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Abstract: In recent years, researchers have focused on analyzing humans’ daily living activities
to study various performance metrics that humans subconsciously optimize while performing
a particular task. In order to recreate these motions in robotic structures based on the human
model, researchers developed a framework for robot motion planning which is able to use various
optimization methods to replicate similar motions demonstrated by humans. As part of this process,
it will be necessary to record the motions data of the human body and the objects involved in
order to provide all the essential information for motion planning. This paper aims to provide a
dataset of human motion performing activities of daily living that consists of detailed and accurate
human whole-body motion data collected using a Vicon motion capture system. The data have been
utilized to generate a subject-specific full-body model within OpenSim. Additionally, it facilitated
the computation of joint angles within the OpenSim framework, which can subsequently be applied
to the subject-specific robotic model developed MATLAB framework. The dataset comprises nine
daily living activities and eight Range of Motion activities performed by ten healthy participants and
with two repetitions of each variation of one action, resulting in 340 demonstrations of all the actions.
A whole-body human motion database is made available to the public at the Center for Assistive,
Rehabilitation, and Robotics Technologies (CARRT)-Motion Capture Data for Robotic Human Upper
Body Model, which consists of raw motion data in .c3d format, motion data in .trc format for the
OpenSim model, as well as post-processed motion data for the MATLAB-based model.

Keywords: motion capture system; activities of daily living; OpenSim; Robotic Human Upper
Body Model

1. Introduction

In recent years, the field of robotics has undergone notable advancements and emerged
as a forefront technology driven by artificial intelligence and machine learning. In order
to meet the diverse needs of these applications, robotic systems have evolved in terms of
structural design, dexterity, manipulability, adaptability, and intelligence. The robotics
community has shown substantial interest in utilizing robots in personal and social environ-
ments [1–3]. Studies have emphasized the significance of predictability and motion velocity
in robotic manipulators, as these factors significantly impact the performance of human col-
laborators [4–6]. One aspect of this development is investing in robotic manipulators with
human-like motion characteristics. By achieving this, robots become more than machines;
they become intuitive collaborators who can anticipate and synchronize their actions with
human co-workers. This advancement holds immense promise in collaborative settings,
mitigating anxiety and enhancing situational awareness among human collaborators. As
a result, collaborative tasks within shared workspaces become more efficient, safer, and
more conducive to productive interactions [5,7]. Therefore, it becomes important for re-
searchers to formulate robust motion planning algorithms capable of accurately mimicking
human movements to foster this sense of security. To gain a deeper understanding of
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human behavior during various daily living activities and to evaluate the effectiveness of
algorithms, researchers need to have access to comprehensive datasets that include human
motion data. Creating datasets encompassing comprehensive information for learning
various performance metrics based on human demonstrations requires substantial effort.
The data collection process involves capturing systematic movements of human motion.
Comprehensive robotic models are constructed using data derived from anthropomorphic
models for Opensim Version 3.3 and MATLAB R2019b software, along with the develop-
ment of tools for processing and interpreting these datasets for the MATLAB environment.
The availability of such datasets, including anthropomorphic models and post-processed
datasets for various environments, represents a unique contribution that can significantly
advance the field of Human Motor Control through biomimetic approaches.

In this paper, we present a dataset encompassing the following components:

1. Motion Capture Dataset: The dataset includes recordings captured using a VICON
motion capture system, comprising a total of nine activities of daily living which
includes eight unimanual activities and one bimanual activity of daily living and
eight Range of Motion activities. These activities were performed by a group of
ten individuals.

2. OpenSim Motion Files: For each of the tasks in the dataset, motion files compatible
with OpenSim are provided. These files enable the study and analysis of the captured
motions using OpenSim software.

3. An Upper Body Model for MATLAB: An approximate upper body model is included,
specifically designed for MATLAB utilizing Peter Corke Robotic Toolbox. This model
facilitates the investigation of various performance metrics utilizing MATLAB.

4. Post-processed Dataset: The dataset has undergone further processing to enable
the exploration of a wide range of performance metrics within the MATLAB envi-
ronment. This processed dataset allows researchers to conduct in-depth analyses
and investigations.

