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Abstract: Aiming at guiding agricultural producers to harvest crops at an appropriate time and
ensuring the pesticide residue does not exceed the maximum limit, the present work proposed a
method of detecting pesticide residue rapidly by analyzing near-infrared microscopic images of the
leaves of Shanghaiqing (Brassica rapa), a type of Chinese cabbage with computer vision technology.
After image pre-processing and feature extraction, the pattern recognition methods of K nearest
neighbors (KNN), naïve Bayes, support vector machine (SVM), and back propagation artificial neural
network (BP-ANN) were applied to assess whether Shanghaiqing is sprayed with pesticides. The
SVM method with linear or RBF kernel provides the highest recognition accuracy of 96.96% for the
samples sprayed with trichlorfon at a concentration of 1 g/L. The SVM method with RBF kernel has
the highest recognition accuracy of 79.16~84.37% for the samples sprayed with cypermethrin at a
concentration of 0.1 g/L. The investigation on the SVM classification models built on the samples
sprayed with cypermethrin at different concentrations shows that the accuracy of the models increases
with the pesticide concentrations. In addition, the relationship between the concentration of the
cypermethrin sprayed and the image features was established by multiple regression to estimate the
initial pesticide concentration on the Shanghaiqing leaves. A pesticide degradation equation was
established on the basis of the first-order kinetic equation. The time for pesticides concentration to
decrease to an acceptable level can be calculated on the basis of the degradation equation and the
initial pesticide concentration. The present work provides a feasible way to rapidly detect pesticide
residue on Shanghaiqing by means of NIR microscopic image technique. The methodology laid out
in this research can be used as a reference for the pesticide detection of other types of vegetables.

Keywords: pesticide residues; near-infrared microscopic imaging; rapid detection; computer
vision; Shanghaiqing

1. Introduction

As an important part of agricultural production, pesticides play an active role in
crop growth [1]. With population growth and rising demand for agricultural products,
agricultural producers are becoming increasingly more dependent on pesticides, leading to
a rapid increase in pesticide use and even cases of overuse [2]. Although pesticide use can
increase crop production, it also brings many problems, such as food safety, environmental
pollution and so on. Pesticide residues in crops have a serious impact on human health and
natural ecosystems [3–5]. Since pesticide use is unavoidable and effective, rapid methods
of pesticide testing and harvesting crops at a suitable time are essential to food safety.

Common domestic and international pesticide testing is conducted mainly on the basis
of chemical or biological principles. Thin layer chromatography (TLC) is a general method
for the detection of trace matter [6]. The method is simple in laboratory environment, but
the accuracy is poor. It is often used for qualitative detection. Gas chromatography (GC)
is most frequently used in pesticide residue detection. It provides precise detection of
substances at the molecular level. Therefore, it is often applied to calibrate other methods
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for detecting pesticide residues. For substances with excessively high boiling points and
poor thermal stability, high performance liquid chromatography (HPLC) is a common
method. In the field of food analysis, such as vegetables, fruits, edible mushrooms, etc., GC
and HPLC can be combined with instruments, such as precolumn extraction, purification,
and inductively coupled plasma mass spectrometry. However, both GC and HPLC have
shortcomings, such as large solvent consumption, lengthy analysis, high maintenance
costs, and the need for professional operators. They are not suitable for rapid detection
on crop picking sites or the market. Enzyme inhibition is a well-established technique
for rapid detection of pesticides [7] and is widely used due to its low cost and simple
detection operation [8]. Although the method is rapid, except for organophosphorus and
carbamate pesticides, it is not suitable for detecting other types of pesticides that have
no obvious inhibition on the enzyme. In such cases, it is necessary to pretreat the sample
or add oxidants to improve the detection sensitivity of the enzyme inhibition method.
Biosensors have the advantages of miniaturization, high sensitivity, rapidity, reliability, and
ease of use [9]. Various biosensors are being applied to detect pesticide residue rapidly [10].
For example, Ana et al. summarized 57 articles studying nanomaterial-based biosensors
for pesticide detection in foods [11]; they found that all biosensors developed in the
selected investigations had a limit of detection (LODs), lower than the Codex Alimentarius
maximum residue limit, and were efficient in detecting pesticides in food. Ulas et al.
developed SMART (specific, measurable, accurate, robust, and time-saving) biosensors [12]
which can detect toxic small molecules, such as antibiotics, pesticides, and insecticides, to
overcome the shortcomings of traditional HPLC and MS, such as long sample preparation
time and cumbersome instruments. Molecularly imprinted electrochemical sensor was
successfully applied in the detection of cyromazine residues in agricultural products [13].
However, because biosensor detection requires specific binding to this process, the pesticide
species needs to be roughly identified before the detection, and this property reduces the
detection efficiency of the methods.

At the beginning of the 21st century, computer vision (CV) technology began to be
applied in many fields because it is low cost, easy to operate, and returns rapid results [14].
CV uses computers to analyze images and perform purposeful processing of the informa-
tion contained in them [15]. Together with pattern recognition methods, the images can
be classified into given categories. With the further development of this technology, CV
technology has become one of the technologies that run through the agricultural industry
chain [16]. For example, Sankar et al. [17] developed a low-cost paper-based biosensor for
rapid determination of chlorpyrifos with high accuracy and low cost for in situ detection
of chlorpyrifos with CV techniques. Ren et al. [18] used a hyperspectral imaging system
to obtain image information from 900 to 1700 nm of spinach samples sprayed with dif-
ferent concentrations of dimethoate emulsion. The discriminant model was established
by chi-square test and linear discriminant analysis (LDA), and the prediction accuracy of
the pesticide residues of Legoland could reach 99.70%. Jiang et al. [19] used a CV-based
image segmentation algorithm to process hyperspectral images of pesticide-sprayed and
non-pesticide-sprayed apples. A classification model was developed by using convolu-
tional neural networks, and the discrimination accuracy of the test set reached 99.09%. The
pesticide residue detection methods related to CV technology provide nondestructive and
environmental friend detection methods of pesticide residues. However, the amount of
spectral data of hyperspectral imaging is huge, the computation workload increases expo-
nentially, and the overall detection speed is slow. In addition, the hyperspectral imaging
instrument is expensive and bulky, which is not suitable for rapid detection application in
crop picking sites or the market. While obtaining images by means of biosensors, it needs
to know the kind of pesticides prior to detection. Therefore, applying CV technology to
detect pesticide residue of crops rapidly must find a way of obtaining informative images
at a low cost and with instruments that can be applied on spot.

