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Abstract: Epilepsy is a chronic neurological disorder affecting around 1% of the global population,
characterized by recurrent epileptic seizures. Accurate diagnosis and treatment are crucial for
reducing mortality rates. Recent advancements in machine learning (ML) algorithms have shown
potential in aiding clinicians with seizure detection in electroencephalography (EEG) data. However,
these algorithms face significant challenges due to the patient-specific variability in seizure patterns
and the limited availability of high-quality EEG data for training, causing erratic predictions. These
erratic predictions are harmful, especially for high-stake domains in healthcare, negatively affecting
patients. Therefore, ensuring safety in AI is of the utmost importance. In this study, we propose
a novel ensemble method for uncertainty quantification to identify patients with low-confidence
predictions in ML-based seizure detection algorithms. Our approach aims to mitigate high-risk
predictions in previously unseen seizure patients, thereby enhancing the robustness of existing
seizure detection algorithms. Additionally, our method can be implemented with most of the deep
learning (DL) models. We evaluated the proposed method against established uncertainty detection
techniques, demonstrating its effectiveness in identifying patients for whom the model’s predictions
are less certain. Our proposed method managed to achieve 87%, 89% and 75% in accuracy, specificity
and sensitivity, respectively. This study represents a novel attempt to improve the reliability and
robustness of DL algorithms in the domain of seizure detection. This study underscores the value of
integrating uncertainty quantification into ML algorithms for seizure detection, offering clinicians a
practical tool to gauge the applicability of ML models for individual patients.
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1. Introduction

Epilepsy is a chronic neurological disorder that affects close to 1% of the population
worldwide. It is characterized by recurrent and unpredictable brain activities, known as
epileptic seizures [1,2]. Patients suffering from epileptic seizures face a 2–3 times higher
mortality rate. Hence, correctly diagnosing and controlling epileptic seizures is of the
utmost importance to reduce the mortality rate in patients suffering from epilepsy.

An electroencephalography (EEG) test records the electrical activity in the cerebral
cortex via the electrodes that are placed on top of the scalp of the patients [2–4]. Seizure
detection in EEG data is an important aspect of the diagnosis and management of epilepsy.
By reviewing and interpreting the recorded EEG data, clinicians can look for abnormal
EEG patterns that are indicative of epileptic seizures, leading to an accurate diagnosis
and treatment. Nevertheless, this process of EEG analysis is labor-intensive and open to
subjective interpretation, potentially introducing bias [5–7].

In recent years, machine learning (ML) algorithms have been proposed as a way
to assist clinicians in annotating and reviewing EEG recordings by identifying potential
seizure segments [8–15]. It works by highlighting potential segments of interest that may be
an indication of seizures, reducing the time and effort needed by clinicians to review large
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amounts of EEG recordings. This positively impacts the patient’s outcome by allowing for
rapid diagnosis and treatment.

Multiple studies have shown its ability to detect seizures with an accuracy of over
90% [9,11,13,16–21]. While these algorithms show promise, they face multiple challenges in
being able to consistently detect seizures across all patients suffering from different types
of seizures. One of the many challenges in developing robust seizure detection tools is
the variability in seizure patterns across different seizure types, which makes it difficult to
identify a consistent pattern for training machine learning algorithms [2,22,23]. Further,
patients suffering from various seizure types might exhibit a range of distinct EEG patterns,
making it hard for ML algorithms to detect them if it has not been exposed to the patterns
being evaluated during the training process. This challenge is further exacerbated by the
limited availability of high-quality EEG data for training due to stringent data privacy
concerns and regulations, which can restrict the algorithm’s ability to generalize across
diverse patient groups [24]. As a result, ML algorithms for seizure detection may struggle
to accurately detect seizures in patients whose seizure patterns were not represented in the
training data.

This can lead to uncertain and unreliable predictions when the algorithms encounter
unfamiliar EEG patterns from certain patient groups. This lack of confidence can be
especially dangerous when seizure detection algorithms are deployed in real time, where
the cost of a misdiagnosis is high [25,26]. For example, incorrect predictions can lead to
over-diagnosis, resulting in unnecessary medical interventions, or under-diagnosis, causing
missed seizures that can have severe consequences for patients such as permanent injuries
or death. To improve the robustness of seizure detection tools and address the challenges
posed by the lack of reliability prediction of ML algorithms in some patients, it is essential
to develop effective methods that warn users of patients where their ML models are not
confident in their predictions to ensure the patient’s safety and care.