The motion capture data have been carefully processed and presented in .xls format,
allowing them to be used on different software platforms. However, in this dataset, the
authors have provided all the required components for the MATLAB framework, making
it easier to use the data within this specific environment. This dataset can be used to aid
future research and advancements in the field of Human Motor Control using biomimetic
approaches. To facilitate accessibility and utilization, the dataset is made publicly available
through our CARRT—Motion Capture Data for Robotic Human Upper Body Model [8].

2. Related Work
Human Motion Datasets

In the field of biomimetic motion, many methods use human motion recordings
as a basis and benchmark for assessment. This dependence on motion capture remains
consistent regardless of the scope, field, or application being considered. However, the
limited accessibility to large, adaptable datasets of high quality, negatively impacts the
overall extent of research in this area [9]. An approximate human kinematic model is crucial
to conduct a comprehensive kinematic analysis. This model encompasses the joint angles
and movements exhibited by the human body during different activities. Despite multiple
motion capture databases, it is crucial to highlight that most of these researchers have
tailored their datasets to suit their specific research requirements. As a result, their limited
coverage of daily living activities makes them less helpful in conducting task-specific
kinematic analysis.

The KIT Whole-Body Human Motion Database [10] is a comprehensive repository of
large-scale whole-body human motion data. It provides a range of methods and tools that
facilitate a unified representation of captured human motion and enable efficient searching
within the database. Moreover, it allows for the transfer of subject-specific motions to
robots with varying physical characteristics. In addition to detailing the reference model,
the authors of the database outline systematic procedures and techniques for recording,
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labeling, and organizing human motion capture data. They also address the recording
of object motions and the establishment of subject–object relations. The AndyData-lab-
onePerson Dataset [11] comprises a collection of datasets that include motion and force
measurements captured during various manual tasks. The dataset also includes detailed
annotations of the actions and postures exhibited by the participants during these tasks. In
this dataset, a total of 13 participants were involved, each engaging in a series of activities
that simulate industrial tasks commonly encountered in real-world settings. These include
tasks such as setting screws at different heights and manipulating loads of varying weights.

The CMU Graphics Lab Motion Capture Database [12] is a prominent repository
of human motion data. It comprises 6 major task categories, each further divided into
23 subcategories, resulting in a total of 2605 trials. This database offers a diverse range of
captured motions, encompassing various activities and scenarios such as walking, washing
clothes, playing games, etc.

The SFU Motion Capture Database [13] has significantly contributed to the field by
offering a comprehensive dataset encompassing a wide range of human motions. The
dataset includes recordings of eight subjects performing tasks across five major categories,
providing researchers with valuable insights into human movement patterns and behavior.
One notable advantage of the SFU Motion Capture Database is its provision of motion
data in multiple file formats. This versatility lets users import motion files into various
platforms, including Maya, MotionBuilder, and OpenSim.

The Archive of Motion Capture As Surface Shapes (AMASS) [14] is a comprehensive
and diverse database of human motion. It serves as a unifying platform for integrating
data from 15 distinct optical marker-based motion capture (mocap) datasets, employing
a shared framework and parameterization approach. The authors of the study utilized a
software tool called MoSh++ to transform the mocap data into realistic three-dimensional
(3D) human meshes, represented by a rigged body model.

The GRAB (GRasping Actions with Bodies) dataset [15] offers an extensive repository
of whole-body grasping actions, encompassing complete three-dimensional (3D) shape
and pose sequences of 10 subjects interacting with 51 everyday objects exhibiting diverse
shapes and sizes. However, it is important to emphasize that the dataset’s primary research
focuses on object grasping rather than capturing the intricacies of actual object interactions.
Furthermore, the dataset represents the body using the SMPL-X model, which needs more
detailed human body parameters for conducting thorough kinematic analyses.

