
Citation: Fan, A.; Huang, Y.; Xu, F.;

Bom, S. Soft-Sensing Regression

Model: From Sensor to Wafer

Metrology Forecasting. Sensors 2023,

23, 8363. https://doi.org/10.3390/

s23208363

Academic Editor: Roberto Teti

Received: 6 September 2023

Revised: 30 September 2023

Accepted: 6 October 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Soft-Sensing Regression Model: From Sensor to Wafer
Metrology Forecasting
Angzhi Fan 1,* , Yu Huang 2 , Fei Xu 3 and Sthitie Bom 4

1 Department of Statistics, University of Chicago, Chicago, IL 60637, USA
2 Seagate Technology, Fremont, CA 94538, USA; yu.1.huang@seagate.com
3 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA;

feixu@uchicago.edu
4 Seagate Technology, Bloomington, MN 55435, USA; sthitie.e.bom@seagate.com
* Correspondence: fana@uchicago.edu

Abstract: The semiconductor industry is one of the most technology-evolving and capital-intensive
market sectors. Effective inspection and metrology are necessary to improve product yield, increase
product quality and reduce costs. In recent years, many types of semiconductor manufacturing
equipments have been equipped with sensors to facilitate real-time monitoring of the production
processes. These production-state and equipment-state sensor data provide an opportunity to practice
machine-learning technologies in various domains, such as anomaly/fault detection, maintenance
scheduling, quality prediction, etc. In this work, we focus on the soft-sensing regression problem
in metrology systems, which uses sensor data collected during wafer processing steps to predict
impending inspection measurements that used to be measured in wafer inspection and metrology
systems. We proposed a regressor based on Long Short-term Memory network and devised two
distinct loss functions for the purpose of the training model. Although the assessment of our
prediction errors by engineers is subjective, a novel piece-wise evaluation metric was introduced
to evaluate model accuracy in a mathematical way. Our experimental results showcased that the
proposed model is capable of achieving both accurate and early prediction across various types of
inspections in complicated manufacturing processes.

Keywords: data processing; artificial intelligence; wafer manufacturing

1. Introduction

The strategic importance of AI technologies in the semiconductor industry lies in their
capacity to minimize capital requirements and enhance cycle time and yields. This presents
a considerable opportunity to introduce pioneering machine learning methods that can
optimize our manufacturing processes and improve their efficiency significantly. Among
these promising techniques is virtual metrology (VM), also known as soft-sensing models
or virtual sensors, which plays a vital role in effectively monitoring industrial processes. In
broad essence, soft-sensing models refer to inferential models that employ easy-to-measure
variables (e.g., online available sensors) to dynamically estimate hard-to-measure variables
(e.g., quality variables) in real-time. Nonetheless, the progress in creating data-driven soft-
sensing models, particularly those based on machine learning, has been notably sluggish
and erratic. The primary issue lies in the lack of scalability in the majority of semiconductor
manufacturing systems, as they are tailored to particular applications. As a result, the soft-
sensing model development within the semiconductor industry has been constrained by its
inflexibility and dependence on extensive prior knowledge of manufacturing mechanisms.
This research endeavors to address these challenges by introducing a fully data-driven
soft-sensing model for regression applications, focusing on wafer metrology systems.
The objective is to offer a viable and practical solution that can be applied within the
semiconductor sector.

Sensors 2023, 23, 8363. https://doi.org/10.3390/s23208363 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23208363
https://doi.org/10.3390/s23208363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6918-8214
https://orcid.org/0000-0002-6182-3153
https://doi.org/10.3390/s23208363
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23208363?type=check_update&version=1


Sensors 2023, 23, 8363 2 of 12

In the domain of wafer metrology, soft-sensing regression models pertain to numerical
models (statistical/machine-learning-based) that utilize real-time data from accessible
sensors, like pressure and voltage data, to forecast quality indicators of importance. These
soft-sensing models present an effective and economical approach in scenarios in which
these indicators cannot be measured automatically or are only assessable through time-
consuming, expensive, or sporadic follow-up metrology processes. Through the utilization
of accessible sensor data, these models enable precise forecasting of the targeted quality
indicators, leading to enhanced efficiency and effectiveness in the metrology processes. Soft-
sensing models can be classified into two separate categories: white-box physical models and
black-box data-driven models. Physical modeling relies on prior knowledge and typically
concentrates on the ideal steady-state processing, rendering it unsuitable for handling
intricate systems. In contrast, data-driven models leverage historical equipment and
process data, allowing for calibration to achieve precise estimations of specific metrology
variables. This capability enables pure data-driven virtual inspections of wafers, facilitating
quality evaluations without the necessity of a physical examination.