Currently, most light sources used for pesticide residue detection with CV technology
are white light [20]. It is well known that different substances have different absorbance
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under specific light source. Therefore, given any substance, there is a light source most
suitable for providing more clear images with good interference resistance. On the basis of
such types of images, the effectiveness of CV technology can be improved significantly.

Near-infrared (NIR) spectra are vibrational spectra that can be used to characterize
unknown pesticides [21]. With the development of computer and chemometrics, near-
infrared microscopic imaging technology has been more and more widely used in many
fields [22]. NIR microscopic imaging technology combines NIR spectroscopy instruments
with microscopic imaging collection and CV technology to conduct qualitative and quanti-
tative analysis of samples. However, the molecular structures of the pesticide, the shape
properties of the sample, and the wavelength of light source will affect the image proper-
ties. In addition to the pretreatment of the images, qualitative and quantitative (pattern
recognition) methods also affect the analysis results of NIR microscopic imaging. Therefore,
for a specific sample, pesticide, light source, and image pretreating method, the analyzing
methods of images should be inspected.

Crop leaves are composed mainly of cellulose in the leaf pulp and epidermis, and
cellulose contains mainly hydroxyl, ether bond, and other groups, which are quite different
from the groups in pesticides. For example, the commonly used pesticide cypermethrin
contains mainly C-Cl, C=C, -CN, C=O, C-O-C, -C6H5, and other groups. These groups all
have characteristic absorption at different levels in the infrared and visible light region. The
characteristic absorption positions and absorption intensities of pesticides with different
chemical structures are also different [23]. Therefore, the resolvability of the (microscopic)
images of vegetables’ surfaces changes with wavelengths of the light sources. The wave-
length will influence the clarity and interference resistance of (microscopic) images of
agricultural products sprayed (or not) with pesticides, which will ultimately impact the
effectiveness of pattern recognition that is based on crop images.

Given the above considerations, this work considers pesticide residue detection of
sprayed by trichlorfon and cypermethrin as the case study. The appropriate wavelengths
are screened to find the wavelength of light source to obtain images that can differentiate
Shanghaiqing (Brassica rapa) from those sprayed with the two types of pesticides. A
portable visible-near-infrared microscopic imaging device, which was designed to obtain
the microscopic images of Shanghaiqing (sprayed and unsprayed with pesticides), was
developed in this work. Then, the images were further processed to extract the classification
features on which recognition models were built to assess the presence of the pesticides on
the Shanghaiqing.

In addition, a model of predicting residual pesticide concentration on Shanghaiqing
was established by multiple regression, with cypermethrin concentration as the dependent
variables and the image features as independent variables to estimate initial concentration of
cypermethrin sprayed on Shanghaiqing. Then, the degradation equation of cypermethrin was
built. On the basis of the multiple regression equation and the degradation equation, the time
it takes for the cypermethrin concentration to reduce to an acceptable level can be estimated.

2. Materials and Methods
2.1. Research Roadmap of Using NIR Microscopic Imaging Technique to Detect Residual Pesticides
on Vegetables Rapidly

The NIR microscopic imaging technology used to detect residual pesticides on vegeta-
bles surfaces in this study contains several steps, as shown in Figure 1.

The first step of this study is to design a device to acquire microscopic images of
samples. The absorbance of the groups in different substances are different at the same
wavelength, while the absorbance of the groups of the same substance varies with wave-
lengths. Therefore, for a given pesticide, selecting a light source with suitable wavelength
will be helpful for obtaining high-resolution images. The second step is to screen for the
most suitable wavelength of the NIR light source used in the device. Once the wavelength
is determined, in the third step, the NIR microscopic images of the leaves sprayed or
unsprayed with the pesticides are acquired under the NIR light at the selected wavelength.
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In the fourth step, the images are preprocessed to remove noise and uninformative signals
and segmented to extract image features. The fifth step is divided into two parts. One is
to build pattern recognition models with four classification methods on the basis of the
image features to assess whether the samples were sprayed with the pesticides. Another
one is to establish the relationship between the concentration of the residual pesticide and
the extracted image features to estimate the initial pesticide concentration on the leaves of
green vegetables. Finally, a degradation equation of the pesticide is established. On the
basis of the estimated initial pesticide concentration and the degradation equation, the
degradation time can be estimated to guide agricultural producers in harvesting vegetables
at an optimized time.
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2.2. Design and Installation of Near-Infrared Microscope Imaging System

In order to acquire NIR microscope images of Shanghaiqing, in the present work, an
installation of the NIR microscope imaging system is designed, whose mechanical structure
is shown in Figure 2.
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Figure 2. Structure sketch of near-infrared microscopic imaging system.