In contrast to previous research, our study introduces a task-specific motion cap-
ture dataset that captures whole-body motions during daily living tasks. This dataset is
adaptable across different platforms and seamlessly integrates subject-specific kinematic
models into the MATLAB workspace. This dataset and these models play a crucial role in
conducting diverse analyses to understand the various performance criteria that humans
intuitively optimize during the execution of specific activities of daily living tasks. This
dataset serves as a valuable complement to the previously established KIT Whole-Body
Human Motion Database [10] and the GRAB (GRasping Actions with Bodies) dataset [15].

3. The Dataset

The primary objective of this section is to provide a comprehensive description of the
marker placement and camera setup employed in the study, as well as detailed participant
demographics and the experimental setup. Moreover, it encompasses a comprehensive
description of the objects utilized during the performance of various activities of daily living.
The CARRT-Motion Capture Data for Robotic Human Upper Body Model Database offers
an extensive assortment of anthropomorphic data, .c3d motion files, and a subject-specific
Robotic-Toolbox-based MATLAB model.
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3.1. Marker Placement and Camera Setup

In this dataset, the entire kinematics of the participant’s whole body was captured
using a Vicon motion capture system based on reflective markers [16]. Eight cameras were
strategically positioned around the workspace, as shown in Figure 1. For marker placement,
43 spherical reflective markers with a diameter of 12.5 mm were affixed to the participant’s
skin using double-sided adhesive tapes. A comprehensive description of the markers,
including their labels and positions, can be found in Table 1, Figures 2 and 3.
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Figure 1. Camera positions relative to subject and motion capture system origin.

Table 1. Marker description.

Name Marker Placement

T1 Spinous Process; 1st Thoracic Vertebrae
T10 Spinous Process; 10th Thoracic Vertebrae

CLAV Jugular Notch
STRN Xiphoid Process
LBAK Middle Of Left Scapula (Asymmetrical)

R/LASI Right/Left Anterior Superior Iliac Spine
R/LPSI Right/Left Posterior Superior Iliac Spine
R/LGT Right/Left Greater Trochanters

R/LSHOA Anterior Portion of Right/Left Acromion
R/LSHOP Posterior Portion of Right/Left Acromion
R/LUPA Right/Left Lateral Upper Arm
R/LELB Right/Left Lateral Epicondyle

R/LELBM Right/Left Medial Epicondyle
R/LFRA Right/Left Lateral Forearm
R/LWRA Right/Left Wrist Radial Styloid
R/LWRB Right/Left Wrist Ulnar Styloid
R/LFIN Dorsum Of Right Hand Just Proximal To 3rd Metacarpal Head
R/LTHI Right/Left Thigh
R/LLFC Right/Left Lateral Epicondyle of Femur
R/LMFC Right/Left Medial Epicondyle of Femur
R/LTBI Right/Left Tibia Interior

R/LLMAL Right/Left Lateral Malleolus
R/LCAL Right/Left Calcaneus
R/LTOE Right/Left Toe



Sensors 2023, 23, 8354 5 of 12

Sensors 2023, 23, x FOR PEER REVIEW 5 of 12 
 

 

R/LTBI Right/Left Tibia Interior 
R/LLMAL Right/Left Lateral Malleolus 
R/LCAL Right/Left Calcaneus 
R/LTOE Right/Left Toe 

 

  
Figure 2. Upper body marker placement. 

 
Figure 3. Lower body marker placement. 

To ensure accurate data collection, the Vicon system underwent calibration for each 
participant at the start of the recording session. The participants maintained fixed, static 
T-positions at the beginning and end of each trial. The data from each trial were recorded 
at a frequency of 120 Hz. To mitigate noise and marker flickering during the trials, the 
recorded data were subjected to post-processing using Nexus 1.8.5 software by Vicon 
(Denver, CO, USA) [16]. This post-processing was performed on a computer running Win-
dows 7, equipped with an Intel Core i5 processor, a 250 GB hard disk, and 32 GB of RAM. 

Figure 2. Upper body marker placement.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 12 
 

 

R/LTBI Right/Left Tibia Interior 
R/LLMAL Right/Left Lateral Malleolus 
R/LCAL Right/Left Calcaneus 
R/LTOE Right/Left Toe 

 

  
Figure 2. Upper body marker placement. 