Creating precise soft-sensing regression models is a multifaceted undertaking that
demands thorough attention to numerous hurdles. Foremost among these challenges is
elucidating the intricate connection between sensor readings and measurements, encom-
passing diverse time intervals. Furthermore, the level of precision needed for different
types of wafers may differ, amplifying the intricacy of the task. Finally, the presence of
incomplete data and measurement inaccuracies in the dataset further compounds the diffi-
culty of constructing dependable models. Seagate factories, for example, collect extensive
sensor data during wafer manufacturing to develop data-driven soft-sensing models. How-
ever, as the semiconductor manufacturing process becomes more complex, measuring key
quality indicators using traditional metrology tools is becoming increasingly challenging
and expensive. Developing a soft-sensing system to detect defective wafers can save both
time and capacity for metrology tools.

The distinctive attributes of the wafer manufacturing data pose challenges when
employing conventional physical models for regression. Thus, an alternative approach
involving a nonlinear data-driven model becomes imperative. Data-driven models, such as
Long Short-term Memory (LSTM) [1] network, GRU [2], and Transformer [3], are popular
tools for tackling sequential data. LSTM-based models [1], widely applied in Natural
Language Processing (NLP) tasks (e.g., text classification [4], machine translation [5] and
speech recognition [6].), can handle sequential data of different lengths and overcome the
vanishing gradient problem. Given the sequential nature of sensor recordings, it is natural
to apply these NLP tools to soft-sensing regression task, where each sensor value in a time
series corresponds to a word in a sentence in NLP.

In soft-sensing, there are applications of LSTM-related models in the penicillin fermen-
tation process [7], the debutanizer column process [7,8], grinding classification process [9]
and the wastewater treatment process [8], which demonstrate the capacities of the LSTM
architecture in various industries. Although these LSTM-based soft-sensing regression
models have been proposed for certain fabrication processes, their performance of general
metrology in a real-world wafer manufacturing setting has not yet been investigated. Un-
like other industries, wafer manufacturing has various measurement types, processes and
precision requirements, and therefore requires the model to flexibly accommodate different
circumstances. As such, this study proposes an LSTM-based soft-sensing regression model
to forecast wafer metrology, with the aim of testing its performance in a real manufacturing
process. This work seeks to answer the following research questions:

1. What are the challenges associated with real-world wafer manufacturing data, and
which pre-processing techniques can be employed to convert raw and noisy wafer
manufacturing sensor data into predictive insights?

2. How can the LSTM-based model be applied to predict the metrology values of wafers?
3. What objective functions can accommodate the varying precision requirements of

the wafers?



Sensors 2023, 23, 8363 3 of 12

4. How can the virtual metrology performance be evaluated when requirements differ
for different wafer processing?

To address these questions, this study presents a thorough examination of the wafer
soft sensing regression dataset while introducing a well-defined approach to its prepro-
cessing. In addition, two distinct loss functions have been developed to accommodate the
varying precision requirements of the wafers. Finally, the subjective evaluation criteria
used by engineers have been translated into objective mathematical evaluation criteria to
enhance the objectivity and rigor of the analysis.

The remainder of this paper is organized as follows. Section 2 summarizes some
existing works related to our soft sensing regression problem. Section 3 introduces our
model architecture and loss functions. Our data and our data preprocessing method are
explained in Section 4. The experiments are described in Section 5. Finally, we present our
discussions and conclusion in Section 6.

2. Related Work

A survey [10] conducted in the early stage on explored various regression approaches
applied to VM, encompassing Simple Linear Regression, Partial Least Square Regression,
Ridge Linear Regression, and Support Vector Regression [11]. Nevertheless, recent research
in the domain of soft-sensing modeling has primarily concentrated on deep learning. In a
recent survey paper [12], four key techniques in the field of soft sensing were highlighted:
Autoencoder (AE) [13,14], Restricted Boltzmann Machine [15,16], Convolutional Neural
Network (CNN) [17], and Recurrent Neural Network (RNN) [18].