In this study, we propose a novel method that leverages concepts from the field of
rule-based approach, out-of-distribution (OOD) detection [27] and uncertainty quantifi-
cation [28] to identify high-risk patients for whom the model has low confidence in its
predictions. Unlike most out-of-distribution (OOD) detection and conventional uncertainty
estimation approaches, which typically focus on individual data points, our approach
considers a set of records of EEG data corresponding to a patient. This shift in focus offers
a more realistic and practical approach. Uncertainty in individual data points, in a dataset
that could contain millions of such data points, does not provide meaningful information to
clinicians. A patient-level analysis, on the other hand, gives a holistic view of the patient’s
condition over time, which is far more useful in a real-world clinical setting.

Departing from traditional methods, which often directly classify uncertainty or
OOD data based on raw EEG data points, our approach harnesses the internal features
representation of a DL model and Deep Support Vector Data Description (Deep SVDD) to
learn what the model has successfully learned and areas where it falters. Deep SVDD is
an unsupervised learning method designed for detecting out-of-distribution, abnormal
data [29]. It leverages neural networks together with the SVDD to learn low-dimensional
representations of input data in a latent space. Inspired by the support-vector machine
(SVM), the Deep SVDD approach captures the distribution of the input data by projecting
it onto a hypersphere in the latent space that minimizes distances. This hypersphere is then
used to determine whether data points are out-of-distribution.

This patient-level analysis enables a nuanced understanding of the model’s prediction
confidence for a patient. By detecting these low-confidence patients, our approach aims
to reduce the occurrence of high-risk predictions in unseen seizure patients and improve
the robustness of the existing seizure detection algorithms. Another key strength of our
approach is its flexibility where it is compatible with any DL architecture, which potentially
broadens its applicability and utility in various EEG scenarios. To the best of our knowledge,
this study represents the first attempt to leverage these techniques to enhance the robustness
and reliability of ML algorithms in the field of seizure detection.
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This novel approach where we utilized and combined existing techniques, could
be integrated into an existing seizure detection pipeline to identify patients unsafe for
DL predictions in clinical settings. This approach mitigates the risk of incorrect or missed
diagnoses when clinicians rely on DL algorithms for insights. By alerting clinicians to
patients with high prediction uncertainty, it allows clinicians to manually oversee the
process of seizure detection and annotation process, thereby enhancing the outcome of
patients. This is especially useful when DL models face issues of generalizability and
robustness.

2. Related Works

Uncertainty estimation allows users to quantify the confidence associated with a
model’s predictions, thereby enabling the identification of potentially unreliable predictions.
The uncertainty in a model can originate from various factors, including a mismatch
between training and testing data, the model’s learning capacity and the presence of noise
in the training data. Popular techniques for uncertainty estimation encompass Monte Carlo
Dropout (MC-Dropout) and Bayesian Neural Networks (BNNs) [30,31].

Conversely, out-of-distribution (OOD) detection involves recognizing data that signifi-
cantly diverge from the training data distribution [32]. It enables users to be alerted to new
or anomalous training data patterns. This ‘out-of-distribution’ data stems from distinct
distributions and may be triggered by a shift in the data distribution, insufficient training
data or variations in data collection methodologies, among other factors. Common OOD
detection methods include maximum SoftMax probabilities, distance-based methods and
SVDD [27,32–34].

Both uncertainty estimation and OOD detection contribute to the model’s ability to
generate robust and reliable predictions. Consequently, they equip users to make informed
and secure decisions. These techniques are particularly beneficial in high-risk applications
such as healthcare, where prediction reliability and the ability to handle anomalies can
significantly impact the well-being of the patients. It is also important to note that many
studies on OOD detection and uncertainty estimation often develop and use their own
unique methods to solve their problems that are domain specific.

Despite advancements in applying state-of-the-art machine learning models, such as
DL for EEG-based seizure detection, there is a lack of research focusing on uncertainty
estimation and OOD detection specifically in the context of EEG-based seizure detection.
This gap in the literature presents a significant challenge in the clinical adoption of seizure
detection algorithms. Most existing research tends to prioritize the improvement of model
performance, focusing predominantly on statistical metrics such as accuracy, without
adequately addressing the crucial issues of uncertainty or the presence of OOD data. We
will focus on explaining techniques applied in the field of general healthcare.

