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Abstract: The concept of the Internet of Medical Things brings a promising option to utilize various
electronic health records stored in different medical devices and servers to create practical but secure
clinical decision support systems. To achieve such a system, we need to focus on several aspects, most
notably the usability aspect of deploying it using low-end devices. This study introduces one such
application, namely FedSepsis, for the early detection of sepsis using electronic health records. We
incorporate several cutting-edge deep learning techniques for the prediction and natural-language
processing tasks. We also explore the multimodality aspect for the better use of electronic health
records. A secure distributed machine learning mechanism is essential to building such a practical
internet of medical things application. To address this, we analyze two federated learning techniques.
Moreover, we use two different kinds of low-computational edge devices, namely Raspberry Pi
and Jetson Nano, to address the challenges of using such a system in a practical setting and report
the comparisons. We report several critical system-level information about the devices, namely
CPU utilization, disk utilization, process CPU threads in use, process memory in use (non-swap),
process memory available (non-swap), system memory utilization, temperature, and network traffic.
We publish the prediction results with the evaluation metrics area under the receiver operating
characteristic curve, the area under the precision-recall curve, and the earliness to predict sepsis in
hours. Our results show that the performance is satisfactory, and with a moderate amount of devices,
the federated learning setting results are similar to the single server-centric setting. Multimodality
provides the best results compared to any single modality in the input features obtained from the
electronic health records. Generative adversarial neural networks provide a clear superiority in
handling the sparsity of electronic health records. Multimodality with the generative adversarial
neural networks provides the best result: the area under the precision-recall curve is 96.55%, the area
under the receiver operating characteristic curve is 99.35%, and earliness is 4.56 h. FedSepsis suggests
that incorporating such a concept together with low-end computational devices could be beneficial
for all the medical sector stakeholders and should be explored further.
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1. Introduction

The traditional healthcare system was designed to ensure well-tested and intentioned
efforts performed by expert professionals to improve or rehabilitate individuals” physical
and psychological health. Therefore, the most fundamental goal of the current medical
approach is to give the resources to individuals to prevent or cure medically established
diseases and disabilities [1]. The ever-expanding interconnectivity among different in-
formation generating electronic devices used by everyday people has provided us with
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the opportunity to help the healthcare system and medical facilities improve their overall
aspects. We refer to this relatively new structural and usability paradigm shift as the Inter-
net of Medical Things (IoMT). Healthcare professionals, patients, and other stakeholders
can be interconnected through different electronic devices to exchange valuable related
information with each other. Considering this, the structural (connection, communication,
and information generation) and the usability (application) aspects are vital components in
IoMT [2—4]. IoMT successfully utilizes the new wave of information explosion, the scale
of inter-connectivity among electronic devices that we have never seen before, and the
healthcare revolution transforming our notion of traditional healthcare systems. Effective
prevention of diseases, patient-centric healthcare, real-time distance-based monitoring with
automatic diagnosis support tools, improved collaboration among caregivers and patients,
sustainable health and longevity, and low-cost healthcare for everyone are critical examples
of IoMT applications [5]. We hope that this patient-centric approach will help reduce
hospital costs, errors, and visit times. It will ensure effective distance-based management
and remote monitoring of the patient’s health which will also help achieve sustainable
development by reducing the urbanization trend as remote areas tend not to have better
medical facilities. One of the keys to ensuring this is by employing effective clinical decision
support systems to detect the disease using patient data early [6].

Clinical decision support systems (CDSSs) accommodate medical professionals in their
decision-making process by providing intelligent and relevant information to diagnose,
monitor, or manage patients’ health. A well-designed CDSS can enhance the overall
performance by providing valid results, which should be convenient and confident in
its prediction [7]. The notable examples of CDSS are disease detection/classification,
sequential prediction of clinical events, concept embedding, data augmentation, and de-
identification [8].

One way to ensure the excellent performance of a CDSS is by efficiently utilizing the
medical data. IoMT can generate vast amounts of medical data. A crucial example of this
type of data is electronic health records (EHRs). EHRs can be described as the digital records
of all types of medical information of patients stored in different medical infrastructures.
Therefore, it is ideal to utilize EHRs to create a robust CDSS using the IoMT setup. EHR
can be extraordinarily sparse and heterogeneous, consisting of prescription notes about
medicines; diagnosis history; clinical text from doctors and nurses; image-based, numeric,
and categorical information from body vitals and laboratory tests, and demographic infor-
mation about the patient [9,10]. This exceptional heterogeneity of the data and sensitivity
of the information introduces some fascinating but challenging problems to consider before
utilizing it in a CDSS. The effective utilization of EHRs should ensure improved predictability
in terms of diagnosis. The heterogeneity aspect should also be handled carefully to obtain
the optimum performance from the CDSS. The data should be explored with the utmost
security and privacy to avoid information breaches.

Machine learning (ML) [11] is a solid choice to ensure improved predictability in CDSSs;
which is a compendium of probabilistic computational methods to predict a decision using
data for a particular task. Usually, several parameter values are fine-tuned to achieve such a
high-accuracy prediction. These parameters are primarily specific to the data that have been
used in an ML method. This effective fine-tuning of the parameters is known as ’learning
the model’. Deep learning (DL) [12] is a section of ML. The input feature information
is transformed in a hierarchical fashion so that a DL model can learn the representation
by organising the lower-level information to a gradually higher-level one. The key idea
is that this in-between transformation that bridges the map between input and output
prediction should have minimal human feature engineering involvements from the input
to the final prediction. It can be composed using deep neural networks, which can use a
considerable amount of hyper-parameters to learn the useful features from the input data
directly as a complex function of functions. It can be argued that it mimics the human
learning process as we also gradually develop our knowledge over the iteration of different
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fundamental knowledge bases. Because of this, DL is an essential topic in the artificial
intelligence domain.