The main components of the near-infrared microscopy imaging system consist of a
CMOS industrial camera 203, a micro-lens 202 with a filter, and LED light arrays 121 in
addition to a sample holder 201 and light source cassette 112. The sample holder 201 is
used to hold the sample by inserting two glass slides with leaf samples pressed into it.
The light source cassette 121 is used to hold the NIR light source and is prepared from
the same material as the sample holder by 3D printing. On the side of the cassette are
openings connected to the power input system 111 with switches 113. One switch is used
for changing the wavelength of the light and another one for turning on the light. The
micro-lens 202 is used to broaden the spatial domain of the sample surface, and the lens
selected in this work can magnify the images by 800 times. The capture process converts
the optical signals into electrical signals and finally into digital signals. A CMOS camera
is used in this system for comprehensive consideration on cost. The lens selection should
consider the working distance, imaging size, CMOS image element size, and resolution.
The CMOS image element size chosen for this system is 2.2 µm × 2.2 µm, the working
distance is 90~100 mm, and the camera lens interface is CS type interface.

The power input system 111 used in this system has an input voltage of 100–240 V, an
AC frequency of 50 Hz or 60 Hz, an output voltage of 9 V, and a maximum output current
of 1 A. It can be connected with conventional with electricity. The complementary light
system includes the LED light source as well as the PCB control system. The wavelength
range of the LED light source is 430~935 nm, which covers the visible and near infrared
light ranges. The microscopic images of Shanghaiqing samples sprayed with 0.1 g/L
cypermethrin were taken at 430 nm, 470 nm, 560 nm, 660 nm, and 935 nm wavelengths,
respectively. The segmentation results of these images are shown in Figure 3. It indicates
that the Figure 3e separates the areas sprayed pesticides droplets from those without
pesticide droplets clearly, and it has more obvious image feature of pesticide droplets than
the other figures. Therefore, the micro-images taken under the light source at 935 nm are
more readily identifiable than those taken at other wavelength light sources. Therefore,
infrared light source at 935 nm is selected as the light source of this study.

2.3. Sample Set Partition, Pre-Processing, and Segmentation of the Infrared Microscopic Images
2.3.1. Sample Set Partition

Prior to building a classification models, the samples were divided into training
and validation sets. The methods of partitioning samples include random method, KS
method [24], and SPXY method [25]. In this work, the KS method was applied to select
the training set from the sample set. The KS method selects the two samples having the
largest Euclidean distance firstly in to the training set. Then, we calculated the Euclidean
distance of each remnant sample to the center of the training set, found the samples with
the maximum and minimum distances to the center, and assigned them to the training
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set until the required number of training samples was reached. The impact of the ratio
between the training samples and the validation samples on model accuracy was inspected.
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Figure 3. Segmentation results of microscopic images of Shanghaiqing leaf sprayed by cypermethrin
with 0.1 g/L taken under the light sources at different wavelengths. (a–e) are infrared microscopic
image segmentation of Shanghaiqing leaf taken with the light source at 430 nm, 470 nm, 560 nm,
660 nm, and 935 nm, respectively.

2.3.2. Pre-Processing of the Images

The initial images often involve many uninformative signals, such as noises and inter-
ference coming from environments and so on. Image preprocessing can improve the quality
of images, subsequent data detectability, and the accuracy of subsequent image recognition.

In this work, the captured color near-infrared microscopic images were grayed firstly to
visually enhance the contrast and highlight the target area. Therefore, the color information
of the image was removed and only the grayscale information was used in the subsequent
image treatment and recognition. Furthermore, Gaussian filtering was used to remove
and suppress the noises, and the images were convolved by Gaussian function. Moreover,
the Retinex method was used for enhancing the images to reduce the effect of uneven
illumination, enhance the efficiency of subsequent image segmentation, and highlight
the region sprayed with pesticides. The method includes three steps: data preparation,
calculation of relative light and dark in each band, and data display. Retinex method
considers that the image is composed of reflection image component and brightness image
component, and the image is not affected by non-uniformity of illumination, i.e., it thinks
the color of image is invariant. The advantage of Retinex method is that it can reach a
balance among dynamic compression, edge enhancement, and color constancy and, thus,
achieves uniform lighting [26]. Then, the images were processed by closed operation to fill
the tiny holes in the area of pesticide droplets and amplify its features.
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2.3.3. Image Segmentation

The segmentation of the near-infrared microscopic images is to separate the areas
sprayed with pesticide droplets from the areas without droplets in the image. Because
the leaf veins contain little chlorophyll and have only ducts and sieve tubes, they differ
from the fleshy parts of the leaves, and the leaf vein region needs to be removed by using
image segmentation. In this study, the Niblack [27] local threshold method together with
the connected component threshold method was applied to segment the images. The
idea of Niblack algorithm is to use a window with fixed size to slide over the image
using each pixel in the image as the center point of the window. Then, the mean and
standard deviation of gray values of all the pixels within the window range are calculated.
The threshold value of the point is determined by the mean and standard deviation.
The connected region segmentation marks each connected region in an image, gives a
corresponding threshold, and removes the connected regions exceeding the threshold. The
region unsprayed pesticides and the vein part can be removed from the images accurately
in this way.

2.4. Image Feature Extraction

In the image of an object, the characteristics that distinguish the object from the other
objects are called image features. The image features extracted in present work must reflect
the differences between images sprayed with pesticides and those not sprayed. The Gilles
spots of the near-infrared microscopic image after image segmentation were determined,
and most of them were labeled. Since the number of Gilles spots is correlated with the
number of pesticide droplets directly, it was used as one element of the feature vector and
was denoted as nmGilles in this work. The darker the color, the higher the concentration of
residual pesticides is. Moreover, the uniformity of the color may reflect the characteristics
of the area sprayed with pesticides to some degree. In the present study, the first two color
moments of the image were extracted and used as the image features. The first-order color
moments (mean for short in this study) can reflect the mean value of the overall color of
the image, and the second-order color moments (sig for short in this work) reflect the range
of the image color distribution. LoG spots is a method that uses the Laplacian of Gaussian
(LoG) operator to detect image spots. The number of spots that is greater than a certain
threshold was selected as one element of the image feature vector, and it was recorded
as nmLoG.