 
Figure 3. Lower body marker placement. 

To ensure accurate data collection, the Vicon system underwent calibration for each 
participant at the start of the recording session. The participants maintained fixed, static 
T-positions at the beginning and end of each trial. The data from each trial were recorded 
at a frequency of 120 Hz. To mitigate noise and marker flickering during the trials, the 
recorded data were subjected to post-processing using Nexus 1.8.5 software by Vicon 
(Denver, CO, USA) [16]. This post-processing was performed on a computer running Win-
dows 7, equipped with an Intel Core i5 processor, a 250 GB hard disk, and 32 GB of RAM. 

Figure 3. Lower body marker placement.

To ensure accurate data collection, the Vicon system underwent calibration for each
participant at the start of the recording session. The participants maintained fixed, static
T-positions at the beginning and end of each trial. The data from each trial were recorded
at a frequency of 120 Hz. To mitigate noise and marker flickering during the trials, the
recorded data were subjected to post-processing using Nexus 1.8.5 software by Vicon
(Denver, CO, USA) [16]. This post-processing was performed on a computer running
Windows 7, equipped with an Intel Core i5 processor, a 250 GB hard disk, and 32 GB
of RAM.

The data collection process involved the utilization of a video camera, where videos
were recorded at a frame rate of 25 frames per second. To ensure anonymity, each video
underwent post-processing using video editor software. It is important to note that the
videos are not included in this dataset. Their purpose was solely to ensure the accuracy of
motion capture.
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3.2. Participants

A total of 10 healthy adults participated in the data collection process, consisting of 4
men and 6 women. Among the participants, nine had dominant right hands, while one
had a dominant left hand. Detailed demographic information about the participants is
presented in the accompanying Table 2.

Table 2. Subject demographic information.

Subject Gender Dominant Hand Height (cm) Body Weight (Kg)

Subject 1 Male R 162.5 60
Subject 2 Male R 165.09 65
Subject 3 Female R 160.02 58
Subject 4 Male R 172.72 86
Subject 5 Female R 152.4 58
Subject 6 Female R 162.5 68
Subject 7 Female R 165.09 51
Subject 8 Female R 162.5 79
Subject 9 Male L 172.72 60

Subject 10 Female R 167.64 76

The average age of the participants was 28 years (SD = 8.56 years), with an average
height of 164.32 cm (SD = 5.69 cm) and an average body mass of 66.10 kg (SD = 10.48 kg).
Individuals with limited or no experience working with motion capture systems, including
students and researchers, were recruited to ensure diverse participation in the study.

Ethical considerations were addressed by obtaining approval from the Institutional
Review Board of the University of South Florida. Prior to data collection, all participants
provided informed consent after receiving comprehensive information about the study and
its procedures (IRB number: 004898).

3.3. Experimental Setup

In this section, we will explore a dataset comprising nine carefully chosen daily living
activities, along with the associated objects employed to perform these activities.

3.3.1. Activities of Daily Living Tasks and Procedure

The dataset includes a total of nine activities of daily living (ADL) and eight range of
motion (ROM) tasks [17]. As this data collection primarily centers on upper body move-
ments, the selection of ADL tasks is based on prior work by the authors of references [18–20].
These activities focus on the movement of joints and how humans interact with objects
while sitting or standing.

Participants were instructed to perform each task either in a standing position or
while seated on a chair positioned behind a table with a height of approximately 88 cm.
Prior to recording, the Vicon system underwent calibration for each participant to ensure
accurate measurements. Two repetitions of each action were recorded, while participants
maintained a fixed, static position at the start and end of each trial.

Overall, a total of 18 demonstrations of ADL and 16 ROM were collected from each
participant, resulting in a combined total of 340 demonstrations. The duration of each
recording ranged between five to fifteen seconds.