Multimodality can help us deal with the heterogeneity aspect of EHRs. Multimodality
investigates the data in all the associated modalities or forms. It can help us provide
in-depth insights into the diagnosis of a CDSS. It can reveal new insights and discover-
ies. Multimodality enriches the EHR’s usage capability [13]. Typical medical diagnosis
processes are multifaceted; therefore, a multi-modal approach provides a holistic method
for diagnosis, resembling a real-world scenario instead of using only one modality [14].
Moreover, recent ML and DL methods are well-adjusted to working with multi-modal data
to utilize this useful concept in a prediction model for CDSS [15,16].

The security and privacy issue can be handled using the federated learning (FL) concept.
FL can be described as different distributed ML approaches where the data are distributed
among several individual devices. The training process of these data is specific to the
respective devices only. Usually, a central server is used to manage the whole training
process, but it is strictly enforced that this server is never allowed to view or obtain the
data. The challenging part is effectively aggregating different locally trained models to
improve overall performance [17]. FL is practical, operational cost saving, secure as the
ownership control can be fully employed, and private as the absolute minimum usage or
exposure of the data is allowed [18,19].

Based on the discussion mentioned earlier, we need to investigate the [oMT setup to
obtain improved CDSSs with the effective utilization of EHRs using the ML /DL, multi-
modality, and FL techniques. However, as described in Section 2, it can be observed that the
empirical investigation and subsequent evaluation of such setup in the real-time low-end
edge computational devices are in scarcity. The usability of the resource-constrained edge
computational devices should be investigated more as this can expand the reach of IoMT to
a much wider audience (different stakeholders) compared to the current high-end device
setup we have. To address this issue, we have attempted to address the following research
question in this study:

“What is the performance difference of the low-end edge devices in a feder-
ated IoMT-based CDSS application for the early detection of sepsis diagnosis
prediction task?”

We choose early detection of sepsis as an example of an IoMT-based CDSS application
because of its relevance to this setup mentioned above. We refer to this application as
FedSepsis. Sepsis can be described as a potentially life-threatening condition. Sepsis is
caused by the body’s overwhelming responses to infection. It is one of the major reasons
for mortality and morbidity in the hospital [20]. The survival depends almost entirely on
the earliest intervention by applying appropriate antimicrobial treatment [21]. The chance
of mortality increases by 7.6% when the treatment is delayed for every hour [22], which
means it is extremely crucial to detect it as early as possible.

In this study, we use two different kinds of low-end edge devices, namely Raspberry
Pi [23] and Jetson Nano [24] to implement FedSepsis. We have used multi-modal EHR data
and utilized different state of the art DL and natural-language processing (NLP) meth-
ods [25] to handle the sparsity and heterogeneity issue. Two different types of federated
aggregation techniques are studied to investigate their applicability. Our previous work
attempted to address the early sepsis detection in a single-server setting with single-modal
data [26]. We also attempted to investigate the performance of the Raspberry Pi device in
an FL setting with the basic aggregation technique [27]. FedSepsis shows that the results
provide a clear superiority to using the multi-modal data over the single-modal data to
detect sepsis. It also suggests that using different types of low-end edge devices can provide
better performances in an FL setup. We also report the other system-level performance for
different edge devices. Overall, our study indicates that [oMT setup using low-end edge
computational devices for CDSSs can be a promising new prospect in the future.

The remainder of this article is organized as follows. Section 2 highlights the im-
portance of exploring the usage of low-end edge devices by summarizing the current
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research on this. Section 3 provides an overview of the different methods and data pro-
cessing we used for implementing FedSepsis. We also provide a detailed description of the
sepsis-detection problem here. In Section 4, we discuss the experimental setup of FedSepsis
application and explain the evaluation metrics used in different experiments. Section 5
reports the results of different experiments. Here, we also report critical system-level
information about the Raspberry Pi and Jetson Nano devices. Finally, in Section 6, we
discuss the results and their importance in a broader context.

The code implementation of FedSepsis can be obtained using the following link (ac-
cessed on 6 January 2023): https:/ /github.com/anondo1969/FedSepsis.

2. Related Works

The primary focus of our study is to investigate the usability of the low-end edge
devices in a federated IoMT-based CDSS application for CDSS tasks. In this section, we
summarized the importance of low-end edge devices by analyzing the recent related works.

Kairouz et al. [17] provided an in-depth overview of the advances and open problems
in FL. One key challenge identified in the platform development and deployment area is the
difference in hardware among different devices. They mainly focused on the performance
and device stability and mentioned that running computation must not affect it. Communi-
cation, storage, and computational capabilities of different devices are categorized as a core
challenge in an FL setting by Li et al. [28]. Their primary concerns were the power (bat-
tery level) and hardware (CPU (central processing unit), memory). Scarce computational
resources and relatively small storage capacity of the devices are mentioned by Bonawitz
et al. [29], discussing the scaling issue of federated learning with the practical system
design case. Gao et al. [30] used Raspberry Pi devices and investigated the performance of
speech commands and electrocardiogram-related tasks in the FL setup. Orescanin et al. [31]
investigated the fine-tuning performance in FL setting using Raspberry Pi devices using
a pre-trained MobileNetV2 model on the CelebA dataset. The comparison of different
edge devices was not performed in these works. The abovementioned discussions indicate
the challenges to using low-end computational devices and highlight why it should be
explored more in an FL setting to obtain the best performance.

3. Methods and Materials

In this section, we discuss the data and different methods used to conduct the experi-
ments to address the research question described in Section 1 to implement FedSepsis.

3.1. Dataset

We used EHRs from the MIMIC-III (Multiparameter Intelligent Monitoring in Intensive
Care) database, version 1.4 [32]. It comprises over 58,000 hospital admissions of over
45,000 patients between June 2001 and October 2012.