Using the above image feature extraction method, the spray rate feature Ω, color
moment features hMean, sMean, sSig, vMean, and vSig, LoG spot feature of nmLoG,
and Gilles spot feature of nmGilles were extracted to be features of the images. They are
shown in Table 1. Before these digitalized image features were used to build the classi-
fication models, they were pretreated by normalization, self-scaling, and regularization
methods [28] to eliminate the effect of the difference between the magnitude of image
features on model outcomes.

Table 1. Microscopic near-infrared image features of Shanghaiqing samples.

Feature Type Feature Code Samples without
Pesticide Residues

Sample Sprayed
with Pesticides

Spraying rate
characteristics Ω 0.0997~0.2868 2.5 × 10−5~0.0633

Color moment
characteristics

h Mean 0.7835~0.7980 0.8244~0.7875
s Mean 0.5907~0.6604 0.5078~0.6491

s Sig 0.0104~0.1607 0.0224~0.0115
v Mean 0.3552~0.8926 0.6957~0.6686

v Sig 0.5365~0.1858 0.1339~0.1062
LoG spot features nmLoG 3~215 1~256

Gilles spot features nmGilles 1~13 1~13

Note: Prefix “h” component represents hue, prefix “s” component represents saturation, and prefix “v” component
represents value.
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2.5. Pattern Recognition of the Images

All classification models of judging whether the vegetable leaves were sprayed by
pesticides was built on the basis of the features listed in Table 1. Four common pattern
recognition methods of K-nearest neighbors (KNN) [28], naïve Bayes classifier [29], support
vector machine (SVM) [30], and artificial neural network of back propagation (BP-ANN) [31]
were applied in the present study to build classification models. The accuracy (ACC for
short) of the models was evaluated by the following calculation:

ACC = Nc/Nv (1)

where Nc is the number of validation samples discriminated correctly, and Nv is the number
of all validation samples.

The KNN method “writes” the training samples of known categories into the multidi-
mensional feature space, counts the category of samples with the most K nearest neighbors
of each unknown sample, and determines that the unknown sample belong to the category
having most near neighbors. The KNN method does not require a training process but
requires calculation of the distances between unknown sample and each sample in the
training set. K is an odd number that is typically less than 9.

The naïve Bayes classifier [29] is a simple and effective classifier that has been widely
used in data mining tasks such as classification and clustering. The naïve Bayesian method
assumes that the elements of the feature vector are independent with respect to the category
and learns the joint probability distribution of output–input in terms of training set. On
the basis of the learned model, the method inputs x (the image features of samples to be
discriminated) to obtain the output value that maximizes the posterior probability.

The core idea of SVM method is to find an optimal hyperplane that separates two
classes of samples so that the classification interval of different classes of samples is max-
imized and the learning strategy of SVM can be reduced to solving a convex quadratic
programming problem. The appropriate SVM kernel function can effectively improve the
model performance. In addition, different kernel functions map different high-dimensional
spaces. So, different SVM classification models were generated by using different kernel
function in present work. When an SVM classifier algorithm is developed, the kernel
function needs to be selected by considering the complexity of the algorithm and the recog-
nition performance of the algorithm. A linear kernel function is generally chosen when the
number of features and the number of samples are close to each other. If the number of
features is small and the number of samples is large, a Gaussian radial basis kernel function
is generally used.

Back propagation artificial neural net (BP-ANN) is one of the most used artificial
neural network models, which has a back propagation error at its core and uses a gradient
descent algorithm to adjust the weights and thresholds and subsequently optimize the
output. The initial weights of BP-ANN are a random non-zero number. After providing
the input and output data matrices, the BP-ANN calculates the inputs and outputs of all
implicit layer neurons and output layers. The weights of the hidden layers are modified
according to the calculation error, and the inputs and outputs of the hidden and output
layers are calculated again until the model training is completed when the error is lower
than the given threshold. Present work used one hidden layer and one output. The output
of samples sprayed with pesticides and the output unsprayed with pesticides were denoted
as 1 and 0, respectively.

2.6. Calculation of Pesticide Degradation Time

Greenhouse cultivation of crops isolates some pests to a certain extent, but the closed
environment, stable humidity, and temperature accelerates the breeding of pests and
diseases, calling for more pesticide uses. The residues of organophosphates, substituted
benzenes, and other pesticides in greenhouse vegetables are all higher than in open-air
vegetables. Therefore, it is safe to pick the vegetables sprayed with pesticides when the
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concentration of residual pesticides on vegetables degrades to the maximum residual
safety limit.

In order to estimate the degradation time of the residual pesticides, the initial concen-
tration of residual pesticides on the vegetables should be known. Present work established
a multiple linear regression relationship between the image features listed in Table 1 and the
concentration of residual pesticides on the Shanghaiqing foliage sprayed with different con-
centrations of cypermethrin. The model was used for the prediction of initial concentration
of the pesticide C0, which was used in the estimation of pesticide degradation time.

The degradation of pesticides in the natural environment can be roughly divided
into two steps: primary degradation and secondary degradation. Primary degradation
is the structural degradation of the parent compound of the pesticide. In secondary
degradation, the products as a result of primary degradation are completely degraded and
no longer lead to contamination of crops and the surrounding environment [32]. Most
pesticide degradation processes can be expressed in terms of chemical first-order reaction
kinetic equations. Therefore, a primary reaction kinetic equation was applied to obtain the
degradation equation of pesticides in present study.