Of these techniques, RNN-based or LSTM-based soft sensing models have found a
lot of success with data that have strong sequential characteristics. LSTM-FCN [19] is
a hybrid model that combines fully convolutional neural networks (FCN) features with
LSTM features and uses dimension shuffle and dropout [20] to enhance the classification
performance. To guide the learning process, SLSTM [7] incorporates prediction quality
variables into the input, forget, and output gates of LSTM cells. On the other hand,
DLSTM [9] utilizes the differences between the previous and current time steps as part of
its inputs to the LSTM cells. Lastly, SBiLSTM [8] is similar to SLSTM [7] but uses a length-k
window of quality information and is bidirectional.

In the wafer manufacturing setting, advancements in state-of-the-art soft-sensing
models have recently been made, but with a focus on classification, which is distinct
from our soft-sensing regression problem. One such model, Soft-sensing Transformer
(SST) [21], utilizes a Transformer encoder [3] to demonstrate the similarities between sensor
readings and text data. Another model, ConFormer [22], leverages multi-head convolution
modules to achieve fast and lightweight operations while still being able to learn robust
representations through multi-head design, similar to transformers. Soft-sensing Model
Visualization [23] fine-tunes the model by adjusting the weights of input features based on
misclassified examples. Finally, GraSSNet [24], a flexible Graph Neural Network [25,26]
model, is suitable for semi-supervised settings. Soft sensing regression and classification are
two distinct tasks with notable differences, particularly in the treatment of class imbalance.
Soft sensing classification models may encounter issues with class imbalance, resulting in a
biased model that performs poorly on minority classes. Conversely, soft sensing regression
deals with a continuous target variable and does not require balancing classes, minimizing
concerns regarding class imbalance. Our specific task involves training multiple types
of wafers with varying precision requirements concurrently, which sets it apart from
typical soft-sensing models. This unique characteristic necessitates the use of specialized
loss functions.

3. Method

Our model uses sensor and categorical features as inputs, with the latter being textual
variables derived from indicators of different measurement types and processes. The wafer
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may undergo multiple measurements at multiple points, and we use the median of those
measurements, referred to as meas_med, as the target variable for our model’s prediction.

To handle sequential characteristics in data, we have opted to use LSTM to build our
model, as explained in Section 3.1. In Section 3.2, we introduce two loss functions for our
soft sensing regression task. We have observed that the typical L2 loss function is unsuitable
for our task, as diverse wafers often entail varying precision requirements.

3.1. Model Architecture

Figure 1 illustrates our approach to processing sensor data from a single wafer. To
encode the sensor time steps into a fixed-dimensional vector, we use a one-layer LSTM
encoder with an embedding layer. The encoder’s last cell state represents the encoded
sensor vector. The embedding layer converts categorical and numerical variables into
fixed-size vectors before feeding them into the LSTM structure.

To predict the target for a given wafer, we concatenate the features pertinent to the
metrology tools, i.e., measurement features, with the encoded sensor vector and employ a
Multi-Layer Perceptron (MLP). This approach reflects the chronological order of the wafer
manufacturing process, in which sensors capture data before metrology tools measure
the wafer.

measurement features for that wafer

MLP

prediction
Regressor

Embedding Layer

...

sensor time steps for a wafer

LSTM Encoder

Figure 1. Long Short-term Memory (LSTM) model.

3.2. Loss Functions

Our approach to soft-sensing modeling differs from traditional models, which aim to
accurately predict a single target variable across all wafers. In contrast, our model considers
the varying precision requirements of different types of wafers and aims to optimize predic-
tions for each wafer type individually. To achieve this, we propose designing customized
loss functions that account for the distinct precision levels required for each wafer type.
This is a significant departure from traditional models that rely on a single loss function
to optimize performance across all wafers. By tailoring our loss function design to the
specific precision requirements of each wafer type, we can improve the overall accuracy of
our predictions. Our paper focuses on jointly training these wafers while adapting to their
unique precision requirements.

