represents
the lateral axis in the vehicle coordinate system, the xoy is the body coordinate system,
and XOY is the ground coordinate system.
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Figure 1. Vehicle dynamics model.

Differential equations for vehicle motion in lateral, longitudinal, and yawing directions
are established based on Newton’s second law, as given below:

mẍ = mẏψ̇ + 2Fx f + 2Fcr
mÿ = −mẋψ̇ + 2Fd f + 2Flr
Izψ̈ = 2aFd f − 2bFlr

(1)

where m is the mass of the vehicle, Iz is the moment of inertia about the z axis, a and b
are the distances between the center of mass and front/rear axles of the vehicle, ψ is the
yaw angle of the vehicle, Fx f and Fc f represent the tire force on the longitudinal axis of
the vehicle in the body coordinate system, and Fd f and Flr represent the tire force on the
transverse axis of the vehicle in the body coordinate system, respectively.

When the lateral acceleration is not greater than 0.4 g, the longitudinal force and lateral
force exerted on the tire can approximate a linear relationship as given below:

Fl f = Cl f s f
Flr = Clrsr
Fc f = −Cc f α f
Fcr = −Ccrαr

(2)

In Equation (2), Cl f and Clr represent the longitudinal stiffness of the front and rear
tires of the vehicle, Cc f and Ccr represent the cornering stiffness of the front and rear
tires of the vehicle, s f and sr represent the slip ratio of the front and rear tires of the
vehicle, α f and αr represent the cornering angle of the front and rear tires of the vehicle,
respectively. Assuming that both front wheel angles of the vehicle are equally small,
the lateral acceleration satisfies the small angle assumption, and in this case, the following
approximate relationship can be used:{

α f =
ẏ+aψ̇

ẋ − δ f

αr =
ẏ−bψ̇

ẋ

(3)

Finally, consider the transformed relationship between the vehicle body coordinate
system and the earth inertial coordinate system as follows:{

Ẋ = ẋ sin ψ− ẏ cos ψ
Ẏ = ẋ sin ψ + ẏ cos ψ

(4)
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From Equations (1)–(4), we can obtain the following nonlinear dynamic model of
intelligent vehicles:

mẍ = mẏψ̇ + 2
[
Cl f s f + Cc f

(
δ f −

ẏ+aψ̇
ẋ

)
δ f + Clrsr

]
mÿ = −mẋψ̇ + 2

[
Cc f

(
δ f −

ẏ+aψ̇
ẋ

)
+ Ccr

bψ̇−ẏ
ẋ

]
Izψ̈ = 2

[
aCc f

(
δ f −

ẏ+aψ̇
ẋ

)
− bCcr

bψ̇−ẏ
ẋ

]
Ẏ = ẋ sin ψ + ẏ cos ψ
Ẋ = ẋ sin ψ− ẏ cos ψ

(5)

It can be represented by the following differential equation:

ξ̇ = f (ξ(t), u(t)) (6)

The state variables of the system are ξ(t) = [ẋ, ẏ, ψ, ψ̇, Y, X]T , and the control variable
is selected as u(t) = δ f .

2.2. Trajectory Tracking Based on Model Predictive Control

The nonlinear vehicle dynamics model developed in Equation (6) is complex and takes
a long computational time to solve, so it is linearized using Taylor’s formula, omitting the
higher-order terms except the first order. Assuming the Taylor expansion of Equation (6) at
[ξ0, u0], the resulting linear time-varying equation is given as follows:

˙̃ξ(t) = A(t)ξ̃(t) + B(t)ũ(t) (7)

where A(t) = ∂ f
∂ξ

∣∣∣
ξ(i,u[i)

, B(t) = ∂ f
∂u

∣∣∣
ξ(i,u[i)

are the Jacobi matrices.