The most common uncertainty estimation technique, MC-Dropout, is frequently used
in conjunction with DL. Multiple studies in the field of healthcare have applied MC-Dropout
to improve their reliability alongside their predictions. For instance, one study applied
MC-Dropout to their proposed Shallow Convolutional Neural Network (SCNN-MCD)
for motor imagery classification in patients with severe disabilities [35]. Another study
used MC-Dropout with their DL model, DeepSleepNet-Lite, for sleep-scoring prediction
uncertainty estimation [36].

The Bayesian Neural Network (BNN) is a DL model that estimates uncertainty based
on the predictions. Instead of single-value estimates for each weight in a deterministic
neural network, BNN learns a probability distribution for each weight, where different
values of weights can be sampled [31]. This gives the BNN the ability to produce a range of
outputs, enabling the ability to estimate uncertainty. One study, for instance, used BNNs
to detect epileptogenic brain malformations, achieving a 5% better accuracy compared to
non-Bayesian learners using the same network architecture [37]. Another study proposed
using the BNN along with confidence calibration to improve the estimating uncertainty in
classifying five-class polyps from colonoscopy [38]. The proposed BNN with confidence
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calibration beat state-of-the-art algorithms at close to 80% accuracy after rejecting samples
with a high uncertainty.

Another study utilized conformal predictions to estimate uncertainty in histopatho-
logical diagnoses [39]. This uncertainty estimation method offers a prediction interval to
identify unreliable predictions, achieving only 2% errors compared to 25% without the
method. Another group of researchers proposed the use of predictive entropy for the
classification of myocardial infarction using ECG, successfully detecting uncertainty in
predictions made by their DL model [40].

Researchers leveraged a modified version of the SVDD technique to detect abnormal
living patterns in nine elderly individuals using infrared motion sensors [41]. The goal was
to provide effective patient monitoring for individuals living alone. This method achieved
an impressive average accuracy of 95.8% in detecting abnormal patterns.

Another study evaluated various OOD methods on multiple medical image datasets
on their ability to reject images unseen by the models [42]. They found that no single
OOD method consistently outperformed the others across all medical image datasets.
However, a binary classifier with feature representation from the penultimate layer and
the Mahalanobis distance-based method demonstrated superior performance on average
across all datasets.

In conclusion, existing techniques for uncertainty estimation and OOD detection,
largely designed and tested for other domains in healthcare, may not be fully suited
to the unique challenges posed by EEG seizure data. The complexity and variability
of EEG signals require tailored methodologies for effective uncertainty estimation and
OOD detection. Additionally, frequently employed methods like SoftMax confidence or
logit confidence scoring are overly simplistic and insufficient for addressing the unique
requirements of this field. They fall short when applied to EEG-based seizure detection, as
revealed in subsequent experimental stages. Further, in reviewing the current literature
on uncertainty estimation and OOD detection techniques, it becomes apparent that many
proposed methodologies are specifically crafted for their respective fields and may not
transition effectively to other domains.

To bridge this gap, we introduce a novel method specifically designed for EEG-based
seizure detection. Utilizing the internal representations of a DL model and Deep SVDD, our
approach delivers a comprehensive patient-level analysis, thus providing a more efficacious
solution for uncertainty detection at the patient level in seizure detection tasks.

3. Materials and Methods
3.1. Data Description and Acquisition

We utilized The Children’s Hospital Boston Massachusetts Institute of Technology
(CHB-MIT) dataset, which comprises 916 h of scalp EEG data from 23 pediatric patients
consisting of 5 males and 17 females aged from 3 to 22 suffering from intractable seizures [43,44].
The publicly available EEG dataset is popular and widely used for the development and
evaluation of seizure detection algorithms [12]. Many DL models have been developed
and evaluated using the CHB-MIT dataset [13,45–49]. This dataset consists of 664 EEG
recordings of mostly 1 h long, and some longer EEG recordings, with a sampling rate
of 256 Hz. Compared to other EEG datasets, this dataset stands out for its long-term
continuous EEG recordings (>12 h) with minimal disruptions, ideal for the development of
seizure detection systems [24].

Each EEG recording is paired with annotations of the precise onset and end times of
seizure events. In total, there are 198 seizures recorded in the dataset, spread across all
patients. Each patient has various number channels following a 10–20 electrode placement
method, consisting of 23 to 26 channels. The dataset contains different seizure types, such
as focal, lateral and generalized seizures.
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3.2. Preprocessing

Before feeding the EEG signals from the recordings into the model for training, several
preprocessing steps were undertaken. To ensure consistency in the number of channels
across different recordings and patients, 22 EEG channels were selected, eliminating any du-
plicate channels, channels unique to a single patient and non-EEG channels. The EEG data
are normalized to a range of 0–1. Additionally, a Finite Impulse response (FIR) bandpass
filter with a range of 1–60 Hz and the removal of the DC component were implemented to
reduce noise in the EEG data. The FIR bandpass filter was also essential to isolate relevant
EEG signals associated with seizure events in the Delta, Theta, Alpha, Beta and Gamma
sub-bands [2].