3.3.2. Objects

To capture human motion during the execution of activities of daily living (ADL)
tasks, a set of seven natural household objects was employed. These objects were carefully
selected to resemble the items commonly encountered in real-life scenarios closely. For
comprehensive information regarding each object, including its weight and dimensions,
please refer to Table 3. The dataset does not include information regarding object markers.
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Table 3. Activities of daily living tasks. (* NA = Not Applicable).

ADL Task Name Abbreviation Object Used Object Weight
(Kg) Object Size (m)

Brushing Hair BH Hairbrush 0.02 0.243 × 0.081 × 0.0381

Drinking From a Cup FPC Plastic Cup 0.02 0.053 × 0.053 × 0.109

Opening a Lower-Level Cabinet OCL * NA NA NA

Opening a Higher-Level Cabinet OCH NA NA NA

Picking Up the Box PB Carboard Box 0.52 0.457 × 0.356 × 0.305

Picking Up the Duster and Cleaning PDC Cleaning Duster 0.18 0.356 × 0.051 × 0.076

Picking Up an Empty Water Jug PEWJ 1 Gallon Water Jug 0.90 0.15 × 0.15 × 0.269

Picking Up a Full Water Jug PFWJ 1 Gallon Water Jug 3.79 0.15 × 0.15 × 0.269

Picking Up a Water Jug and Pouring PWJ 1/2 Gallon Water
Jug and Plastic Cup 2.55 0.191 × 0.105 × 0.289

4. Data Post Processing
4.1. File Formats and Organization

This section aims to present a comprehensive overview of the key software components
involved in the study, including OpenSim, the MATLAB Robotic Human Upper Body
Model (RHUBM), and the dataset organization. The dataset comprises 426 .c3d motion files
and 426 .trc files specifically tailored for OpenSim. The Demographic Data .xls file contains
essential participant information, such as ID, age, gender, dominant hand, weight, and
body dimensions, which can be useful to create the scaled model in OpenSim. Additionally,
the dataset includes seven MATLAB files, which comprise the RHUBM model of each
subject, and 215 .xls joint angle files specifically tailored for MATLAB. Instructions on
running the MATLAB code can be found in the accompanying text file. Please refer to
Table 4 and Figure 4 for more detailed insights into the data content and format.
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Table 4. File formats.

Dataset Format Number of Files

Participant Data .trc 426
Vicon Data .c3d 426
Matlab Raw Data .xls 215
Matlab Code .M 7
Demographic Data and Task Name .xls 2

4.2. OpenSim Musculoskeletal Model

The musculoskeletal models offer a non-invasive approach to investigating human
movement. In this dataset, we employed the full-body musculoskeletal model developed
by Rajagopal et al. [21] to generate subject-specific joint angles for each task. By utilizing the
OpenSim scaled model option, we created a customized model that accurately represents
the individual’s anatomy. The skeletal structure of the model consisted of 22 articulating
rigid bodies, including the pelvis, femurs, patella’s, tibia/fibulas, talus, calcaneus, and
toes, to depict the lower body. Similarly, the upper body was represented by the combined
head and torso and the humerus, ulna, radius, and hand for both sides. In total, the model
encompassed 20 degrees of freedom in the lower body, accounting for the pelvis and each
leg, and 17 degrees of freedom in the torso and upper body, incorporating the lumbar joint
and each arm. The dataset offers comprehensive joint angles for the entire body. However,
our primary research focus revolves around upper body movements specifically during
activities of daily living. The focus is placed on analyzing and documenting the joint
coordinates specifically related to the upper body. For a detailed understanding of each
joint coordinate system, please refer to the work by Rajagopal et al. [21].

The head and torso were represented as a single rigid segment connected to the pelvis,
with the orientation of the torso relative to the pelvis described using torso fixed ZXY
rotations (representing lumbar extension, lateral bending, and rotation, respectively). The
connection of the humerus with the torso was facilitated by a ball-and-socket joint, and the
orientation of the right humerus in relation to the torso was determined by humerus-fixed
ZXY rotations (representing shoulder flexion, adduction, and rotation, respectively). The
ulna is linked to the humerus via a pin joint at the elbow, while forearm pronation was
modeled by a pin joint connecting the radius and ulna. The hand was connected to the
radius through a two-degree-of-freedom universal joint, with the orientation of the hand
with respect to the radius described by hand-fixed ZX rotations (representing wrist flexion
and ulnar deviation, respectively). It should be noted that this model focused primarily on
capturing the overall motion of the torso and upper extremities using the OpenSim inbuild
inverse kinematics toolbox and did not account for the complex kinematics of scapular
motion or spinal bending.