3.1.1. Data Selection Criteria

Patients older than 15 years were considered and the data were taken up until the
first sepsis onset (see Section 3.1.2 for details), death or being discharged from the hospital.
From this end point up until 48 h of continuous data were considered. We denote one such
continuous event as a care episode where the total time (maximum of 48 h) is binned into
one hour intervals. This interval is denoted as the time-window. Figure 1 illustrates one care
episode with 48 one-hour time-windows. One should notice that the care episode length (total
time) varies as can be seen in Figure 2.
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Figure 1. A care episode having with 48 time-windows (care episode length = 48).
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Figure 2. Histogram of different care episode lengths (left) and missing rates (right).

3.1.2. Sepsis Definition

We used the Sepsis-3 clinical criteria [20,33] to define sepsis. With these criteria, the
sepsis onset time is regarded as the latest time-window where both organ dysfunction and
suspected infection criteria are satisfied. Suspected infection is fulfilled when at least two
doses of antimicrobial treatment are given and any culture taking test is ordered. If the
antimicrobial treatment is given first, then the culture test must be conducted within 24 h.
On the other hand, if the culture test was conducted first then the antimicrobial treatment
must be initiated within 72 h after the culture test. Organ dysfunction is measured by the
sequential organ failure assessment (SOFA) score [34]. If the SOFA score is greater than
or equal to 2 points from its baseline then the condition is denoted as organ dysfunction.
Organ dysfunction is needed to be measured 48 h before to 24 h after the occurrence of
the suspected infection. The baseline should be considered as the latest value measured
before the 72 h time-window. If there is no known pre-existing organ dysfunction then the
baseline should be regarded as zero. As the data are obtained from an intensive care unit
(ICU)-based dataset, we can view the sepsis cases as a combination of community-acquired
and hospital-acquired cases.

3.1.3. Feature Selection

Both the clinical-text and the non-text data were considered as features. Clinical-text
data were collected as all the physician and nursing notes had no error mentioned in the
database fields. The non-text data consisted of the demographic, vital, and the lab data
from the EHRs. Some of the feature values can be extremely sparse as can be seen in
Figure 2 (right). Therefore, we only considered the care episodes where the features have a
less than 90% missingness in the non-text data. There is indeed quite a significant amount
of missingness to be considered. Because of this, we researched extensively to tackle the
missingness to obtain an improved result, as discussed in Section 4.1. Table 1 provides the
name of all the features used in the experiments.
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Table 1. List of the data features.

Non-Text
Clinical Text
Vital Data Demographic Data Laboratory Data
Systolic Blood Pressure Gender Albumin Nursing Notes
Diastolic Blood Pressure Admission Age Bands (Immature Neutrophils) Physician Notes
Mean Blood Pressure Ethnicity Bicarbonate
Respiratory Rate Admission Type Bilirubin
Heart Rate Admission Location Creatinine
SpO, (Pulsoxymetry) Chloride
Temperature Celsius Sodium
Cardiac Output Potassium
Tidal Volume Set Lactate
Tidal Volume Observed Hematocrit
Tidal Volume Spontaneous Hemoglobin
Peak Inspiratory Pressure Platelet Count

Total Peep Level
O, flow
FiO, (Fraction of Inspired Oxygen)

Partial Thromboplastin Time
INR (Standardized Quick)
Blood Urea Nitrogen
White Blood Cells
Creatine Kinase
Creatine Kinase MB
Fibrinogen
Lactate Dehydrogenase
Magnesium
Calcium (free)
pO; Bloodgas
pH Bloodgas
pCO; Bloodgas
SO, Bloodgas
Glucose
Troponin T
Prothrombin Time (Quick)

3.2. Federated Learning

Figure 3 illustrates the federated learning framework architecture we used. Initially the
global model is created with some random weights W, from the server and then the server
sends it to all the clients. It is trained and updated locally in the client devices. The trained
model Wy is then sent back to the server. The server then aggregates all these models to create

one global model W, +1 = ¥ %

Wy . Here, c is each client, r is round, meaning the process

or one cycle to create one aggregated global model. Usually there are multiple rounds to find
the best trained and aggregated global model. S is the total sample size in the dataset. S is

the sample size in each client. We have used the following aggregation techniques.

Server

C
Wi = Z_W

o
‘k‘

“‘/

Client 1 Client 2 Client 3 Client 4

Figure 3. Federated learning architecture.
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3.2.1. Federated Averaging (Simple)

The aggregation technique is described as the Federated Averaging [35] algorithm as
shown in Figure 3. In this algorithm, the different locally trained models are aggregated
using the weighted average of all the models.

3.2.2. Federated Optimization (Opt)

The aggregation technique is described as the FEDOPT algorithm [36], where the
global model is updated in the server by applying the global optimizer (usually a gradient
based one) using the average of the local models.

3.3. Machine Learning Methods

We used several state-of-the-art machine learning methods for the experiments. Recur-
rent neural network-based long short-term memory networks (RNN-LSTM) [37,38] were
used for the sepsis prediction task. Generative adversarial imputation nets (GAINs) [39]
were used for the missing non-text data imputation. Two different bidirectional encoder
representations [40,41] from transformers (BERTs) [42] models were used to generate text
embeddings from the clinical-text data.

3.3.1. Long Short-Term Memory Networks (RNN-LSTM)

Care episode information is time-series data which means it is sequential. To predict
sepsis as early as possible from a given time-window, we are allowed to use only the
information we had in the previous time-windows. A suitable DL model for this case can
be recurrent neural networks (RNNs) [37] because of their capability of preserving and
restoring information in its internal memory. A carefully constructed loop of all the care
episodes is calculated by iterating all the time-windows in RNNs. Therefore, to make a
prediction, it can use only the current and all the previous time-windows to detect sepsis. We
need to be careful about two aspects of RNNs, namely, the exploding gradients problem
and the vanishing gradients problem. The first problem occurs when RNNs assign an
unusually high value to the model weights. The second problem can happen when this
value is unreasonably low, which is relatively common in long sequences oz, in our case,
care episodes with a relatively high length.