3.2.1. Relative Error Loss

For ground truth y and prediction ŷ, the Relative Error is defined as

η =
|ŷ− y|
|y| (1)



Sensors 2023, 23, 8363 5 of 12

The Relative Error is a widely used metric for evaluating regression models. It mea-
sures the difference between the predicted value ŷ and the ground truth value y as a fraction
of |y| . However, we observed that the difference between upper and lower control limits is
often small for ground truths with small absolute values, indicating the need for higher
precision in such cases. To address this issue, we propose a modified loss function, denoted
as LRE(ŷ, y), defined as follows:

LRE(ŷ, y) =
|ŷ− y|

max(|y|, c)
(2)

Here, c is a positive constant (set to 10 in our experiments) that allows us to avoid
division by zero and prevent extreme values from dominating the loss. This modified loss
function is a weighted L1 loss, wherein larger weights are allocated to samples with smaller
|y|. This weighting mechanism addresses the shortcomings of traditional L1 or L2 loss
functions, making our proposed Relative Error Loss more effective at minimizing errors for
small ground truth values.

3.2.2. Normalized L1 Loss

To generalize the Relative Error Loss, we can normalize each meas_med using two
constants b1 and b2, where b1 < b2, then train with L1 loss. Ideally, b1 and b2 should be
determined by some categorical variables within the measurement features. The formula
used to normalize the target y is

ỹ =
y− b1

b2 − b1
(3)

Given a model output ˆ̃y, our Normalized L1 loss function is

LNL1(
ˆ̃y, y) = | ˆ̃y− ỹ| (4)

During prediction, we can transform our model output back to the original scale
by using

ŷ = ˆ̃y ∗ (b2 − b1) + b1 (5)

Intuitively, b1 and b2 should be similar to the lower and upper control limits mentioned
in Section 4.2, but in reality people may change the lower and upper control limits from
time to time. Therefore, the choice of b1 and b2 for each wafer is a crucial step. Compared
to the Relative Error Loss, Normalized L1 Loss is more general but requires the choice of
(b1, b2) for each category.

4. Data

This section provides an overview of our datasets sourced from Seagate factories,
as well as our data preprocessing techniques. To account for potential process drift in
equipment status, we have included date and time information as input features for
our model.

4.1. Sensor Data and Measurements Data

In the manufacturing process as shown in Figure 2, a wafer undergoes various pro-
cessing stages, such as lithography, etching, deposition, and polishing. At the completion
of each processing stage, the wafer is subject to quality control inspection, which involves
utilizing metrology tools to obtain several critical measurements that serve as key quality
indicators (KQIs). Common KQIs obtained at different process stages are summarized in
Figure 3, with the arrows pointing at the KQIs. Many KQIs are measured by more than
one process stage, making it necessary to train the model jointly across different process
stages and KQIs in order to utilize more information. This inspection process generates two
mapping datasets, namely a sensor dataset and a metrology dataset. These datasets are es-
sential for evaluating the wafer’s quality and ensuring that it meets the required standards.
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After removing duplicate samples, the sensor dataset now encompasses 1,301,234 rows
and 144 columns, while the metrology dataset comprises 4,579,232 rows and 32 columns.
It should be noted that both datasets include ID columns, specifically processing ID and
product ID.

Repeat Seqeunce N times Repeat Seqeunce K timesRepeat Seqeunce M times

AITiC
Substrate

Photo-
lithography

Etching

Deposition
or Plate

Lift-Off/
Resist strip

Deposition

Diced into
Sliders

Sliced and

Chemical
Mechanical
Polishing

Figure 2. Workflow of wafer manufacturing. Figure accessed on 30 August 2021, available at
https://github.com/Seagate/softsensing_data.

Figure 3. Processes and measurement attributes. Figure accessed on 30 August 2021, available at
https://github.com/Seagate/softsensing_data.

Each wafer can be uniquely identified by a unique pair of processing and product
IDs. The sensor dataset, in addition to the hard sensor types of data, also contains the soft
contextual data, including textual reports, such as textual information of the multi-stage
manufacturing process, tools, processing modules, etc. These are referred to as categorical
variables. There are seven textual categorical columns in the sensor dataset and eight
categorical columns in the metrology dataset. Multiple metrology records measured at
different inspection stages using different measuring methods are also obtained from
each wafer.