Discretizing the above state space equations using the forward Euler’s method, the fol-
lowing equation can be obtained:{

ξ(k + 1) = (TA(t) + I)ξ(k) + TB(t)u(k) + dk,t(k)
dk,t(k) = ξ0(k + 1)− (TA(t) + I)ξ0(k)− TB(t)u0(k)

(8)

From the above equations, the discrete linearized system can be shown:{
ξ(k + 1) = Ak,tξ(k) + Bk,tu(k) + dk,t(k)
η(k) = Cξ(k)

(9)

where Ak,t = I + TA(t), Bk,t = TB(t), C =

[
0 0 1 0 0 0
0 0 0 0 1 0

]τ

, dk,t(k) is the discrete

state error of the system at k-time, and T is the sampling time.
Taking the increment of the control variable, i.e., ∆u(k), as the input to the system

reduces the effect of the sudden change in the control variable on the system, and therefore
the original state vector needs to be augmented. Let the new state vector be ξ̄(k) =

[ξ(k), u(k− 1)]T , we can obtain the new state space form as follows:{
ξ̄(k + 1|t) = Ãk,t ξ̄(k|t) + B̃k,t∆u(k|t) + d̃(k)
η̄(k|t) = C̃ξ̄(k|t) (10)

where Ãk,t =

[
Ak,t Bk,t

0 I

]
, B̃k,t =

[
Bk,t

I

]
, d̃k,t =

[
dk,t
0

]
, C̃ =

[
C 0

]
.

The predicted output expression can be obtained as follows:

Y(t) = Ψ(t)ξ̄(t) + Φ(t)∆U(t) + E(t)D(t) (11)
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where Y(t) =


ξ(t)

ξ(t + 1)
...

ξ
(
t + Np

)
, Ψ(t) =


C̃Ãk,t
C̃Ã2

k,t
...

C̃ÃNP
k,t

, ∆U(t) =


u(t)

u(t + 1)
...

u
(
t + Np

)
,

D(t) =


d̃(t)

d̃(t + 1)
...

d̃
(
t + Np − 1

)
, Φ(t) =


C̃B̃k,t 0 · · · 0

C̃Ãk,t B̃k,t C̃B̃k,t
... 0

...
...

. . .
...

C̃Ã
Np−1
k,t B̃k,t C̃Ã

Np−2
k,t B̃k,t · · · C̃Ã

Np−Nc−1
k,t B̃k,t

,

E(t) =


C̃ 0 · · · 0

C̃Ãk,t C̃
... 0

...
...

. . .
...

C̃Ã
Np−1
k,t C̃Ã

Np−2
k,t · · · C̃

.

The primary objective of the MPC controller is to minimize the disparity between the
output and the reference value. This ensures precise vehicle tracking along the desired path
while maintaining lateral stability. However, due to the intricacies of the vehicle dynamics
model and associated constraints, situations may arise where a numerical solution cannot
be obtained within a single control cycle. To address this, a relaxation factor, denoted by ε,
is introduced. This factor guarantees that a viable solution can be obtained in each control
cycle. The objective function is expressed as follows:

J
(
ξ̄(t), u(t− 1), ∆U(t)

)
=

Np

∑
i=1

∥∥∥η̄(t + i|t)− ηre f (t + i|t)
∥∥∥2

Q
+

Nc−1

∑
i=1
‖∆U(t + i|t)‖2

R + ρε2 (12)

where Np is the prediction time domain, Nc is the control time domain, ε is the relaxation
factor, ρ is the weight of the relaxation factor, η̄(t + i) represents the actual output of the
system, ηre f (t + i) represents the reference output, and ∆U(t + i) represents the increment
of the forward turn angle.

According to Equation (12), the total cost of the objective function consists of three
main parts. The first term relates to the cost associated with the deviation between the
output trajectory and the reference trajectory. A greater deviation leads to a higher cost.
The second term considers the cost associated with the forward corner increment. A larger
forward corner increment during the tracking process results in a higher cost. Achieving
a smoother control process is of the utmost importance when minimizing the control
amplitude. The third term encompasses the relaxation factor and weight, ensuring the
attainability of an executable solution for the objective function. When the vehicle is
performing trajectory tracking, it is necessary to consider both the dynamic constraints of
the vehicle itself and the limitations of the actuating mechanism. The constraints of vehicle
dynamics are as follows: 