Long short-term memory (LSTM) networks [38] provide solutions for these two critical
problems. Its memory can be extended to learn essential and relevant information, even if
it resides in long past time-window(s). Three gated cells (input, forget, and output) are used
here to ensure the specific information to store or delete. The input gate is responsible for
information gaining, the forget gate for detecting non-relevant information, and the output
gate ensures the previous outputs are used as important ones. One could notice that it is
similar to the medical diagnosis process as, in most cases, recent information is given more
priority to diagnose an outcome.

Equation (1) represents the feedforward networks or multi-layer perceptron (fully
connected neural networks). X; is the input.

h = f(Xi) )

Usually, a hidden state is needed to preserve the previous information from a care
episode. This state can be interpreted as additional features from the previous time-windows.
If we want to predict whether the current stage is positive or not at a given time-window
then we need to consider both the input X; and the hidden state from the previous time
step h;_1, as can be seen in the following equation:

he = f(xt, 1) ()

h is the hidden states (1) composed from the previous time-windows. We can use it to
(2) predict the subsequent outcome. Usually, LSTM sub-divides these two usages into two
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distinct variables i; and C. C symbolizes the LSTM hidden cell. Now we can control the
information flow using the three gates we mentioned above,

gateforget = U(foXt + thhtfl + bf) ®3)
gateipur = 0(Wix X + Wipht 1 + b;) 4)
gateoyt = U(WoxXt + Wohhtfl + bo) (5)

If we need to update the cell state and hidden state, then we can use the following equations,

C* = tanh(chXt + Wyahi_1 + bc) 6)
Ct = guteforget : thl + gateinput -C* (7)
ht = gategyrger - tanh(Ct) (8)

o(x) and tanh(x) are known as activation functions. ¢(x) or sigmoid function can
take any real-valued input and produces output in a range between 0 and 1,

o) = ¢ ! )

1+exp(—x))
If the output sum of a sigmoid function is equal to one, then it is known as the soft-max
function. Usually, a log form of soft-max function is used for prediction for multi-label
classification because we can then consider the outputs as probability scores. Therefore it
can be regarded as a probabilistic classification. tanh(x) also takes a real-valued input and
provides the output in a range between [—1,1],

tanh(x) =20(2x) — 1 (10)

3.3.2. Generative Adversarial Imputation Nets (GAIN)

Generative adversarial imputation nets (GAINs) [39] are used for the imputation of the
missing data. GAIN is a generalization of the GAN (generative adversarial networks) [43]
architecture. Following the GAN architecture principle, in GAIN the generator attempts to
impute the missing data whereas the discriminator tries to minimize the classification loss
between the actual and observed imputations. In the GAIN architecture, a discriminator is
assisted with additional ‘hints’ to ensure that the samples are being generated according to
the real implicit data distribution.

3.3.3. Bidirectional Encoder Representations from Transformers (BERT)

BERT (bidirectional encoder representations from transformers) [42] is a deep learn-
ing model based on the transformer—encoder architecture [44] that pre-trains language
representation with the use of a huge amount of data. It can be used to generate text
features (text embedding) from a given text which can be used for a later classification task
using different machine learning-based models (downstream tasks). BERT can also be
used directly for a number of NLP classification tasks such as next sentence prediction,
name-entity recognition, and question-answering. A self-attention mechanism is used in
the transformer—encoder architecture where the model’s pre-training objective function is
composed of mask language modeling and next sentence prediction unsupervised tasks.
Stochastic optimization is used to estimate the text embeddings and model parameters.
Further fine-tuning can be required to perform problem-specific downstream tasks.

We have used two such fine-tuned BERT modes for generating the text embeddings from
clinical-text data. These text embeddings are later used to predict the early detection of sepsis.
In this paper, we refer to these models as Clinical BERT-Alsentzer [41] and Clinical BERT-
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Huang [40]. Both Clinical BERT-Alsentzer and Clinical BERT-Huang used the clinical texts from
the MIMIC-III v1.4 database [32].

Clinical BERT-Alsentzer aggregates the 15 types of clinical texts into discharge sum-
mary type or non-discharge summary type data and then tokenized them using the Scis-
paCy [45]. These tokenized sentences were used to fine-tune the original BERT base model.
Clinical BERT-Huang additionally fine-tuned the model for the hospital-readmission predic-
tion task. In BERT, the maximum token length is 512 which can be limited for long clinical
texts. Clinical BERT-Huang tackles it by splitting the long text and combining these multiple
predictions for one global prediction in an efficient way.

4. Experimental Setup

In this section, we discuss several aspects of the experimental setup to address the
research question described in Section 1.

4.1. Missingness Representation in the Care Episode

A time-window in a care episode (Figure 1) can contain multiple input-feature values
or no values at all. We need to represent this missingness in an efficient way for a better
prediction as our data are quite sparse (Figure 2). We have devised two methods for this
missing-data imputation task based on the randomness notion. We used two strategies
for the missing not-at-random case. One is using GAIN (discussed in Section 3.3.2) to
generate the imputation data (GAIN-imputation). For the other case we did not impute but
used an integer value which is entirely absent in the whole dataset (distinct-value). The
goal is that this integer should indicate that the value is missing for a particular reason or
missing not-at-random. For the missing at-random case we performed the carry-forward
of the present data to all the next windows as long as we do not see another value in the
forthcoming window. The later value is then again carry-forwarded if any later time-window
value is missing. If the missing value for a particular input feature is presented in the whole
care episode then we use the global average of that particular value across the whole data
(carry-forward-mean-imputation).