Patients suffering from epileptic seizures often exhibit normal brain activity, the
majority of them only exhibit abnormal EEG patterns during a seizure or right before a
seizure and spend less than 1% of their time in a seizure stage. Hence, the EEG recordings
are often highly imbalanced. Given the imbalanced nature of the EEG dataset, with
the majority class being interictal, a sliding window method with a step size of 0.5 was
employed on segments containing seizure activity to increase the sample data representing
seizures. This method is commonly used in seizure detection to increase the sample size of
EEG recordings [13,17,49]. For each given seizure segment, the sliding window was moved
in steps that resulted in 50% overlap between consecutive segments. This overlap technique
effectively doubled the seizure segments derived from the same seizure recordings. A
visual representation can be seen in Figure 1. Each EEG recording was split into one second
EEG segments, where EEG segments were randomly sampled at a ratio of 5:1 to reduce
the data imbalance. Further, in order to ensure the model is able to learn effectively, we
included preictal and postictal EEG data, where 30 s of EEG segments before a seizure
and 30 s of EEG segments after a seizure were included as part of the data used. In order
to preserve the sampling information time, no further signal transformation or features
engineering took place.

Figure 1. Shows the segmentation of EEG signals of a single channel into multiple 1 s sliding window
with 0.5 s step size. This process is repeated for every channel in the EEG recordings.

3.3. Estimating Patient-Level Uncertainty

In summary, the proposed method tries to determine the uncertainty of a Convolu-
tional Neural Network (CNN) model’s predictions for a patient. Using an unsupervised
learning technique (Deep SVDD) to learn the distribution of each of the four groups for
true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN), all
of which are derived from the model’s training predictions. This categorization, guided
by a rule-based approach, refines the prediction possibilities for each EEG data segment
during inference. This process is applied to each segment of the provided EEG data. The
algorithm then aggregates the binary uncertainty predictions for these segments, resulting
in a value between ‘0′ and ‘1′, which indicates the model’s confidence level. The uncertainty
score generated by our proposed method enables users to decide on whether to trust the
predictions made by our DL model for a specific patient. Our proposed method, which
encapsulates the entire uncertainty estimation process, is visually represented in Figure 2
(inference).
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Figure 2. Shows the process during inference time. The patient’s EEG recordings are divided into
1 second segments for seizure detection and uncertainty estimation simultaneously. Two results will
be produced, the predictions and uncertainty score where the users will then make a final decision.

To understand the trained model’s capabilities, we input the training EEG data into
the trained CNN model for inference. This facilitated the segregation of the EEG samples
into the 4 aforementioned groups. This categorization offers us a valuable proxy of the
training patterns that the model learned and those that it fails to learn. For example, the
TP and TN groups contain samples that the model correctly predicted, indicating patterns
that the model has successfully learned, whereas the FP and FN groups encapsulate patterns
that the model has not effectively learned.

In the subsequent step, we extracted the values obtained from the internal representa-
tions (final convolutional layer) of the trained CNN model for each sample in each of the
groups (TP, TN, FP, FN). These extracted values were then utilized to train four distinct
Deep SVDD models—one for each group. The role of these Deep SVDD models, each being
a three-layered neural network fused with the SVDD model, is to learn and understand
the distribution of patterns specific to their respective group. The outputs produced by the
Deep SVDD are binary scores, where ‘0′ signifies that the input segment is in-distribution
(pertaining to that particular group), while ‘1’ indicates out-of-distribution.

A set of rules is devised to estimate uncertainty based on the predictions from the
models. The CNN models produce either a prediction of ‘0′ (no seizures) or ‘1′ (seizures).
If the prediction is ‘0′ (non-seizure) and either the FN or TN group prediction is ‘0′ (in-
distribution), while the FP and TP predictions are ‘1′ (out-of-distribution), it suggests that
the model is likely confident in its non-seizure prediction. This is because some groups are
associated with “non-seizure” patterns—the FN group contains examples where the model
failed to identify “non-seizure” patterns, and the TN group includes those where the model
correctly learned these patterns. Therefore, if either the FN or TN group aligns with the
model’s “non-seizure” prediction, it suggests that the identified EEG pattern corresponds
to a typical “non-seizure” case, either one that the model usually identifies correctly or one
that it often misses. On the other hand, the FP and TP groups are associated with seizure
segments. As such, when the model predicts ‘0′ (non-seizure), it would be contradictory
for the EEG segment to belong to these seizure groups. Hence, reinforcing the model’s
confidence for prediction of non-seizure.