∆Umin ≤ ∆Ut ≤ ∆Umax
∆Umin ≤ A∆Ut + Ut ≤ ∆Umax
yhc,min ≤ yhc ≤ yhc,max
ysc,min − ε ≤ ysc ≤ ysc,max + ε
ε > 0

(13)

where yhc is the hard constraint output and ysc is the soft constraint output.
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Quadratic programming can solve the optimization problem of the MPC objective
function; therefore, Equation (12) can be rewritten to the standard quadratic programming
form, and the state variables and control variables constraint are introduced:

minJ =
1
2

[
∆U(t)

ε

]T

Ht

[
∆U(t)

ε

]
+ Gt

[
∆U(t)

ε

]
+ Pt (14)

s.t.
[

∆Umin
ε

]
≤
[

∆U
ε

]
≤
[

∆Umax
ε

]
where Ht = 2

[
ΦT

t QΦt 0
0 ρ

]
, Gt =

[
2E(t)TQΦt 0

]
,

Yre f =
[

ηre f (t) · · · ηre f (t + Np)
]
, M =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

⊗ I,

E(t) = Ψtξ(t) + E(t)D(t)−Yre f (t), Pt = E(t)TQE(t) + U(t− 1)T RU(t− 1) + ρε2.

Solving Equation (14) in each control cycle yields the optimal sequence of control
increments:

∆U∗t =
[

∆u∗t ∆u∗t+1 · · · ∆u∗t+Nc−1
]T

(15)

If the first item in the control sequence is added to the system, the current control
variable is given as follows:

u(t) = u(t− 1) + ∆u∗t (16)

After the whole system enters the next cycle, the system repeats the above process
and updates the control sequence to complete the trajectory tracking of the intelligent
vehicle. MPC obtains the optimal control sequence through iterative optimization search,
and the actual application of the algorithm is limited when the iteration process is long.
The ADMM algorithm has the factorization of dual ascent and the global convergence of a
multiplier method, which has received widespread attention in recent years due to its low
computational complexity and simple algorithm structure. In this paper, it is used to solve
the optimization problem in the trajectory tracking MPC of autonomous vehicles.

3. Implementation of ADMM Algorithm for Trajectory Tracking MPC Problem
3.1. Alternating Direction Method of Multipliers

The alternating direction multiplier method is generally used to solve constraint
programming problems with the following equation:{

min f (z) + g(v)
s.t. Cz + Dv = b

(17)

where f and g are convex functions, z and v are the variables to be optimized, and C ∈ Rp×n,
D ∈ Rp×m, b ∈ Rp, Cz + Dv = b are the linear equality constraints that the problem needs
to satisfy.

By introducing the dual variable ω, the augmented Lagrangian function of the above
equation is constructed as follows:

Lρ(z, v, ω) = f (z) + g(v) + ωT(Cz + Dv− b) +
ρ

2
‖Cz + Dv− b‖2

2 (18)

where ρ > 0 is the penalty parameter.
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The iterative process of the ADMM algorithm includes three parts: iteratively updating
the original variable z, iteratively updating the original variable v; and updating the process
of the dual variable ω. The update strategy is given as follows [39]:

zk+1 = arg min
z

Lρ(z, vk, ωk)

vk+1 = arg min
v

Lρ(zk+1, v, ωk)

ωk+1 = ωk + ρ(Czk+1 + Dvk+1 − b)

(19)

In general, it is convenient to use the scaling dual variable µ = ω
/

ρ to represent the
iteration process:

zk+1 = arg min
z
{ f (z) + ρ

2

∥∥∥Cz + Dvk − b + µk
∥∥∥2

2
}

vk+1 = arg min
v
{g(v) + ρ

2

∥∥∥Czk+1 + Dv− b + µk
∥∥∥2

2
}

µk+1 = µk + Czk+1 + Dvk+1 − b

(20)

One advantage of the ADMM method is that it has only one parameter ρ, and un-
der general conditions, the method can demonstrate convergence to all penalty factors.
During the iterative process, the solution for the primal variables z and v are performed
alternately, which reduces the scale of the problem and improves computational efficiency.