The concentration of pesticides in the natural environment is generally very low, and
their degradation dynamics can be described approximately by the following equation:

− dc
dt

= kc (2)

Integration of Equation (2) is as follows:

Ct = C0ekt (3)

where K is the degradation rate constant, and C0 (mg/kg) is the initial concentration of
residual pesticides. Ct is the concentration of the residual pesticide after a time duration of
t days (d). Taking the logarithm of Equation (3), following Equation (4) can be obtained:

Kt = ln
C0

Ct
(4)

Since the half-life period of t0.5 corresponds to Ct = 0.5C0, Equation (4) can be expressed as:

t0.5 =
ln 2
K

(5)

where t0.5 can be searched from the data bank built in this study and is listed in Table S1
of the supplemental material. Substituting K = ln2/t0.5 into Equation (3), the pesticide
degradation equation is obtained as the following:

t =
t0.5

ln 2
ln

Ct

C0
(6)

When the Ct of the above equation is substituted by the threshold of the residual
pesticide, which is specified in the national standard, the degradation time that the concen-
trations of residual pesticide degrade to the specified level can be calculated by Equation
(6). The estimated degradation time of pesticides can provide guidance for agricultural
producer regarding the right time to harvest crops.

3. Experimental Process and Discussion of Results

Pesticides spray quality is usually measured by droplet size (droplet diameter), uni-
formity of distribution (droplet density), and coverage of the target [33,34]. These metrics
are determined generally by the atomization method and the type of spray nozzle [35].
The pesticides examined in this work include cypermethrin and trichlorfon; both are foliar
surface insecticides. In the present work, a droplet test card was used to measure the
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droplet density. The spray quality of several common pesticide spraying methods was
inspected and compared to determine the type of fogging device that is suitable for the
study. According to the droplet diameter of different fogging methods corresponding to
the control object, the liquid force fogging method can produce droplets of 100~300 µm
diameter and is more cost effective; therefore, it was selected in this work.

3.1. Sample Preparation and Acquisition of Near-Infrared Microscopic Images

Cypermethrin and trichlorfon with specific concentrations were sprayed on Shang-
haiqing samples; the leaves sprayed with the pesticides and the leaves unsprayed with
pesticides were collect after standing for 20 h. First, the sludge on the samples was removed.
Then, from each leaf sample a section thinner than 0.5 mm was created. Each sample was
a rectangular blade approximately 20 mm long and 15 mm wide. The prepared sections
were placed on a glass slide on which another slide was placed and compacted, so that
the Shanghaiqing leaves between the two slides were flat. The leaf slides were loaded
into the sample holder (201) in the NIR microscopy imaging system, then the switch 113
was opened to supply power to the system. The focal length was adjusted through the
micro-lens (202) to get a clear microscopic image of the leaf, and wavelength of the com-
plementary light by (113) was switched after getting a clear image. The CMOS industrial
camera (203) was operated at the intelligent terminal (300) to take microscopic images and
obtain near-infrared microscopic images of the leaves of Shanghaiqing.

3.2. Design of the Concentration of Sprayed Pesticide Solutions

Present work selected the spraying concentration range of the pesticides on the basis
of the type of the pesticides and their conventional spraying concentration.

Cypermethrin is a moderately toxic pyrethroid insecticide that is insoluble in wa-
ter [36]. In this study, cypermethrin powder was dissolved in acetone and configured to a
concentration of 100 g/L in acetone solution to prepare the mother liquor of cypermethrin.
Per the commonly used concentration of cypermethrin, the mother liquor was then diluted
1000 times with pure water, and the diluted cypermethrin solution was sprayed to Shang-
haiqing to prepare samples sprayed with cypermethrin. In addition, two cypermethrin
solutions were prepared by diluting the mother liquor 2000 times and 4000 times, respec-
tively, to examine the detectability of different concentrations of cypermethrin residues
attached to the leaves of Shanghaiqing. Trichlorfon is an organophosphate insecticide with
high insecticidal activity and acute toxicity [37]. Trichlorfon was configured as an aqueous
solution with a concentration of 100 g/L in pure water to prepare the mother liquor of
trichlorfon. Then, the mother liquor was diluted to 100 times with pure water. The diluted
trichlorfon solution was sprayed to Shanghaiqing in this study to prepare samples sprayed
with trichlorfon.

The two types of pesticides solutions were loaded into a hydraulic atomizer and
sprayed onto Shanghaiqing and droplet test cards. The spray density given by Image J
1.4.3 software represents the number of droplets per unit area, and the droplet density can
be used to calculate the coefficient of variation (CV), which was applied to evaluate the
uniformity of droplet distribution. The calculation formula of CV is as follows:

CV =
S
X

, S =

√√√√√ n
∑

i=1

(
Xi − X

)2

n − 1
(7)

where S is the standard deviation of droplet density, Xi is the spray density on each droplet
test card, X is the average of spray density on all droplet test cards, and n is the total
number of all droplet test cards.

The requirements of the industry standard for motorized sprayers under the three
modes of conventional volume spraying, low volume spraying, and ultra-low volume
spraying are ≤50%, ≤50%, and ≤70%, respectively. In the present work, the uniformity of



Sensors 2023, 23, 983 11 of 18

droplet distribution must meet the requirements under conventional volume spraying, i.e.,
the coefficient of variation (CV) is less than 50%.

3.3. The Sample Sets and Their Usage

From a statistics perspective, the size of positive and negative groups should not differ
too much. On the basis of this idea, the number of samples in negative groups (unsprayed
with pesticides) were designed to be approximately half of that in positive group (sprayed
with pesticides). Five sample sets were constructed in this work to build classification
models for discriminating Shanghaiqing samples sprayed with pesticides. The composition
of the five sample sets are shown in Figure 4.
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Figure 4. The constitution of samples sets used to build classification models for discriminating
Shanghaiqing sprayed with trichlorfon or cypermethrin.

Set 1 consists of 115 samples unsprayed with pesticides and 212 samples sprayed with
the trichlorfon solution of 1 g/mL concentration, which were prepared in 3.1. This set was
used to establish and validate classification models for discriminating samples sprayed
with trichlorfon.