On the other hand, if the prediction is ‘1′ (seizure) and either the FP or TP group
prediction is 0, while the TN and FN predictions are both ‘1′, it implies that the model is
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likely confident in its seizure prediction. If the predictions do not meet any of the conditions
mentioned above, the model is considered uncertain about its predictions. The Pseudocode
for the whole process is displayed in Figure 3.

Figure 3. Shows the pseudocode for the process for uncertainty estimation based on a patient.

Ultimately, each EEG segment yields a binary label along with its prediction, where 0
indicates confidence and ‘1′ signifies uncertainty. These binary labels are then aggregated
by averaging to produce a probability score ranging from ‘0–1′. This score represents the
model’s overall level of uncertainty in its predictions for the patient data, with ‘0′ signifying
total confidence and 1 indicating complete uncertainty.

3.4. Classification Model for Seizure Detection

We employed the CNN as our DL model used for training as well as prediction.
CNN models have traditionally been employed for image recognition tasks, where they
excel in automatically learning temporal, spatial, and spectral features from inputs, elim-
inating the need for traditional feature extraction or engineering. Moreover, the use of
CNN models in seizure detection has been documented in numerous studies, consistently
demonstrating superior performance on publicly accessible datasets, with an achieved
accuracy exceeding 90%. In our study, we will use this model to demonstrate the ability of
our proposed method to detect patients that the model is uncertain of.

Our tailored CNN model is composed of an input layer, multiple hidden layers and
an output layer. We have represented electroencephalogram (EEG) signals as an image-like
matrix, utilizing channels (C) and time (T) as inputs. The input representation for our
model adheres to an N × C × T × D structure, with N indicating the number of samples, C
symbolizing channels, T representing time and D standing for dimension. The architecture
of our model incorporates four fully connected CNN layers. In order to extract spatial
features between channels, the 1st convolutional block extracts features across channels.
This is achieved through a kernel size of (5, 2), helping to capture inter-relationships
between channels. The remaining 3 blocks of convolutional layers extract temporal features
within each of the channels with varying time scales, from short term (3, 1) to long term
(20, 1). This is because short-term kernels are able to capture abrupt or rapid changes in the
EEG signals, that could be an indication of seizures with a high frequency of amplitude.
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Longer-term kernels are able to capture general wave form, rhythmic or periodic seizure
patterns. To mitigate overfitting and computational complexity, we employed multiple
pooling and dropout layers. The features are then flattened to 1 dimension for input
into fully connected layers for predictions. Our model was developed using the Pytorch
2.0 framework, implemented using Python 3.8. A detailed overview of the architecture
implementation is presented in Figure 4.

Figure 4. Shows the CNN architecture of our DL model.

We conducted the training process utilizing the NVIDIA RTX 3080 GPU (Nvidia
Corporation, Santa Clara, CA, USA), with 100 epochs, a learning rate set at 0.0001 and
a batch size of 32. The training duration for each patient was approximately two hours.
We utilized the Leave One Patient Out Cross Validation (LOPO-CV) method to train and
validate our CNN model’s performance. LOPO-CV is commonly employed in the field
of seizure detection to evaluate a machine learning models’ performance and involves
leaving out one patient for testing, while the rest are used for training. The test set remains
unseen by the model during the training process. This procedure is repeated for all
23 patients, and the performance of the model is subsequently averaged across all patients.
In contrast, typical K-fold cross-validation (KFCV) often combines data from all patients
into one dataset, leading to potential data leakage if a patient’s data appears in both the
training and test sets. This can result in unreliable predictions and false results. LOPO-CV
effectively prevents this issue. This approach of training on existing patients and testing on
unseen patients aligns with real-world scenarios where it needs to predict seizure events of
previously unencountered patients.

Our CNN model demonstrated an average Area Under the Curve (AUC) of 91%, an
accuracy of 92%, a specificity of 92%, sensitivity of 78% and F1 score of 71% with Standard
Deviations (SDs) of 0.12, 0.09, 0.09, 0.20 and 0.21, respectively, across all patients. When
compared to state-of-the-art CNN models that utilized similar minimal feature engineering
and preprocessing techniques, our model displayed comparable performance. The results
for the performance of each patient can be found in Table 1.