3.2. Model Predictive Controller Based on ADMM Improvement

Based on the previous section, this section provides a detailed explanation of the
combination of the ADMM algorithm and trajectory tracking MPC problem. As shown
in Figure 2, the ADMM algorithm is applied to the optimization and solving process in
MPC. Based on the dynamic model of intelligent vehicles, the future outputs of the system
are predicted using the state information of the vehicle and the control input, and then the
feedback correction is performed using the actual output of the detection object. Finally,
the ADMM algorithm is used to solve the optimization target online, and the current
optimal control input is obtained.

Figure 2. ADMM-MPC structural diagram.

To apply ADMM to the receding optimization process of MPC, the QP problem
described by Equation (14) can be abbreviated as follows:{

min J = 1
2 xT Hx + f Tx

s.t.Ax ≤ b
(21)
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where H = 2
[

ΦT
t QΦt 0

0 ρ

]
, f =

[
2E(t)TQΦt 0

]T
, x =

[
∆U

ε

]
, A =



I 0
−I 0
Φ 0
−Φ 0
M 0
−M 0

,

b =



∆Umax
−∆Umin

Y(t)−Ψ(t)ξ(t)− E(t)D(t)
Y(t) + Ψ(t)ξ(t) + E(t)D(t)

U(t)max −U(t)
U(t)−U(t)min

.

After formulating the quadratic programming in standard form for addressing the
trajectory tracking challenge in autonomous vehicles, it is imperative to incorporate auxil-
iary variables and subsequently reformulate the problem into a structure conducive to the
ADMM algorithmic resolution: {

min
x,z

J = f (x) + g(z)

s.t.Ax− b + z = 0
(22)

where f (x) = 1
2 xT Hx + f Tx, g(z) is the indicator function. g(z) is defined as

g(z) =
{

0, i f Az ≤ b
+∞, otherwise

.

According to the multiplier method, the augmented Lagrangian function for the
optimization problem can be obtained as follows:

Lρ(x, z, y) = f (x) + g(z) + yT(Ax− b + z) +
ρ

2
‖Ax− b + z‖2

2 (23)

By introducing the dual scaling variable µ = y
/

ρ, according to Equation (14), the itera-
tive update process of the ADMM algorithm can be obtained as follows:

xk+1 = arg min
z
{ 1

2 xT Hx + f (x) + ρ
2

∥∥∥Ax− b + zk + µk
∥∥∥2

2
}

zk+1 = arg min
v
{g(z) + ρ

2

∥∥∥Axk+1 − b + z + µk
∥∥∥2

2
}

µk+1 = 1
ρ yk+1 = 1

ρ [y
k + ρ(Axk+1 − b + zk+1)]

= µk + Axk+1 − b + zk+1

(24)

Compute the gradients of the original variable x and the auxiliary variable z, respec-
tively. According to the first-order optimality condition, the iterative process formula is
given as follows: 

xk+1 = (H + ρAT A)−1[− f − ρAT(zk + µk − b)]
zk+1 = max{0,−Axk+1 − µk + b}
µk+1 = µk + Axk+1 − b + zk+1

(25)

To accelerate convergence, a relaxation factor of α ∈ [1, 2] is added, and the above
iterative process can be obtained as follows:

xk+1 = −(H + ρAT A)−1[ f + ρAT(zk + µk − b)]
zk+1 = max{0,−α(Axk+1 − c) + (1− α)zk − µk}
µk+1 = µk + α(Axk+1 − b + zk+1) + (1− α)(zk+1 − zk)

(26)
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According to the first-order optimality condition of the QP problem, define the original
residuals sprim and dual residuals sdual of (21), so we can obtain Equation (27):{

sk+1
prim = Axk − b + zk

sk+1
dual = ρAT(zk+1 − zk)

(27)

The algorithm convergence criterion is given according to the two residuals:
∥∥∥sk

prim

∥∥∥
2
≤ εprim∥∥∥sk

dual

∥∥∥
2
≤ εdual

(28)

where
εprim =

√
nεabs + εrel max{

∥∥∥Axk
∥∥∥

2
,
∥∥∥zk
∥∥∥

2
, ‖b‖2} (29)

εdual =
√

nεabs + εrelρ
∥∥∥ATxk

∥∥∥
2

(30)

In general, εrel = 10−3, εabs can be selected according to the required accuracy.
The update of the ADMM algorithm variables requires the use of the results of the

previous moment, and the optimal solution of the previous moment (d− 1) is selected as
the initial value of the algorithm at the current moment (d). The algorithm flow of the MPC
solution control input ∆u under trajectory tracking can be obtained.