4.2. Lower and Upper Control Limits

There are two datasets that are related to lower and upper control limits. One dataset
provides two numbers lcl and ucl for each type of wafer. The other dataset contains the

https://github.com/Seagate/softsensing_data
https://github.com/Seagate/softsensing_data
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measurements data, which provides two numbers targ_min and targ_max in some rows.
Both (lcl, ucl) and (targ_min, targ_max) are meant to be the lower and upper control limits,
but targ_min and targ_max are usually more accurate than lcl and ucl. We set the lower and
upper control limits using the following rules: if targ_min and targ_max exist, we assume
them to be the lower and upper control limits; otherwise, we use lcl and ucl as the lower
and upper control limits.

4.3. Pass/Fail Labels

The passfail column in measurements data contains different types of labels. Since
we only predict meas_med, we only focus on predicting three types of labels: PASS,
FAIL_AVG_HI and FAIL_AVG_LOW. FAIL_AVG_HI means the wafer failed because
meas_med is higher than the upper control limit, and FAIL_AVG_LOW means the wafer
failed because meas_med is lower than the lower control limit. Human inspection results
are also provided for wafers with labels FAIL_AVG_HI and FAIL_AVG_LOW.

4.4. Data Preprocessing

Our data preprocessing is outlined in Figure 4. The data are split into training, val-
idation and test sets by a chronological ratio of 7:2:1. Due to the constraint of storage
and computing resources, we only focus on the 33 most common (KQI, TYPE) of wafers.
Because different columns have different scales, we use linear transformations to normal-
ize each feature in the sensor training set to the interval [0, 1], then use the same linear
transformations to transform the validation and test set. The missing values in the sensor
readings are imputed with the medians. Those samples with meas_med outside the range
[−1, 1000] are dropped in the training set because they are likely to be measurement errors.
The dropped samples consist of less than 1% of the whole dataset. One-Hot Encoding are
performed on the five categorical columns in the sensor data and five categorical columns
in the measurements data. After that, we have 267 and 552 features in sensor and measure-
ment data, respectively. The sensor data and measurements data are joined before model
training. An example can be found in Figure 5, where in this example, the wafer has two
time steps and three measurements. The join operation concatenates these two time steps in
a row and joins them with every one of the three measurements, resulting in three samples
after preprocessing.

join

sensor data

normalization measurement data

preprocessed data

One-Hot Encoding

imputation

Figure 4. Data preprocessing flowchart.
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sample 2

sample 3

sample 1 time step 1 time step 2 measurement 1

time step 1 time step 2 measurement 2

time step 1 time step 2 measurement 3

Figure 5. Join sensor data and measurement data.

5. Results
5.1. Evaluation Metrics
5.1.1. Error Grouping

Our target y, i.e., meas_med, is a continuous distribution on [−1, 1000], and sometimes
y is close to zero. When |y| is small, Relative Error η can easily become very large and can be
meaningless. For those measurement values close to zero, the processing engineers validate
that the Absolute Error ε = |ŷ − y| is of much importance when it comes to processing
monitoring and adjustments. So, we propose the following grouping criteria for prediction
errors:

• Group 1: η < 1% or ε < 0.1.
• Group 2: η < 5% or ε < 0.5, and not in Group 1.
• Group 3: η < 10% or ε < 1, and not in Group 1 or 2.
• Group 4: η < 50% or ε < 5, and not in Groups 1–3.
• Group 5: η < 100% or ε < 10, and not in Groups 1–4.
• Group 6: not in Groups 1–5.

Apparently, a group with smaller index is a better group. We report the grouping
results in our experiments, and define ‘decent predictions’ as those predictions in group 1
and group 2.

5.1.2. Recall and False Positive Rate

The passfail column and human inspection results give us insights into the pass or fail
status of wafers, as introduced in Section 4.3. In our evaluation, we define a ‘fail wafer’ as
a wafer which satisfies all the following conditions:

• The value in its passfail column is FAIL_AVG_HI or FAIL_AVG_LOW.
• The result of human inspection is also a fail.
• Its meas_med is either larger than the upper control limit or smaller than the lower

control limit.