Set 2 consists of 49 samples unsprayed with pesticide and 107 samples sprayed with
the cypermethrin solution of 0.1 g/mL, which were prepared in 3.1. This set was used
to establish and validate the classification models for discriminating samples sprayed
with cypermethrin.

Since the sizes of the sample unsprayed with pesticides in Set 1 and Set 2 are approxi-
mately half of those sprayed with pesticides, in order to increase the number of samples
unsprayed with pesticides, the unsprayed samples in Set 1 and Set 2 were combined to form
a total of 164 samples unsprayed with pesticides. These 164 samples and the 212 samples of
Set 1 sprayed with trichlorfon formed Set 3. It was used to build and validate classification
models for discriminating samples sprayed with trichlorfon. The results of the models were
compared with those of the models built on Set 1 to examine the effect of the difference in
the number of samples unsprayed with pesticides on the models’ results.

The 164 samples unsprayed with pesticides were combined with the 107 samples
sprayed with cypermethrin of Set 2 to form Set 4, which was used to build and validate the
classification models of discriminating samples sprayed with cypermethrin. The results of
the models built on Set 4 were compared with those of the models built on Set 2 to examine
the effect of the difference in the number of samples unsprayed with pesticides on the
models’ results.
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Furthermore, adding the 212 samples sprayed with trichlorfon in Set 1 and the
107 samples sprayed with cypermethrin in Set 2 together, 319 samples sprayed with pesti-
cides were obtained. These 319 samples and the 164 samples consisting of pesticide-free
samples of Set 1 and Set 2 constituted Set 5, which was used to establish and validate
the classification models for discriminating samples sprayed with pesticides (i.e., without
distinguishing which pesticide was sprayed).

In order to inspect the sprayed pesticide concentration on the accuracy of the SVM
model, three sample sets of Set 6, Set 7, and Set 8 were designed, and their composition is
shown in Figure 5.
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Figure 5. The composition of the three sets used to examine the effect of concentration of cypermethrin
on the accuracy of SVM classification models.

As shown in Figure 5, the cypermethrin mother liquor of 100 g/L prepared in 3.1
was diluted 1000, 2000, and 4000 times with pure water, respectively. Three groups of
samples were prepared. Each group had 50 Shanghaiqing samples which were sprayed
with the diluted cypermethrin solutions at one of the above three concentrations and had
30 Shanghaiqing samples sprayed with pure water. Sample Set 6, Set 7, and Set 8 were
ranked from the highest to the lowest concentration of cypermethrin.

3.4. Discrimination Results of Pesticides Residue

First, the captured true color images in jpg format with 24-bit depth were grayed out
before they were used to build models. The greyscale image was processed using a Gaussian
filter template of size 5 × 5 and σ = 1. A Retinex algorithm with Gaussian surround scale
c = 250 was used to perform a light uniformity operation on the denoised image. Image
segmentation was performed by using the Niblack local thresholding segmentation method
with a sliding window of 251 and k = −0.1. The leaf vein part of the image was segmented
using the connected domain thresholding method. A 5 × 5 disc-type mask was applied to
close the image to obtain the image of the pesticide spraying area.

For the sample sets described in 3.3, their image features shown in Table 1 of 2.4 were
extracted as the basis of building the classification models.

3.4.1. Discrimination Results of Classification Models Based on Set 1 and Set 2

On the basis of the manual labeling of the images, 1 and 0 were applied to denote
spraying (positive) and non-spraying (negative) images, respectively. The final image
feature matrixes of Set 1 and Set 2 were formed after labeling the classes. Different classifi-
cation models were established by the four methods described in 2.5 in terms of the image
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feature matrix shown in Table 1 of Section 2.4. The accuracy of internal validation set of
these models is listed in Table 2.

Table 2. Results of different classification models built on Set 1 and Set 2.

Pesticide
Variety/Concentration Sample Set Classification

Method
Scope of
ACC (%) FPR (%) Pretreatment

Method

Parameters Used in
Classification

Methods

Trichlorfon/1 g/L Set 1

KNN 56.56–92.92 13.33 Standardization
or self-scaling K = 3

Naïve Bayes 21.21–92.36 13.21 Standardization
or self-scaling /

SVM 83.20–96.96 3.34 Regularization Linear or RBF kernel
function

BP-ANN 52.53–97.98 3.34 Self-scaling Times of training = 15

Cypermethrin/0.1 g/L Set 2

KNN 66.67–79.16 13.33 Standardization
or self-scaling K = 1

Naïve Bayes 64.58–77.77 11.54 Standardization
or self-scaling /

SVM 70.83–79.16 13.34 Regularization RBF kernel function

BP-ANN 68.75–75.00 6.67 Standardization
or self-scaling Times of training = 15

FPR(Detailed in supplement material Table S2–S4) is false positive rate corresponding to the highest ACC;
pretreatment methods and the parameter used in the corresponding method are those that resulted in the largest
ACC; for Bayes method, the largest ACC is obtained by dividing ratio of number of calibration samples to number
of validation samples = 3:2, while the ratio of the other three methods is 7:3. The pretreatment method is the
method when the maximum ACC is reached. The bold in the table is the result with high accuracy and will be
used for the discussion below.

As shown in Table 2, the SVM models with linear or RBF kernel functions provide the
highest or the second highest ACC regardless of whether Shanghaiqing leaves are sprayed
with trichlorfon or cypermethrin when the image features are pretreated by regularization.
In addition, the discriminative accuracy of the SVM models built on the image features
pretreated by other methods are higher than 70%, and the value is higher than the lowest
ACC of the models established by KNN, Bayes, and BP-ANN methods.