(1) Initialize the MPC parameter to obtain the system status information at the dth
moment.

(2) According to the equation of the state variables of the system and the input and output
variables, the objective function is converted into a quadratic programming problem
in the form of Equation (14).

(3) Rewrite Equation (14) to form as Equation (22) conforms to the ADMM solution.
(4) The optimal solution obtained at time d− 1 is used as the initial value of the solution

to the time problem.
(5) The variables are updated according to the iterative process of the ADMM algorithm,

as shown in Equation (26).
(6) According to Equations (27)–(30), to determine whether the iteration process meets

the termination conditions, if it is met, stop the iteration, send the first term in the
calculated optimal solution sequence to the control system as input, and enter step (7);
if not, continue to iterate until the maximum number of iterations is reached.

(7) Go to the next sampling moment d + 1, and repeat step (1).

4. Simulation

To verify the effectiveness of the proposed algorithm, a joint simulation platform of
Simulink and CarSim was built to simulate and validate the designed controller. The ASM
and the IPM are commonly used methods for solving traditional MPC problems, and this
paper compares and analyzes the proposed algorithm with ASM and IPM. The processor
parameters of the laptop used in the simulation are AMD Ryzen 7 5700U with Radeon
Graphics 1.80 GHz. The vehicle parameters used in simulation are shown in Table 1.
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Table 1. Vehicle parameters in the simulation.

Parameters Value Unit

vehicle weight 1723 kg
lateral moment of inertia 4331.6 kg ·m2

roll moment of inertia 4175 kg ·m2

distance from front axle to center of mass 1.232 m
distance from rear axle to center of mass 1.468 m

front track width 1.480 m
front and rear axle roll stiffness 2328/2653 N ·m/rad
front and rear axle roll damping 47,298/37,311 N ·m/rad

front wheel lateral stiffness 66,900 N/rad
rear wheel lateral stiffness 61,900 N/rad

wheel rotational inertia 0.9 kg ·m2

rolling radius of the wheel 0.353 m

In the ordinary vehicle driving test, the double-shift condition is the test section with
high frequency. Many scholars have also used it to test the trajectory tracking capabilities
of autonomous vehicles. The desired trajectory is given by:

Yre f (X) =
dy1
2 [1 + tanh(z1)]−

dy2
2 [1 + tanh(z2)]

ϕre f (X) = arctan
[

dy1

(
1

cosh(z1)

)2( 1.2
dx1

)
− dy2

(
1

cosh(z2)

)2( 1.2
dx2

)] (31)

where z1 = 2.4
dx1

(X− 27.19) − 1.2, z2 = 2.4
dx2

(X− 56.46) − 1.2, dx1 = 25, dx2 = 21.95,
dy1 = 4.05, dy2 = 5.7.

The initial parameters of the algorithm are set as the road adhesion coefficient µ = 0.85,
v = 20 m/s, relaxation factor α = 1.7, and the penalty factor ρ is a decreasing sequence with
respect to time. The calculation time of the three algorithms is compared in the same and
different prediction time domain and control time domain. The joint simulation diagram of
the MPC trajectory tracking improved by ADMM is shown in Figure 3.

Figure 3. Joint simulation framework.
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4.1. Comparison of Controllers under the Same Prediction and Control Horizon (Np = 11,
Nc = 6)

In this section, the traditional MPC is solved by ASM and IPM, and the simulation
results of the proposed controller were analyzed under the same prediction and control
time domains. The simulation results are shown in Figures 4–6.
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Figure 4. Trajectory tracking curve.
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Figure 5. Changed curve of yaw angle.
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Figure 6. Computation time of different control methods.