4.3. MATLAB Robotic Toolbox Model

In this dataset, the authors have provided only the upper body model designed
explicitly for the Matlab environment based on the OpenSim model discussed in the above
section. The upper body robot model was constructed using a rigid kinematic chain
based on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of
17 Degrees of Freedom (DoFs) for each subject. These DoFs include three for the torso
(representing lumbar lateral bending, extension and rotation, respectively) [23], three for
each shoulder joint (representing shoulder flexion, adduction, and rotation, respectively),
two for each elbow joint (represent elbow flexion and forearm pronation), and two for each
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete
set of parameters used to create the links of the RHUBM is presented in Tables 5–7 and
Figure 5.
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In the RHUBM, the vertical length of the torso is denoted as D1, and the horizontal
length of the torso is represented as A1. The upper arm length is measured from the
shoulder center to the elbow center, while the forearm length is measured from the elbow
center to the wrist center. A2 denotes the upper arm length from shoulder to elbow center,
and D3 represents forearm length. Additionally, the length of the hand, denoted as D4, is
measured from the center of the wrist to the center of the palm. The mass of each body
segment is expressed as a percentage of the total body mass [24]. Graphic descriptions of
these parameters used in the RHUBM are provided in Figure 5.

Table 5. D-H parameters of RHUBM model.

i αi-1
(deg)

ai-1
(m)

di
(m)
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 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

i
(deg) Joint

1 0 0 0 90 +
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marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

1 Torso Lateral Flexion
2 90 0 0 90 +
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marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

2 Torso Flexion/Extension
3 −90 0 0 −90 +
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marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

3 Torso Rotation
4 0 A1 D1
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marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

4 Shoulder Flexion/Extension

5 −90 0 0 −90 +
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marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

5 Shoulder
Abduction/Adduction

6 −90 0 D2
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marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

6 Shoulder Rotation
7 −90 0 0 180 +
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marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

7 Elbow Flexion
8 −90 0 D3 90 +
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marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 

D1 
(m) 

W2 
(Kg) 

A1 
(m) 

W3 
(Kg) 

D2 
(m) 

W4 
(Kg) 

D3 
(m) 

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254 
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250 
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265 
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228 
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254 
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229 
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228 
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265 

8 Elbow Pronation/Supination
9 −90 0 0 90 +

Sensors 2023, 23, x FOR PEER REVIEW 9 of 12 
 

 

marily on capturing the overall motion of the torso and upper extremities using the Open-
Sim inbuild inverse kinematics toolbox and did not account for the complex kinematics of 
scapular motion or spinal bending. 

4.3. MATLAB Robotic Toolbox Model 
In this dataset, the authors have provided only the upper body model designed ex-

plicitly for the Matlab environment based on the OpenSim model discussed in the above 
section. The upper body robot model was constructed using a rigid kinematic chain based 
on Denavit-Hartenberg (D-H) parameters [22]. The upper body model consists of 17 De-
grees of Freedom (DoFs) for each subject. These DoFs include three for the torso (repre-
senting lumbar lateral bending, extension and rotation, respectively) [23], three for each 
shoulder joint (representing shoulder flexion, adduction, and rotation, respectively), two 
for each elbow joint (represent elbow flexion and forearm pronation), and two for each 
wrist joint (representing wrist flexion and ulnar deviation, respectively). The complete set 
of parameters used to create the links of the RHUBM is presented in Tables 5–7 and Figure 
5.  