4.2. Training—Testing—Tuning Data Generation

The total data are subdivided into three portions for the training (80%), testing (10%),
and tuning (10%) of the prediction model. We kept both the sepsis class-based and care
episode length-based distribution similar in these three datasets. Positive class is considered
when the Sepsis-3 criteria is met. Because of this distribution similarity ensurity, we omitted
50 care episodes where a particular care episode length contains five or fewer cases. Table 2
provides the overview of the data. We can see that the negative episodes are almost 90%
which provides us with highly-imbalanced datasets and thus makes the sepsis (positive
class) prediction quite challenging.

Table 2. Dataset distribution.

Data Positive Negative % Positive  %Negative
Training 1352 12,982 9.43 90.57
Testing 181 1643 9.92 90.08
Tuning 172 1624 9.58 90.42

Total 1705 16,249 9.50 90.50

4.3. Text Embeddings Generation from Clinical Texts

We used both Clinical BERT-Alsentzer and Clinical BERT-Huang (Section 3.3.3) to generate
the text embeddings from the clinical text. All the clinical-texts in each care episode were
tokenized first (up to 512 characters for each text). We then used it for the inference in the
Clinical BERT models. The values from the last four hidden layers of the Clinical BERT(s)
were considered to generate the feature vectors. Two approaches were taken to create the
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final text embeddings. First, the feature vector was generated from the average of all the
layers (with a total length of (768). This is referred to as short-text-embedding. Second, the
feature vector was generated from the concatenation of all the layers (with a total length of
768*4=3072). This is referred to as long-text-embedding.

4.4. RNN-LSTM and GAIN Hyper-Parameter Tuning

We tuned the hyper-parameters for RNN-LSTM and GAIN models as described in
Table 3. We randomly selected 100 data points among these parameters and thus conducted
100 experiments with the training data to find the best tuning parameter values. We
oversampled the distribution in the training data to make the data balanced (50% positive)
in each mini-batch. We used tuning data for evaluation and used AUPRC (area under the
precision recall curve, described in Section 4.7) to select the best-tuned model. Based on
these fine-tuned parameters we finally evaluated the trained model using the testing data.

Table 3. Neural Network Parameters.

Name Values
hidden layers 1,2,3
neurons 512, 800, 1024, 2048
drop out 0, 10, 20, 30
epochs 1,2
classification function log-softmax
optimizer Adam optimizer
GAIN alpha 0.1,1,10, 100
GAIN mini-batch 512
GAIN hint rate 0.9
GAIN total iterations 15,000

4.5. Configuration of Server and Client Devices

For the Experiment A (described in Section 4.6.1), which is performed in a single
machine we used an Ubuntu 20.04.3 LTS (GNU/Linux 5.13.0-28-generic x86_64) based
server with GeForce GTX 1080 Ti graphics processing unit (GPU). For the Experiment B
(described in Section 4.6.2), an Ubuntu 18.04.5 LTS (GNU/Linux 4.15.0-142-generic x86_64)
based server with GeForce RTX 2080 Ti graphics processing unit (GPU) was used as the
server for the federated learning experiments (Experiment B, described in Section 4.6.2). For
clients, we used two different kinds of edge devices. 10 Raspberry Pi [23] 4b devices (Ubuntu
20.10 as GNU/Linux 5.8.0-1024-raspi aarch64) and three Jetson Nano [24] Developer Kit
devices (Linux-4.9.253-tegra-aarch64-with-Ubuntu-18.04-bionic) were used for different
experiments. Figure 4 illustrates the client edge devices used in different experiments.

Figure 4. Raspberry Pi (left) and Jetson Nano (right) edge devices used in the experiments.
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Socket programming [46] was used to establish the federated learning (discussed in
Section 3.2) setup. In socket programming we can connect two nodes on a network to
establish a communication channel. A server usually creates the listener socket where
multiple clients can connect. PyTorch [47] framework was used to develop the deep
learning models.

4.6. Experiments

We conducted several experiments to evaluate the performance of early detection
of sepsis using multi-modal data. We compared the performance in a federated learning
based setting using two different kinds of edge devices. The experiments are classified into
following categories.

4.6.1. Experiment A: Single-Server Setting

We generated the text embeddings using the process described in Section 4.3. The non-
text input features (showed in Table 1) were processed in terms of missingness, as described
in Section 4.1. If there were multiple values for a particular feature in a time window, then
we used the average value. These clinical features were then used as the input for the RNN-
LSTM model (discussed in Section 3.3.1). The hyper-parameter tuning process of the deep
learning models is discussed in Section 4.4. The RNN-LSTM model predicts the output
as a probability score based on the current and previous features presented in a current
time window. The threshold of >0.5 was used to determine the sepsis or non-sepsis case
for one time-window and once it obtains a positive prediction then the later time window
prediction scores are ignored. Three different RNN-LSTM models were considered based
on the difference of the input features, namely multi-modal, non-text, and clinical-text. We
concatenated the text embeddings and the non-text processed features for the multi-modal
representation of the input features. The mini-batch size used for training non-text, and
clinical-text models was 1000, and for multi-modal model it was 500. Figure 5 illustrates the
schematic diagram of the proposed model for the single-server setting.

"r'\“f”r Electronic Health Records
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Q ‘ @ Non-Text Modality ‘ G © Text- Modallty
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Figure 5. Schematic diagram of the proposed model for the single-server setting. For details please
see Section 4.6.1.

4.6.2. Experiment B: Federated Learning Setting

The training data were split equally among all the client devices. We then performed
Experiment A (Section 4.6.1) in a federated learning setting. Due to the computational
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limitation constrain compared to the server, the mini-batch size used for training multi-
modal and clinical-text models was 500, and for non-text model it was 1000. The details about
the devices and federated learning setting is discussed in Section 4.5. Both simple and opt
(described in Section 3.2) aggregation techniques were used to create the global RNN-LSTM
model. Due to time-constraint issue we only conducted the experiments compared to the
best three models (based on AUPRC score) obtained from Experiment A (Section 4.6.1). As
the training dataset is relatively small, therefore to overcome the overfitting issue we used
a total of five rounds for each experiment. Along with the evaluation results we also report
the system information of the client devices.