The number of fail labels in our dataset is much smaller than the number of pass
wafers. Fail wafers are regarded as positive samples. The recall rate of fail wafers and the
false positive rate are our evaluation metrics.

5.2. Compare Two Losses

In this subsection, we compare the Relative Error Loss with the Normalized L1 Loss.
We group the data by (KQI, TYPE, stage) and call each group a normalization group. In the
Normalized L1 Loss, we normalize meas_med within each (KQI, TYPE, stage) normalization
group, then train with L1 loss as we mentioned in Section 3.2.2. There are two other
categorical variables of lesser importance: equipid and prod. We do not include equipid and
prod in the normalization to prevent an excessive proliferation of normalization groups.
Using (KQI, TYPE, stage), we establish 74 normalization groups in the entire training set,
a quantity we deem appropriate compared to our sample size. Within each (KQI, TYPE,
stage) normalization group, the pair (b1, b2) introduced in Section 3.2.2 is chosen based on
having the smallest difference between the upper and lower control limits.
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5.2.1. LSTM-Small Model

Our model architecture is explained in Section 3.1. When we train on only one (KQI,
TYPE), we use relatively fewer parameters to define a LSTM-small model. Later, when we
train on all data, we define a LSTM-large model with more parameters. In the LSTM-small
model, our input size and hidden size of LSTM are both 128, where the input size of LSTM
is the output size of the embedding layer. In the MLP regressor, we have two hidden layers,
each with 256 hidden units. In total, there are approximately 0.4 million parameters in the
LSTM-small model. Our activation function in the MLP regressor is ReLU. We stop the
training if we observe no improvement in the validation loss for more than 10 continuous
epochs. Our optimizer is Adam with a learning rate of 0.0001. After some hyperparameter
tuning, we set the batch size to be 16. We choose the model with the best validation loss.

Table 1 summarizes the test set results when we train our LSTM-small model on
KQI KQI-1 and TYPE TYPE-1. We choose this (KQI, TYPE) because it is one of the most
common (KQI, TYPE)s. In the table, RE means the training loss is the Relative Error Loss.
And NL1 means the Normalized L1 Loss. Each row in the last column contains a list of
six numbers, representing the number of test samples in each group under our grouping
criteria. According to our experiments, Relative Error Loss gives us better results. Since
we have already defined predictions within group 1 and group 2 as decent predictions,
we have 5413/5749 ≈ 94.16% decent predictions using RE loss, while we only have
5270/5749 ≈ 91.67% decent predictions using NL1 loss.

Table 1. LSTM-small model on (KQI-1, TYPE-1).

Model Loss Relative Error Grouping

LSTM-small RE [2554, 2859, 257, 68, 10, 1]
LSTM-small NL1 [2544, 2726, 319, 100, 36, 24]

5.2.2. LSTM-Large Model

We train all 33 different (KQI, TYPE)s jointly to see if we can improve the results. A
much larger model called the LSTM-large model is used. Its input size and hidden size of
LSTM are both 1024. Its MLP regressor still has two hidden layers but each hidden layer
has 2048 units. The LSTM-large model has approximately 16 million parameters in total.
We still use batch size 16 and the Adam optimizer with a learning rate of 0.0001.

The results are displayed in Table 2. Based on Relative Error Loss, 23074/28134 ≈ 82.01%
predictions are decent predictions. This is worse than the 94.16% prediction for the LSTM-
small model on (KQI-1, TYPE-1), perhaps because (KQI-1, TYPE-1) is a relatively easy
(KQI, TYPE). Based on the Normalized L1 Loss, we have 22418/28134 ≈ 79.68% decent
predictions, which is still worse than the result based on Relative Error Loss. However,
if we only care about the number of predictions within group 1, the model trained with
Normalized L1 Loss has 12812 samples in group 1, which is better than the 10763 samples
for the model trained with Relative Error Loss. Another experiment we find interesting
is one that uses the same LSTM-large model trained on all 33 (KQI, TYPE)s but tests only
on (KQI-1, TYPE-1). We have 5419/5749 ≈ 94.26% decent predictions achieved via RE
Loss and 5417/5749 ≈ 94.23% decent predictions achieved via NL1 Loss; see Table 3. Both
94.26% and 94.23% are better than their counterparts in the LSTM-small model; this is
because we have much more training data when we train all 33 (KQI, TYPE)s jointly.