From Figure 4, it can be seen that, during trajectory tracking, both the MPC with
ADMM algorithm improvement and the traditional MPC controller can achieve good
tracking effect. The tracking accuracy of the MPC with the ADMM algorithm improvement
is higher during the control time. We can also obtain an improved MPC that shows a better
tracking accuracy, the proposed controller has a tracking error of 0.266 m at the maximum
lateral displacement, while the other two controllers have a tracking error of 0.443 m.
During the whole control time, we used the trajectory data driven by the vehicle and the
expected trajectory data to obtain the root mean square error (RMSE) of each controller.
The RMSE for improved MPC is 0.193, and it is 0.231 for both other controllers. The RMSE
formula is shown below:

RMSE =

√√√√ 1
N

N

∑
i=1

(
Y(i)−Yre f (i)

)2
(32)

where N represents the total simulation time divided by the sampling time, Y represents
the actual trajectory of the vehicle, and Yre f represents the expected trajectory.

Figure 5 reflects the tracking of the three controllers on the yaw angle. It can be
seen that all controllers show a good tracking effect on the change of yaw angle. At the
longitudinal position of 80 m, the MPC with the ADMM algorithm improvement has
some overshoot in tracking the desired yaw angle, and there are some oscillations at
the longitudinal position of 90 m. It is worth noting that the driving comfort may be
reduced due to the change in the heading angle, but it can quickly track the reference yaw
angle afterwards.

Figure 6 reflects the calculation performance of three controllers. The initial iteration of
ADMM takes a longer computational time, this is because, in the first iteration, due to the
presence of constraints, the computation of the variables needs to solve a large system of
linear equations, which will take a long time, and the next step is carried out alternatively to
greatly reduce the computational time. The average computation time is shown in Table 2.
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Table 2. Computation time of different control methods.

Method ADMM Active Set Method Interior Point Method

Average computation time (s) 0.0013 0.0020 0.0035

As shown in Table 2, the average computation time of the MPC improved by the
ADMM algorithm is 0.0013 s, the average computation time of the ASM is 0.0020 s, and the
average computation time of the IPM is 0.0035 s. Compared with the ASM, the average
computation time of the MPC improved by the ADMM algorithm is reduced by 35%.
The real-time performance of the MPC improved by the ADMM algorithm is higher than
that of the IPM, with an average computation time reduction of 62.8%.

4.2. Comparison of Controllers under Different Control Horizons

In this section of the simulation, the control time domain of the MPC based on ADMM
improvement is set to 10, and the control time domain of the traditional MPC is 4. The sim-
ulation results are shown in Figures 7–9.
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Figure 7. Trajectory tracking curve.
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Figure 8. Changed curve of yaw angle.



Sensors 2023, 23, 8391 15 of 19

20 40 60 80 100 120 140 160 180 200

Sample time (s)

0.01

0.02

0.03

0.04

0.05

0.06

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

ADMM Method

Active Set Method

Interior Point Method

Figure 9. Computation time of different control methods.

By choosing a prediction time domain of Np = 14, it can be seen from Figures 7 and 8
that the trajectory tracking accuracy of the improved MPC is significantly better than that
of the IPM and ASM. The error of the improved MPC at the maximum lateral displacement
is 0.273 m, while that of the IPM and ASM is 0.665 m. The tracking precision achieved
by both the IPM and the ASM falls below the desired level, primarily due to the limited
control time domain. Notably, IPM performs less effectively in tracking. The RMSE of
improved MPC is 0.95, ASM is 0.317, and IPM is 0.319. The IPM causes the vehicle’s front
wheel angle to vary more in the 0–20 m range, which affects the stability, whereas the other
two controllers show a smoother control performance.

Figure 9 reflects the computation time of the controller. It can be seen that the improved
MPC algorithm takes a longer computation time in the first iteration, which is because it
has a larger control time domain, which means that more dimensions of the control volume
need to be solved in the iteration. Depending on the good performance of the ADMM
algorithm, the average computation time of the improved MPC is still smaller than IPM
and ASM. As can be seen from Table 3, the average computation time (0.0015 s) of the
MPC improved by the ADMM algorithm is slightly lower than that of the ASM (0.0018 s).
Compared with the IPM (0.0038 s), the average computation time of the MPC based on the
ADMM algorithm is significantly reduced.