4.7. Evaluation Metrics

There are four possible outcomes for binary classification, with a positive and a
negative class. If the model assigns the positive class to a positive example then it is a true
positive (TP). If the model assigns the positive class to a negative example then it is a false
positive (FP). If the model assigns the negative class to a negative example then it is a true
negative (TN). If the model assigns the negative class to a positive example then it is a false
negative (FN).

Now we can calculate the precision and recall in the following ways,

.. TP
Precision = TP+ P (11)
TP
Recall = ———— 12
Ot = TPIEN (12)

Area under the receiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPRC) were used to evaluate the model performance.

For a classification task with a positive and a negative class, a model will estimate the
probability for an example belonging to the positive class, and if this value surpasses a
threshold, the example will be classified as positive. The AUROC score is based on the true
positive rate (the proportion of correct classifications of positive examples) and the false
positive rate (the proportion of negative examples classified as belonging to the positive
class). By varying the threshold for when an example is considered as belonging to the
positive class, pairs of true positive rates and false positives rate will be obtained. These
pairs can be plotted as a curve, with the false positive rate on the x-axis, and the true
positive rate on they y-axis. This curve is known as the receiver operating characteristic
and the AUROC value corresponds to the area under this curve.

Reviewing both precision and recall is useful in cases where there is an imbalance
in the observations between the two classes. Specifically, there are many examples of no
event (class 0) and only a few examples of an event (class 1). The reason for this is that
typically the large number of class 0 examples means we are less interested in the skill of
the model at predicting class 0 correctly, e.g., high true negatives. The key to the calculation
of precision and recall is that the calculations do not make use of the true negatives. It is
only concerned with the correct prediction of the minority class, class 1. A precision-recall
curve is a plot of the precision (y-axis) and the recall (x-axis) for different thresholds.

The earliness in predicting sepsis is calculated based on the median prediction time
from the sepsis onset in hours for all the true positive cases. A prediction score threshold
of >0.5 is used to determine the correct prediction, and we retained the first positive time-
window value of the care episode to calculate earliness. Therefore, the larger value of earliness
represents better prediction in general. As earliness is calculated based on true positives
only, we should consider it together with AUROC and AUPRC values to obtain a more
balanced overview of the model’s performance.

Table 4 shows the client device system information topics that we reported in
Section 5.3.
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Table 4. Topics of client device system information.

Topic Measurement Unit
CPU Utilization %
Disk Utilization %
Process CPU Threads In Use Number of threads
Process Memory In Use (non-swap) Megabytes
Process Memory Available (non-swap) Megabytes
System Memory Utilization %
Temperature Celsius
Network Traffic Bytes

5. Results

In this section, we present the results obtained by conducting different experiments
discussed in Section 4.6.

5.1. Experiment A Results: Single-Server Setting

Table 5 shows the results obtained using only the non-text data. We can see that GAIN-
imputation-based missingness representation provides the best result and carry-forward-
mean-imputation provides the worst result. The best evaluation scores obtained as AUPRC:
87.30%, AUROC: 98.31%, and earliness: 4.45 h.

Table 5. Evaluation results using non-text input features in single-server setting.

Missingness Representation AUPRC AUROC Earliness
g P (%) (%) (h)
GAIN-imputation 87.30 98.31 4.45
distinct-value 18.35 75.62 4.01
carry-forward-mean-imputation 14.22 66.47 4.15

Table 6 shows the results obtained using only the clinical-text data. We can see that
the result is comparatively worse and it is quite challenging to select a better model as
different evaluation metrics provides best results in different rounds. The best evaluation
scores obtained as AUPRC: 14.06%, AUROC: 59.99%, and earliness: 7.28 h.

Table 6. Evaluation results using clinical-text input features in single-server setting.

Text

clinical BERT Embeddings Missingness Representation AUOPRC AU‘F oc Earliness
Representation (%) (%) W
P
Huang short GAIN-imputation 14.06 57.51 6.35
Huang long distinct-value 13.97 58.50 6.53
Alsentzer short carry-forward-mean-imputation 13.70 59.48 7.15
Alsentzer short distinct-value 13.46 59.99 6.49
Alsentzer long carry-forward-mean-imputation 13.44 56.31 5.77
Alsentzer long distinct-value 13.35 56.80 7.28
Alsentzer short GAIN-imputation 13.06 57.11 6.70
Huang short carry-forward-mean-imputation 12.91 56.93 6.68
Alsentzer long GAIN-imputation 12.36 55.72 6.26
Huang long GAIN-imputation 12.32 55.17 6.43
Huang short distinct-value 12.30 54.91 7.00
Huang long carry-forward-mean-imputation 11.69 53.07 6.62

Table 7 shows the results obtained using both the clinical-text and non-text data. It can
be seen that using multi-modal setting provides the best results. The best evaluation scores
obtained as AUPRC: 96.55%, AUROC: 99.35%, and earliness: 4.58 h.
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Table 7. Evaluation results using multi-modal (both clinical-text and non-text) input features in single-
server setting.