Table 1. Shows the performance of the trained CNN model for each model.

Patient Accuracy Specificity Sensitivity AUC F1 Score

1 0.95 0.95 0.95 0.99 0.89
2 0.97 0.97 0.91 0.98 0.83
3 0.92 0.92 0.9 0.95 0.81
4 0.93 0.93 0.81 0.93 0.71
5 0.89 0.89 0.94 0.97 0.83
6 0.92 0.92 0.31 0.74 0.19
7 0.98 0.98 0.87 0.98 0.81
8 0.88 0.88 0.74 0.89 0.71
9 0.98 0.98 0.95 0.98 0.87
10 0.95 0.95 0.94 0.97 0.87
11 0.95 0.95 0.91 0.98 0.89
12 0.94 0.94 0.83 0.95 0.82
13 0.54 0.55 0.41 0.46 0.35
14 0.97 0.97 0.73 0.95 0.68
15 0.91 0.91 0.34 0.81 0.33
16 0.95 0.95 0.53 0.9 0.41
17 0.85 0.85 0.83 0.93 0.72
18 0.96 0.96 0.87 0.96 0.81
19 0.98 0.98 0.88 0.98 0.84
20 0.93 0.93 0.57 0.79 0.51
21 0.94 0.94 0.84 0.96 0.73
22 0.94 0.94 1 0.99 0.875
23 0.93 0.93 0.91 0.97 0.85

Average ± SD 0.92 ± 0.09 0.92 ± 0.09 0.78 ± 0.20 0.91 ± 0.12 0.71 ± 0.21
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4. Evaluation

To evaluate the effectiveness of our proposed methods in identifying patients for whom
the model is uncertain, we compare our model with other commonly used techniques that
can be used to detect uncertainty in a patient’s data such as SoftMax confidence, Deep
SVDD, and MC Dropout. Similar to our proposed method, we aggregated the binary labels
generated by these methods to produce a probability score of between 0 and 1 uncertainty.

The effectiveness of our technique in identifying uncertainty in patients is tested
by generating truth labels, which are based on each patient’s performance through the
CNN models. These truth labels act as a measure of the model’s confidence, designated as
confident if the F1 score exceeds a threshold of 0.5, implying that the model’s performance
exceeds chance levels for that specific patient. Conversely, an F1 score falling below this
threshold indicates that the model’s performance was suboptimal for the patient in question.

To simulate a more conservative application of the DL model, akin to the cautious
approach often taken by clinicians, we raise the F1 score threshold to 0.7, while keeping
the conditions consistent with the previously described scenario. This change in threshold
reflects a higher level of confidence required for the model’s performance to be considered
effective for each individual patient.

First, we examine if there is a correlation between the F1 score of the model and the
uncertainty levels produced by each of the methods by calculating the Pearson Correlation
Coefficient (r). This analysis allows us to understand how the uncertainty score relates
to the model’s performance in detecting seizures (sensitivity) in patients. An effective
uncertainty estimation technique is defined when there is an inverse correlation between
the F1-score of the model and the uncertainty level produced by the technique.

Second, we assess the method’s ability to identify patients for which it is confident
or uncertain in its predictions. We use the aggregated uncertainty score produced by each
method for this purpose. If the aggregated score produced by each method is below 0.5, it
indicates that the model is confident in its prediction; conversely, a value above 0.5 indicates
that the model is uncertain about the prediction it has made.

5. Results

As indicated in Table 2, our proposed method has the strongest correlation coefficient
of −0.88, compared to −0.37, 0.19 and 0.02 for SoftMax confidence, MC Dropout and Deep
SVDD, respectively. This indicates a strong negative correlation between the uncertainty
value yielded by our proposed model and the F1-score produced by the CNN model as
seen in Figure 5. As the model’s F1-score improves, our uncertainty value tends to decrease,
signifying greater confidence in the model’s predictions. In comparison with other methods,
none of the commonly used methods produced any meaningful correlations. The SoftMax
confidence shows a weak negative correlation, while MC Dropout exhibits a very weak
negative correlation. Deep SVDD shows no linear correlation at all.

Table 2. Shows the Pearson Correlation coefficient for each of the proposed methods, comparing the
uncertainty score and the F1-Score.