The BP-ANN model with a training time of 15 has the highest ACC of 97.98% when
the image features are pre-processed with the standardization or self-scaling. This result
is slightly better than the accuracy of 96.96% given by the SVM model with RBF kernel
function and regularization pretreatment. However, when the BP-ANN model is built on
preprocessing the data with the regularization method, its accuracy for validation samples
of Set 1 is only 52.53%.

As for the classification models built by KNN and naïve Bayes methods, their highest
accuracies are not all as high as SVM models, while their lowest accuracy are all lower than
SVM models. The lowest ACC of Set 1 given by naïve Bayesian is only 21.21%, which is
obtained by the pretreatment method of regulation, while the highest ACC of Set 1 given by
naïve Bayesian is 92.36%, which is obtained by pretreatment methods of standardization or
self-scaling. The results show that pretreatment methods impact discrimination accuracy of
naïve Bayesian greatly for Set 1, and naïve Bayesian method is not robust. In summary, the
accuracy and robustness of the models established by SVM with RBF kernel function are
better than those in the models built by the other three methods. Therefore, the SVM method
was subsequently used to discriminate samples in the mixed sample sets of Set 3~Set 5.

Comparing the results of the SVM models built on Set 1 (SVM-Set 1 for abbreviation)
with the SVM models built on Set 2 (SVM-Set 2 for abbreviation), it is found that the
accuracy of SVM-Set 1 is 13~17% higher than that of SVM-Set 2. The concentration of
the pesticide sprayed on Shanghaiqing in Set 1 is 1 g/L, which is ten times that of the
concentration of the pesticides sprayed on Shanghaiqing in Set 2 (0.1 g/L). Trichlorfon
and cypermethrin contain different groups. The near-infrared absorption intensity and the
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spraying concentration of the two types of pesticides are different. Thus, the quality of
near-infrared microscopic images of samples sprayed with cypermethrin would not be as
good as that of the images of samples sprayed with trichlorfon. This might be the reason
why SVM-Set 1 performs much better than SVM-Set 2. In addition, the number of samples
of Set 1 is approximately two times that of the samples in Set 2. This might be another
reason that the accuracy of SVM-Set 1 is higher than that of SVM-Set 2.

Limited by the length of this article, only false positive rate (FPR, i.e., the probability
that the classification model determines the samples unsprayed with pesticides to be
samples of sprayed with pesticides) corresponding to the highest ACC of each recognition
method was listed in the fifth column of Table 2. The detailed information of false negative
rate, true positive rate, and true negative rate can be found in the supplemental material.
As shown in Table 2, the FPR corresponding to the highest ACC of SVM is between 3.34%
(for Set 1) and 13.34% (for Set 2); the FPRs of other methods are also in this range, and the
values of FPR are at acceptable levels.

3.4.2. Discriminant Results of Classification Models Based on the Mixed Sample Set 3, Set 4,
and Set 5

The results of SVM models built on Set 3~Set 5 are shown in Table 3.

Table 3. Results of SVM classification models built on the mixed sample sets of Set 3, Set 4, and Set 5.

Pesticide Variety/Spray
Concentration

Sample Set Pre-Processing
Method Nt/Nv

ACC (%)

Linear
Kernel

Polynomial
Kernel RBF Kernel

Trichlorfon/
1 g/L Set 3

Standardization 263:113 92.92 89.38 87.61
Self-scaling 263:113 92.92 89.38 87.61

Regularization 263:113 93.80 90.26 93.80

Cypermethrin/
0.1 g/L Set 4

Standardization 162:109 71.55 71.55 72.47
Self-scaling 162:109 71.55 71.55 72.47

Regularization 162:109 63.30 65.13 67.88

Trichlorfon/
1 g/L and

Cypermethrin/
0.1 g/L

Set 5
Standardization 338:145 77.24 82.75 82.06

Self-scaling 338:145 77.24 82.75 82.06
Regularization 338:145 86.20 82.75 83.44

Note: Nt is the number of samples in the training set; Nv is the number of samples in the validation set; and ACC
is the discrimination accuracy rate of validation samples.The bold in the table is the result with high accuracy and
will be used for the discussion below.

Per Table 3, the accuracy of SVM classification models built on Set 3 (SVM-Set 3 for
short) is in the region of 87.61~93.80%, while the accuracy of SVM-Set 1 is in the range
of 83.20~96.96%. The SVM-Set 3 models using the linear kernel function always have the
highest or the second highest discriminative accuracy of 93.80% and 92.92%, respectively,
which are lower than the highest accuracy of 96.96% given by SVM-Set 1. The result shows
that increasing the number of samples unsprayed by pesticides does not improve the
discrimination accuracy of the SVM models for assessing whether the samples are sprayed
with Trichlorfon.

The SVM classification models built on Set 4 (SVM-Set 4 for short) with RBF kernel
function built on the image features pretreated with self-scaling and standardization meth-
ods have the highest discrimination accuracy of 72.47%. It is lower than the accuracy of
79.10% given by the SVM-Set 2 in Table 2, which has a linear or RBF kernel function and
was built on the image features pretreated by regularization. The result indicates that
adding the samples unsprayed by pesticides of Set 2 reduces the discrimination accuracy
of the SVM models for assessing whether the samples are sprayed with cypermethrin.

The SVM discriminant models built on Set 5 (SVM-Set 5 for short) do not consider
the variety of sprayed pesticides and simply assess whether the samples were sprayed
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with pesticides. The discrimination accuracies of SVM-Set5 fluctuate between 77.24% and
86.20%. The accuracies are significantly lower than the discriminant accuracies of the
SVM-Set 1 model in Table 2 (83.2–96.96%) but are higher than the discriminant accuracy of
the SVM-Set 2 model in Table 2 (70.83~79.16%): approximately 7%. This result indicates
that the discrimination results of the SVM classification models are closely related to the
data structure and complexity.