Table 5. D-H parameters of RHUBM model. 

i 
αi-1 
(deg) 

ai-1 
(m) 

di 
(m) 

Ɵi 
(deg) Joint 

1 0 0 0 90 + Ɵ1 Torso Lateral Flexion 
2 90 0 0 90 + Ɵ2 Torso Flexion/Extension 
3 −90 0 0 −90 + Ɵ3 Torso Rotation 
4 0 A1 D1 Ɵ4 Shoulder Flexion/Extension 
5 −90 0 0 −90 + Ɵ5 Shoulder Abduction/ Adduction 
6 −90 0 D2 Ɵ6 Shoulder Rotation 
7 −90 0 0 180 + Ɵ7 Elbow Flexion 
8 −90 0 D3 90 + Ɵ8 Elbow Pronation/ Supination 
9 −90 0 0 90 + Ɵ9 Wrist Flexion/ Extension 
10 −90 0 0 180 + Ɵ10 Wrist Abduction/ Adduction 

Table 6. Segment weight. 

 Weight (Kg) Segment 
W1 0.551 × Body Weight Torso 
W2 0.0325 × Body Weight Upper Arm 
W3 0.0187 × Body Weight Lower Arm 
W4 0.0065 × Body Weight Hand 

Table 7. Subject segment dimensions. 

Subject 
W1 
(Kg) 
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(m) 
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(Kg) 

D3 
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10 −90 0 0 180 +
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10 Wrist Abduction/Adduction

Table 6. Segment weight.

Weight (Kg) Segment

W1 0.551 × Body Weight Torso
W2 0.0325 × Body Weight Upper Arm
W3 0.0187 × Body Weight Lower Arm
W4 0.0065 × Body Weight Hand

Table 7. Subject segment dimensions.

Subject W1
(Kg)

D1
(m)

W2
(Kg)

A1
(m)

W3
(Kg)

D2
(m)

W4
(Kg)

D3
(m)

Subject 1 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265
Subject 2 32.305 0.432 1.820 0.280 1.040 0.280 0.390 0.254
Subject 3 28.826 0.368 1.624 0.140 0.928 0.300 0.348 0.250
Subject 4 42.742 0.457 2.408 0.200 1.376 0.318 0.516 0.265
Subject 5 28.826 0.356 1.624 0.190 0.928 0.254 0.348 0.228
Subject 6 33.796 0.356 1.904 0.203 1.088 0.267 0.408 0.254
Subject 7 25.347 0.432 1.428 0.200 0.816 0.254 0.306 0.229
Subject 8 39.263 0.457 2.212 0.200 1.264 0.254 0.474 0.228
Subject 9 29.820 0.435 1.680 0.200 0.960 0.270 0.360 0.265
Subject 10 37.772 0.432 2.128 0.200 1.216 0.254 0.456 0.228
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5. Conclusions

In this study, we present a dataset consisting of human demonstrations capturing the
activities of daily living and range of motion tasks. The dataset was recorded using the
Vicon motion capture system and is specifically designed to provide comprehensive infor-
mation for learning and analyzing human daily living activities for researchers focusing
on studying various performance metrics that humans subconsciously optimize during
task execution. It comprises nine different ADL actions and eight range of motion actions
performed by ten subjects, with up to two repetitions of each action variation. This yields a
total of 340 human demonstrations.

The dataset aims to facilitate the learning and generalization of object manipulation
actions, which are crucial for analyzing various performance metrics optimized by humans
during task performance. Using Vicon motion capture data, a subject-specific full-body
model was constructed within the OpenSim framework, enabling the computation of joint
angles. The Robotic toolbox developed by Peter Corke [25] played a crucial role in building
a subject-specific Matlab-based upper body model. Additionally, a MATLAB-based library
was created, leveraging OpenSim joint angles as a foundation, with the potential to support
future research work. These tools and resources are intended to support research in
learning performance criteria from human observation and can contribute to various
research directions, such as motion primitive learning and trajectory planning.

In our future work, we plan to expand the dataset by including more actions and
their variations from additional subjects. We also aim to incorporate bimanual tasks and
a full-body MATLAB-based kinematic model to analyze the dynamics of the entire body.
This will enable better trajectory planning for humanoid robots.
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