Technique Pearson Correlation Coefficient (r)

Proposed Method −0.88
SoftMax Uncertainty −0.37

MC Dropout −0.19
Deep SVDD 0.02

Based on Table 3, our proposed method achieved an accuracy of 0.89 in correctly
classifying patients that it is confident and uncertain of. Out of the five patients whose
CNN model is unable to perform well (F1-score < 0.5), the proposed method can de-
tect three patients for whom the CNN model might not be able to detect a seizure well
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(75% sensitivity). Our method accurately indicated confidence in the model’s predictions
for nearly all cases where the model was indeed confident, displaying a specificity of 89%.

Figure 5. Shows each of the methods for detecting uncertainties in patients (block dots), indicating
unreliable predictions for the patients if it falls below the threshold at 0.5 uncertainty score (red
dotted line). Blue line indicates relationship between uncertainty score and F-beta score.

Table 3. Shows the performance of each method for uncertainty estimation in 23 patients, with
threshold of 0.5.

Accuracy Specificity Sensitivity AUC

Proposed Method 0.89 0.94 0.75 0.96
SoftMax confidence 0.78 0.84 0.50 0.64

MC Dropout 0.74 0.79 0.50 0.70
Deep SVDD 0.78 0.89 0.25 0.54

In comparison to our methods, the other methods were largely ineffective in detecting
uncertainty in most patients, all showing a sensitivity of 50% or lower. Because the
uncertainty scores produced by SoftMax confidence and MC Dropout were small, we
attempted to rescale the uncertainty scores using Min-Max scaling, so that the maximum
uncertainty score for each method would be 1. This step was undertaken to enhance
comparability across different methods.

In circumstances where clinicians take a more conservative approach, necessitating
a higher sensitivity with an F1-score threshold of 0.7, our proposed method continues to
outperform other techniques. It demonstrates an enhanced performance across all measures,
achieving an overall accuracy of 0.96 and a sensitivity of 0.83, as seen in Table 4. When
we assume an extremely conservative approach, with threshold at 0.8, our performance
still outperformed the other methods, but the sensitivity in detecting uncertainty patients
dropped to 0.5.
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Table 4. Shows the performance of each method of uncertainty estimation in 23 patients, with
conservative thresholds of 0.7 and 0.8.

F1 Threshold 0.7 0.8

Metrics Accuracy Specificity Sensitivity AUC Accuracy Specificity Sensitivity AUC

Proposed Method 0.96 1 0.83 0.99 0.78 1 0.5 0.99

SoftMax confidence 0.78 0.88 0.5 0.61 0.69 0.92 0.4 0.61

MC Dropout 0.65 0.76 0.3 0.62 0.52 0.75 0.3 0.62

Deep SVDD 0.7 0.88 0.17 0.44 0.43 0.82 0.11 0.44

6. Discussions

Traditional methods, such as Deep SVDD or OOD, often fall short as they do not
adequately consider the intricate nature of EEG data. These conventional approaches are
limited in capturing the complex, nonlinear dynamics inherent in distinguishing between
seizure and non-seizure events. CNN models occasionally offer high-confidence predic-
tions that may not always be accurate, especially in the context of seizure events. This
overconfidence undermines the reliability of methods that solely rely on prediction proba-
bilities or techniques like MC Dropout. For instance, our CNN models often emit incorrect
high-confidence, one-sided probability predictions for seizure events, even when faced
with unseen data from a patient. This scenario underscores the model’s unreliability and
the need for more advanced, nuanced uncertainty estimation techniques. Furthermore, a
single SVDD might also encounter significant limitations in adequately processing complex
and variable EEG patterns, where they often look similar to untrained eyes. Similarly, the
single model provides a too-simplified analysis, insufficient for accurately identifying and
discriminating between the seen and unseen patterns. Its primary shortfall lies in its in-
ability to fully comprehend the diverse nature of EEG data, resulting in an often-imprecise
estimation of uncertainty and identification of out-of-distribution (OOD) data.

In this study, our proposed solution of deploying individual Deep SVDD models for
each data group along with a simple rule-based approach addresses this limitation. Each
model is tailored to learn and discern patterns specific to its assigned group effectively.
This adaptation caters to the variances in learned seizure patterns and seizure patterns that
it fails to learn, enhancing the overall accuracy and reliability of uncertainty estimations.
The proposed method was assessed for 23 patients and validated based on the performance
of the predictions made by the CNN model. This represents the first attempt in the field of
seizure detection to introduce uncertainty in data at the patient level.