In Set 5, the number of samples sprayed with trichlorfon of 1 g/L concentration is
approximately two times that of samples sprayed with cypermethrin of 0.1 g/L, i.e., the
samples sprayed with pesticide at higher concentration are approximately twice that of
the samples sprayed with pesticide at a lower concentration, and the sprayed pesticide
concentration has two levels which are different by one magnitude. The samples in Set
5 are more complicated than Set 1~Set 4. Therefore, the accuracy of SVM-Set 5 is higher
those of SVM-Set 2 and SVM-Set 4 whose samples were sprayed with low-concentration
pesticide, and lower than those of SVM-Set 1 and SVM-Set 3 whose samples were sprayed
with high-concentration pesticide.

3.5. Effect of Pesticide Concentration on the Classification Models

As shown in Figure 5, 150 samples sprayed with cypermethrin at three concentration
levels and 30 Shanghaiqing leave samples sprayed with water were prepared to investigate
the effect of pesticides concentration on the classification models. One of the local threshold
segmentation images of each group of Figure 5 with the addition of connected domain
segmentation is shown in Figure 6. As shown in Figure 6, the higher the pesticide spraying
concentration, the better the image segmentation of the cypermethrin droplets and the
better the image of Shanghaiqing leaves themselves. For the combination of cypermethrin
and pure water spraying groups with 1000×, 2000×, and 4000× dilution, respectively,
the RBF kernel SVM model was used to identify whether cypermethrin was sprayed on
Shanghaiqing, and the ratio of training set to validation set was 3:2. The discrimination
accuracy of the SVM classification models based on the three sample groups is shown in
Table 4.
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Figure 6. Linear scale 1:400. Segmentation results of microscopic images of Shanghaiqing leaf sprayed
by different solutions. (a–d) are infrared microscopic image segmentation of Shanghaiqing leaf
sprayed with pure water, sprayed with 0.025 g/L cypermethrin, sprayed with 0.05 g/L cypermethrin,
and sprayed with 0.1 g/L cypermethrin, respectively.
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Table 4. Results of SVM classification models with RBF kernel function for discriminating Shang-
haiqing sprayed with different concentration cypermethrin.

No. Pre-Processing Method
Nt/Nv

ACC (%)

Concentration of Cypermethrin

0.1 g/L 0.05 g/L 0.025 g/L

1 Standardization 48:32 75.00 78.12 56.25
2 Self-scaling 48:32 75.00 78.12 56.25
3 Regularization 48:32 84.37 81.25 68.75

Note: Nt is the number of samples in the training set; Nv is the number of validation samples; and ACC is the
accuracy rate of validation set.

It can be seen from Table 4 that the SVM models built on the images pre-processed
by regularization have the best classification results for the three groups of samples. The
highest and the lowest accuracy occur at the cypermethrin concentrations of 0.1 g/L and
0.025 g/L, respectively. When the concentration of cypermethrin is 0.05 g/L, the model
can maintain a high discrimination accuracy of approximately 80%. When the spraying
concentration of cypermethrin reduces to 0.025 g/L, the accuracy of the model decreases
significantly, which is less than 70% in the best case. This indicates that the accuracy of the
SVM model is positively correlated with the concentration of cypermethrin sprayed on the
leaves of Shanghaiqing.

3.6. Estimating Results of Pesticide Degradation Time

On the basis of the highly independent characteristics of near-infrared microscopic im-
ages of Shanghaiqing sprayed with different concentrations of cypermethrin of Set 6~Set 8,
a multiple linear regression relationship between these characteristics and the pesticide
spraying concentration was established as follows:

y = 0.0599 − 0.0205 × Ω + 0.5713 × hMean − 0.3533 × sMean
−0.0496 × sSig − 0.0686 × vMean + 0.0543 × vSig

(8)

The statistics index F = 7.22, which is greater than F0.05(6, ∞) = 2.72, and the p-value of
the Equation (8) is 0.0017, which is smaller than 0.01. Therefore, the regression Equation (8)
is statistically significant, and there is a linear relationship between cypermethrin spraying
content y and the six image features. Using Equation (8) for quantitative prediction
of cypermethrin concentration on Shanghaiqing, the actual time required for pesticide
degradation in the samples with the maximum residue limit specified in the national
standard (Table S1 of the supplemental material) can be calculated by substituting the C0
(y predicted by Equation (8)) and the natural environmental degradation half-life of the
pesticide (t0.5 = 1d for trichlorfon-soil and t0.5 = 2.8d in cypermethrin-soil) into Equation (6)
in Section 2.6.

4. Conclusions

The present work shows that it is feasible to discriminate vegetables sprayed with
pesticides on the basis of NIR microimaging images and CV technology. Based on the eight
features of Table 1 extracted from the near-infrared microscopic images of Shanghaiqing, it
is seen that the SVM method with linear or RBF kernel function can build robust classifica-
tion models, which can provide discrimination accuracy of 96.96% for the Shanghaiqing
foliage sprayed with trichlorfon solution of 1 g/L and the accuracy of 79.16~84.37% for
discriminating the Shanghaiqing foliage sprayed with cypermethrin solution of 0.1 g/L.
With the decrease of the concentration of sprayed pesticides, the discrimination accuracy
of the SVM models built on the near-infrared microscopic images of Shanghaiqing foliage
decreases. The concentration of sprayed pesticides and the complexity of sample sets have
significant impacts on the classification results.
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The pesticide residue rapid detection system developed in this work offers guidance
for agricultural producers on harvesting agricultural products at an appropriate time while
ensuring that the pesticide residues do not exceed the national limit. It has the advantages
of high portability, fast detection, low professional requirement for the operator, and low
cost of equipment. This study provides support for the primary screening and prognosis of
pesticide residues in the grassroots market. The testing conditions of the current prototype
are laboratory environment, and more field tests can be conducted in the future.
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