Text

clinical BERT Embeddings Missingness Representation AUOPRC AUF oc Earliness
Representation (%) (%) W
P

Huang short GAIN-imputation 96.55 99.35 4.56
Huang long GAIN-imputation 96.09 98.90 453
Alsentzer long GAIN-imputation 94.04 97.90 4.45
Alsentzer short GAIN-imputation 93.95 98.61 4.58
Huang long distinct-value 31.95 82.90 3.71
Huang short distinct-value 31.31 81.74 3.86
Alsentzer short distinct-value 31.06 82.68 3.94
Huang long carry-forward-mean-imputation 28.98 81.25 3.87
Huang short carry-forward-mean-imputation 28.61 80.57 3.71
Alsentzer long carry-forward-mean-imputation 28.37 81.85 3.58
Alsentzer long distinct-value 24.33 79.60 3.90
Alsentzer short carry-forward-mean-imputation 24.23 77.71 3.98

5.2. Experiment B Results: Federated Learning Setting

We have used two different types of edge device to conduct the experiments in
federated learning setting. The results are reported here.

5.2.1. Raspberry Pi

Table 8 shows the results obtained using non-text data in a federated learning setting
using 10 Raspberry Pi devices. We can see that federated aggregation technique simple
performed better over opt. The best evaluation scores obtained as AUPRC: 71.39%, AUROC:
97.60%, and earliness: 4.54 h.

Table 9 shows the results obtained using clinical-text data in a federated learning setting
using 10 Raspberry Pi devices. Although the result is comparatively worse, but similar to
before the result improves after each round and aggregation technique simple performed
better over opt. The best evaluation scores obtained as AUPRC: 14.62%, AUROC: 58.91%,
and earliness: 7.73 h.

Table 10 shows the results obtained using multi-modal data in a federated learning
setting using 10 Raspberry Pi devices. multi-modal model provides the best results. It is
worth noting that the best AUPRC score was obtained after the round 4. The best evaluation
scores obtained as AUPRC: 84.80%, AUROC: 98.49%, and earliness: 4.54 h.

Table 8. Evaluation results using non-text input features in a federated learning setting using 10

Raspberry Pi devices.
Federated Aggregation: Simple Federated Aggregation: Opt
AfterRound  AUPRC ~ AUROC  Earliness =~ AUPRC  AUROC  Earliness

(%) (%) (h) (%) (%) (h)

1 30.97 86.73 4.00 22.54 82.07 4.01

2 39.77 88.45 4.06 19.78 79.40 3.94

3 8.41 92.80 4.44 18.66 77.86 3.98

4 55.20 95.69 4.53 23.08 81.52 4.04

5 71.39 97.60 4.54 34.83 86.99 414
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Table 9. Evaluation results using clinical-text input features in a federated learning setting using 10

Raspberry Pi devices.
Federated Aggregation: Simple Federated Aggregation: Opt
After Round  AUPRC AUROC  Earliness = AUPRC AUROC  Earliness

(%) (%) (h) (%) (%) (h)

1 13.20 55.60 4.12 12.99 52.06 7.73

2 13.23 54.05 5.63 13.22 51.84 6.63

3 13.79 56.53 6.48 12.85 52.15 6.98

4 13.84 57.52 6.29 13.11 52.93 6.45

5 14.62 58.91 6.30 13.46 54.58 6.85

Table 10. Evaluation results using multi-modal (both clinical-text and non-text) input features in a
federated learning setting using 10 Raspberry Pi devices.

Federated Aggregation: Simple Federated Aggregation: Opt
AfterRound  AUPRC ~ AUROC  Earliness ~ AUPRC ~ AUROC  Earliness

(%) (%) (h) (%) (%) (h)

1 45.30 93.10 4.47 46.17 93.47 4.43

2 69.26 97.32 4.53 54.66 95.43 4.49

3 60.40 95.73 4.51 42.06 91.89 4.49

4 84.80 98.32 4.54 50.02 94.66 4.52

5 82.44 98.49 451 80.58 98.06 451

Figure 6 provides the loss comparison for different federated aggregation techniques
using 10 Raspberry Pi devices for the training of the multi-modal model. We can see that the
loss value gradually decreased after each round and it is much smoother in the case of the
aggregation technique simple over opt.

Loss (Aggregation: simple), Raspberry Pi
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Figure 6. Loss comparison for different federated aggregation techniques using 10 Raspberry Pi
devices. The x-axis represents the incremental number of training mini-batches, the y-axis represents
loss-values.
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Table 11 shows the results obtained using multi-modal data in a federated learning
setting using different number of Raspberry Pi devices. It provides insights into the
empirical settings regarding data and the number of devices. We can see that the best
results were obtained using only one or two devices, and after increasing it to six and more
devices the AUPRC score decreased. This suggests that using a relatively small amount of
data can increase the chance of overfitting, and we have to be careful in that case. Choosing
less number of devices may be a walk around in that case. The best evaluation scores
obtained using two devices as AUPRC: 99.20%, and AUROC: 99.91%, and using eight
devices the earliness score is 4.53 h.

Table 11. Evaluation results using multi-modal (both clinical-text and non-text) input features in a
federated learning setting using a different number of Raspberry Pi devices.

Total AUPRC AUROC Earliness
Devices (%) (%) (h)
Federated Aggregation: Simple
10 82.44 98.49 4.51
9 94.54 99.60 4.53
8 96.13 99.53 4.53
7 97.03 99.63 451
6 96.55 99.63 451
5 98.79 99.87 4.50
4 98.56 99.76 4.52
3 97.59 99.77 4.50
2 99.20 99.91 4.50
1 99.43 99.94 4.49

5.2.2. Jetson Nano

Table 12 shows the results obtained using non-text data in a federated learning setting
using three Jetson Nano devices. Similar to the Raspberry Pi case, federated Aggregation
Technique simple provided the best results. We can also see that fewer devices provide
better results than using more. The best evaluation scores obtained as AUPRC: 94.43%,
AUROC: 99.51%, and earliness: 4.53 h.

Table 12. Evaluation results using non-text input features in a federated learning setting using three
Jetson Nano devices.