We recognize that our CNN model does not surpass the latest state-of-the-art models.
However, our study aims to identify patients for whom the model’s predictions are uncer-
tain. Another reason for choosing the CNN model is that it encompasses a mix of results
for patients with good and poor performance, enabling us to test our algorithm on both
sets of patients.

Our proposed technique for detecting uncertainty in input data for a given patient
outperforms commonly used methods when applied to our scenario. Our method en-
hances the safety of seizure detection algorithms by effectively identifying patients where
the seizure detection algorithms do not perform well in detecting seizures, achieving a
sensitivity of 75%. This high sensitivity rate is beneficial in preventing false negatives,
which could have serious consequences for patient care. We also hypothesized that the
poor performance of conventional methods could be due to the model’s inherent nature of
producing high-confidence predictions even if the EEG data of the patients has not been
seen in the training set, where they have no ability to discriminate between unseen and
seen EEG recordings.

The proposed method is independent of the model choice and can be adapted and
applied to most DL algorithms, making it a flexible and versatile solution in identifying
uncertainty in patients. It also performs well on imbalanced datasets, which is often the
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case for seizure detection EEG datasets, compared to other methods during evaluation.
This robustness ensures a reliable performance, even in challenging situations, and helps to
improve the overall quality of the predictions by eliminating patients where the model was
not confident in the predictions.

Since our proposed technique for detecting uncertainty is based on the data of a
patient and only learns from their own training distribution using an unsupervised learning
method, it does not require any testing labels. This simplifies the process since it does
not require any additional unseen data for learning, reducing the need for extensive data
collection and preprocessing. As the proposed technique learns from its own training
patterns, it is particularly useful when the dataset is limited, which is a common challenge
in EEG data acquisition.

Our proposed technique allows for further customization to suit the risk appetite of
users. For example, if the threshold for the uncertainty percentage is set to 40%, which
indicates a clinician with a low risk tolerance, the algorithm successfully detects all five
patients where the model yields a low F1-score (below 0.7). However, it might exclude
patients for whom the model predicts reasonably well, as in the case of patient 8, who scores
0.71 on the F1-score with an uncertainty value of 0.41. This adaptability enables clinicians to
tailor the model’s performance to their specific needs and risk tolerance, ensuring optimal
patient care and resource allocation.

The proposed technique aims to reduce the level of uncertainty in its predictions at the
patient level, rather than focusing solely on individual data segments. By enhancing the
confidence in the predictions made for a patient as a whole, the model can help improve
the overall reliability of the assessment for that patient. Our model is designed to minimize
uncertainty in predictions at the patient level, with the aim of eliminating situations where
the model has no confidence in its assessments. By concentrating on decreasing uncertainty
for each patient as a whole, the model can significantly enhance the overall reliability of
evaluations. While this strategy does not assure absolute accuracy or certainty, its primary
objective is to identify and mitigate risks associated with low-confidence predictions for
each patient.

7. Limitations

While the method proposed here helps to improve the confidence of the model given
the data of a patient, it has a few limitations. Our model was only tested on 23 patients
and has not been validated with other publicly available datasets. Moving forwards, we
plan to validate our performance in other EEG datasets to evaluate the effectiveness of our
proposed method.

Moreover, our technique incorporates Deep SVDD as part of the process. In situations
where the training data for groups, such as TP or FP, is limited, the model may overfit. This
could generate unreliable results due to its high specificity to the training data, potentially
hampering its ability to generalize effectively with new, unseen data. This overfitting issue,
stemming from limited training data in certain groups, also makes the model prone to
volatility, leading to unstable results. Further research and fine-tuning of hyperparame-
ters, along with exploration of more robust sampling techniques, are needed to enhance
generalizability when dealing with small training data sets.

Lastly, our method introduces additional computational complexity as it necessitates
the training of four more neural networks. This is especially relevant for large-scale datasets
and may limit the practicality of our method in scenarios where computational resources
are limited.

8. Conclusions

In conclusion, this study introduces a novel approach to detecting uncertainty at the
patient level in seizure detection by incorporating methods from OOD and uncertainty
estimation. Our method successfully identifies most patients for whom the model fails to
detect seizures effectively. This approach not only streamlines the annotation process by
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alerting clinicians to patients where the algorithm might fail to accurately detect seizures in
certain patients, but it also helps identify patients who may require more manual attention
from healthcare professionals. Ultimately, our method aims to enhance the overall efficiency
and effectiveness of seizure detection while ensuring that clinicians can provide targeted
and informed care for each patient.
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