Table 2. LSTM-large model on all data.

Model Loss Relative Error Grouping

LSTM-large RE [10,763, 12,311, 2122, 2899, 32, 7]
LSTM-large NL1 [12,812, 9606, 2071, 3458, 98, 89]
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Table 3. LSTM-large model on (KQI-1, TYPE-1).

Model Loss Relative Error Grouping

LSTM-large RE [2380, 3039, 231, 78, 19, 2]
LSTM-large NL1 [2626, 2791, 210, 55, 42, 25]

Upon comparing the percentage of decent predictions, we find that the Relative Error
Loss slightly outperforms the Normalized L1 Loss within our settings, but the Normalized
L1 Loss possesses its own advantages. Following the same normalization procedure, it is
straightforward to replace the L1 loss with L2 loss or Huber loss. Therefore, the Normalized
L1 Loss is more general. Additionally, the Normalized L1 Loss incorporates the lower
and upper control limits into the model, while the Relative Error Loss does not. This
characteristic of the Normalized L1 Loss is beneficial when precise lower and upper control
limits are available.

5.3. Pass/Fail Evaluation

The definition of a fail wafer can be found in Section 5.1.2. Under that definition, we
only have 162 fail wafers among 550,239 training samples. Using the LSTM-large model
trained on all (KQI, TYPE), and predicting a wafer to be a fail wafer if and only if the
predicted meas_med ŷ is outside the interval (b∗1 , b∗2), we achieve a recall rate of 0.3580
and a false positive rate of 0.01434. The b∗1 and b∗2 are the lower and upper control limits
introduced in Section 4.2.

To sacrifice the false positive rate for a better recall rate, we apply the following trick
here: considering a constant 0 < f < 0.5, and r = b∗2 − b∗1 , we predict the wafer as a fail
wafer if and only if

ŷ /∈ (b∗1 + f ∗ r, b∗2 − f ∗ r) (6)

When f increases, both the recall rate and false-positive rate of the model are ex-
pected to increase, given that more wafers are predicted to be fail wafers. The results
are presented in Table 4, revealing that a f = 0.35 yields a recall rate above 0.8. The
false-positive rate at this point is 0.2981. If an 80% recall rate suffices, Table 4 illustrates that
we now only need to apply metrology tools on approximately 30% of the wafers where
ŷ /∈ (b∗1 + 0.35r, b∗2 − 0.35r). Due to the presence of potentially misclassified fail wafers in
our dataset, the actual recall rate should be higher. With the accumulation of more test data
in future endeavors, our results will become more accurate.

Table 4. Recall and false-positive rate.

f Recall False Positive Rate

0.0 0.3580 0.01434
0.1 0.4506 0.07219
0.2 0.4938 0.1084
0.3 0.6975 0.2075

0.35 0.8086 0.2981
0.4 0.8395 0.4321

6. Discussion and Conclusions

In this paper, we address the challenges of handling real-world manufacturing data
by presenting a preprocessing method that considers both numeric sensor recordings and
textual recordings concurrently. To cater to the unique characteristics of wafer manufactur-
ing data, we propose an LSTM-based model that predicts the metrology values of wafers.
Our model utilizes two distinct loss functions, the Relative Error Loss and the Normal-
ized L1 Loss, which accommodate the varying precision requirements of the wafers. We
evaluate the performance of our model using specific criteria for soft sensing regression.
Our results demonstrate that deep learning techniques can effectively forecast metrology
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measurements, thereby reducing the reliance of factories on metrology tools and resulting
in significant time and energy savings. Overall, our study highlights the potential benefits
of leveraging deep learning in manufacturing settings.

To improve the model’s effectiveness in future studies, we should prioritize the re-
moval of outliers from the dataset. Our analysis identified erroneous measurements that
could compromise both the accuracy of the model’s training and evaluation. In addition,
we recommend considering transfer learning techniques by leveraging soft sensing data
from various metrology tool sets within Seagate. By doing so, we can enhance the model’s
capacity to make more robust predictions and improve its generalization capabilities.
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