Table 3. Computation time of different control methods.

Method ADMM Active Set Method Interior Point Method

Average computation time (s) 0.0015 0.0018 0.0038

4.3. Comparison of Controller Computation Time as the Prediction Horizon Increases

This section of simulation discusses the advantages and disadvantages of the improved
MPC based on ADMM and traditional MPC in real-time performance under different
prediction time domains. When the prediction time domains are set to 8, 10, 12, 14, 16,
20 and 22, the average computation time of the three controllers is compared as shown
in Table 4, and the average solution time of the control sequence by the model based
on ADMM improvement is basically unchanged in different prediction time domains,
as shown in Figure 10.
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Table 4. Comparison of controller computation time in different prediction time domains.

Np
ADMM Computation

Time (s)
Active Set Method

Computation Time (s)
Interior Point Method
Computation Time (s)

8 0.0015 0.0031 0.0035
10 0.0014 0.0018 0.0031
12 0.0015 0.0018 0.0034
14 0.0015 0.0018 0.0037
16 0.0015 0.0020 0.0036
18 0.0014 0.0018 0.0037
20 0.0015 0.0018 0.0040
22 0.0015 0.0020 0.0045

Np

C
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u
ta

ti
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n
 t

im
e
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s
)

ADMM Method

Active Set Method

Interior Point Method

Figure 10. Comparison of the computation time of the three controllers in different prediction
time domains.

From Figure 10, it can be seen that as the prediction horizon increases, the computation
time of the MPC based on ADMM improvement is basically stable at 0.0015 s. Compared
with the active set method, the maximum average computation time is reduced by 51.6%.
Compared with the interior point method, as the prediction horizon increases, the compu-
tation time of the interior point method also increases. The maximum average computation
time of the MPC based on ADMM improvement is reduced by 64.3%.

The simulation results indicate that the MPC improved by the ADMM algorithm
can effectively reduce the online solving time of the traditional MPC. Under the same
prediction time domain and control time domain, the average computation time is reduced
by 35% compared to the ASM, and reduced by 62.8% compared to the IPM. When the
same control time domain is used and the prediction time domain is changed, the average
computation time of the MPC based on the improved ADMM method is smaller than that
of the traditional MPC. Compared with the ASM, the computation time is reduced by up
to 51.6%, and compared with the IPM, the computation time is reduced by up to 64.3%.
Additionally, the proposed controller has higher tracking accuracy for double lane changes
with some improvement in changing lanes.

5. Conclusions

This paper aims to address the problem of slow online solving and the low real-time
performance of traditional MPC. A combination of ADMM and MPC is used to improve
the real-time performance of trajectory tracking for autonomous vehicles. The ADMM
algorithm is used to solve the QP problem transformed by MPC, and the ADMM algorithm
is incorporated into the receding optimization of MPC. A relaxation factor α is added to
accelerate the convergence.
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To validate the effectiveness of the proposed method, we established a joint simulation
platform within the Carsim-Simulink environment and conducted system simulations and
tests in a double-shifted lane scenario. Regarding tracking accuracy, the algorithm demon-
strates significant improvements. Numerical results indicate a reduction in the tracking
error by 0.217 m at the maximum transverse displacement under identical prediction and
control time domains, and by 0.392 m, at the maximum transverse displacement under
varying control time domains. In terms of computation time, the proposed algorithm
notably enhances the real-time performance of MPC when compared to previous methods.
Numerical results reveal an average computation time reduction of 64.3% compared to
IPM and 51.6% compared to ASM under different control time domains. Furthermore,
the ADMM algorithm exhibits stability in the computation time compared to the IPM and
ASM. As the prediction time domain increases, the computation time for MPC improved
by the ADMM algorithm remains nearly constant, while the computation time for the ASM
fluctuates significantly and the computation time for the IPM increases.

Future research may consider integrating the proposed algorithm with an optimization
toolkit to further enhance its real-time performance. Additionally, this paper does not ad-
dress longitudinal control for intelligent vehicles. Therefore, the proposed algorithm could
potentially be applied to the combined horizontal and longitudinal control of autonomous
vehicles in the future.
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