Federated Aggregation: Simple Federated Aggregation: Opt
AfterRound  AUPRC ~ AUROC  Earliness =~ AUPRC  AUROC  Earliness

(%) (%) (h) (%) (%) (h)

1 40.48 86.10 3.84 38.39 85.46 3.90

2 55.95 95.55 4.50 42.87 87.05 4.04

3 80.42 98.55 4.52 44.31 89.00 4.18

4 92.07 99.30 4.52 48.53 92.03 4.26

5 94.43 99.51 4.53 52.20 93.91 4.30

Table 13 shows the results obtained using clinical-text data in a federated learning
setting using three Jetson Nano devices. We can observe that the performance is significantly
worse, similar to the Raspberry Pi cases. It suggests that it may be possible that the text
modality alone sometimes may not be a wise choice as input features. The best evaluation
scores obtained as AUPRC: 15.12%, AUROC: 63.58%, and earliness: 7.73 h.
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Table 13. Evaluation results using clinical-text input features in a federated learning setting using
three Jetson Nano devices.

Federated Aggregation: Simple Federated Aggregation: Opt
AfterRound  AUPRC  AUROC  Earliness ~AUPRC  AUROC  Earliness

(%) (%) (h) (%) (%) (h)

1 13.31 55.69 5.84 12.79 54.18 727

2 15.07 61.73 5.79 13.12 55.65 6.90

3 15.12 63.58 6.43 13.88 57.42 7.06

4 14.33 60.88 6.90 14.14 58.49 7.02

5 14.73 62.24 7.73 14.21 59.72 7.06

Table 14 shows the results obtained using multi-modal data in a federated learning
setting using three Jetson Nano devices. Once again, the multi-modal representation of
the input features provided the best results. Compared to Table 11 the results with three
devices provides a better AUPRC score. The best evaluation scores obtained as AUPRC:
98.99%, AUROC: 99.89%, and earliness: 4.56 h.

Table 14. Evaluation results using multi-modal (both clinical-text and non-text) input features in a
federated learning setting using three Jetson Nano devices.

Federated Aggregation: Simple Federated Aggregation: Opt
AfterRound  AUPRC ~ AUROC  Earliness =~ AUPRC ~ AUROC  Earliness

(%) (%) (h) (%) (%) (h)

1 94.77 99.34 4.56 94.71 99.44 4.55

2 95.03 99.37 4.54 94.80 99.39 4.56

3 98.07 99.78 4.53 93.58 99.18 4.52

4 98.82 99.87 451 95.86 99.48 451

5 98.99 99.89 4.51 94.99 99.35 4.52

Figure 7 provides the loss comparison for different federated aggregation techniques
using three Jetson Nano devices for the training of multi-modal model. We can see that the
loss value was gradually decreased after each round and it is much smoother in the case of
the aggregation technique simple over opt.
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Figure 7. Loss comparison for different federated aggregation methods using Jetson Nano devices.
x-axis represents the incremental number of training mini-batches, y-axis represents loss-values.
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Table 15 shows the results obtained using multi-modal data in a federated learning
setting using different Jetson Nano devices. As it can be observed, with two devices,
the best AUPRC score was obtained. The best evaluation scores obtained as AUPRC:
99.36%, AUROC: 99.93% with two devices, and earliness: 4.51 h with three devices. The best
performance here is slightly worse than the best performance obtained with the similar
experiments using Raspberry Pi devices, as can be compared with Table 11.

Table 15. Evaluation results using multi-modal (both clinical-text and non-text) input features in a
federated learning setting using different number of Jetson Nano devices.

Total AUPRC AUROC Earliness
Devices (%) (%) (h)
Federated Aggregation: Simple
3 98.99 99.89 4.51
2 99.36 99.93 4.50
1 99.31 99.92 4.52

5.3. Edge Device System Information

In this section, we report different edge device system information as mentioned in
Table 4. For the Raspberry Pi, the experiment was conducted with 10 devices (see Table 10),
and for the Jetson Nano, three devices (see Table 14) were used. For both cases, multi-modal
input features and simple federated aggregation method were used.

Figure 8 provides the CPU utilization comparison for different Raspberry Pi and
Jetson Nano devices. We can see the precise segmentation of each round (of a total of five).
Raspberry Pi’s CPU utilization is much higher, and it is consistent across all 10 devices.
This is understandable as Jetson Nano uses GPU. Therefore, the majority of computational
works are performed there. This indicates that we need to be careful if we plan to run other
resource-heavy computations on both devices, mainly Raspberry Pi.

Raspberry Pi CPU Utilization (%)
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Figure 8. CPU utilization comparison for different Raspberry Pi and Jetson Nano devices. The x-axis
represents the time in minutes, the y-axis represents the CPU utilization percentage (%).

Figure 9 provides the disk utilization comparison for different Raspberry Pi and Jetson
Nano devices. The total storage memory capacity for 8 of the 10 Raspberry Pi devices was
40 Gigabytes (GB). The rest had a capacity of 128 GB. All three Jetson Nano devices had a
storage memory capacity of 128 GB. We can see that the disk utilization is also consistent
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in all the relatively low-storage memory devices. Even with a 40 GB total capacity, the
disk utilization is below 60% for the Raspberry Pi devices. This suggests that we need to
optimize the disk storage given the dataset size.

Raspberry Pi Disk Utilization (%)
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Figure 9. Disk utilization comparison for different Raspberry Pi and Jetson Nano devices. The x-axis
represents the time in minutes, the y-axis represents the disk utilization percentage (%).

Figure 10 provides the comparison regarding the number of "CPU process threads
in use’ for different Raspberry Pi and Jetson Nano devices. We can see that it is entirely
consistent across all the devices, and in almost all the cases, it is close to 12. It suggests that
if we can effectively utilize all the cores of the CPU, then we may obtain a faster and better
parallel performance, as can be seen in these graphs.
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Figure 10. Process CPU threads in use comparison for different Raspberry Pi and Jets