
Citation: Yin, Y.; Liu, Z.; Zhang, J.;

Zio, E.; Zuo, M. An Adaptive

Sampling Framework for Life Cycle

Degradation Monitoring. Sensors

2023, 23, 965. https://doi.org/

10.3390/s23020965

Academic Editor: Ruqiang Yan

Received: 21 November 2022

Revised: 28 December 2022

Accepted: 5 January 2023

Published: 14 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Adaptive Sampling Framework for Life Cycle
Degradation Monitoring
Yuhua Yin 1,2, Zhiliang Liu 1,* , Junhao Zhang 3, Enrico Zio 2,4 and Mingjian Zuo 5

1 School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

2 Energy Department, Politecnico di Milano, 20156 Milano, Italy
3 School of Electrical and Electronic Engineering, Nanyang Technological University,

Singapore 639798, Singapore
4 Centre de Recherche sur le Risque et les Crises, MINES Paris—PSL University, 75006 Paris, France
5 Qingdao International Academician Park Research Institute, Qingdao 266041, China
* Correspondence: zhiliang_liu@uestc.edu.cn

Abstract: Data redundancy and data loss are relevant issues in condition monitoring. Sampling
strategies for segment intervals can address these at the source, but do not receive the attention
they deserve. Currently, the sampling methods in relevant research lack sufficient adaptability to
the condition. In this paper, an adaptive sampling framework of segment intervals is proposed,
based on the summary and improvement of existing problems. The framework is implemented to
monitor mechanical degradation, and experiments are implemented on simulation data and real
datasets. Subsequently, the distributions of the samples collected by different sampling strategies are
visually presented through a color map, and five metrics are designed to assess the sampling results.
The intuitive and numerical results show the superiority of the proposed method in comparison
to existing methods, and the results are closely related to data status and degradation indicators.
The smaller the data fluctuation and the more stable the degradation trend, the better the result.
Furthermore, the results of the objective physical indicators are obviously better than those of the
feature indicators. By addressing existing problems, the proposed framework opens up a new idea of
predictive sampling, which significantly improves the degradation monitoring.

Keywords: data redundancy; data loss; condition monitoring; adaptive sampling strategy; mechanical
degradation monitoring

1. Introduction

Condition monitoring (CM) began with machinery [1] and has gradually expanded to
a wide range of applications, including healthcare [2], climate environment [3], etc. Real
CM data are generally collected by adopting a time-based sampling strategy, which suffers
from prominent data problems, including the challenges of data redundancy and data
loss. Data redundancy increases the pressure of data storage, the consumption of data
transmission and the efforts of data processing; data loss results in the loss of condition
information and affects the performance of the built model. In addition, as illustrated
in Figure 1, these can also cause a data imbalance problem [4,5]. Currently, most studies
are devoted to solving these data challenges from a methodological perspective. From a
statistical viewpoint, it is almost always better to have more observations. Although some
resampling methods have taken into account the perspective of data [6,7], they just reuse
or reconstruct the original data, but do not fundamentally solve the original data problems.
In fact, these problems are relevant issues, and the sampling strategy can address them
from the source of data.
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Figure 1. Data problems in condition monitoring. 

1.1. The Sampling Strategy and Its Control Variables 
In CM, data acquisition is determined by the sampling strategy, and the selection of 

control variables is the key to realize sampling strategy optimization. In this paper, control 
variables are classified into two categories: exclusive variables and shared variables. The 
former refers to variables unique to a specific scenario, including the variable types of 
sampling objection [8], sensor types [9], sensor number [10], installation method [11], etc. 
The latter denotes variables included in any scenario, as illustrated in Figure 2, it consists 
of segment interval, sample length, and sampling frequency. 
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Figure 2. Illustration of three shared control variables. 

Shared variables are a shortcut to solve existing problems. Among them, the sam-
pling frequency has received the most attention. This, however, is only effective for data 
redundancy, and does nothing to help with the data loss. The segment interval can cope 
with them both, but much less relevant research has been conducted. 

1.2. A Sampling Strategy Based on Tuning the Segment Interval 
The traditional time-based strategy samples data with a fixed segment interval. Due 

to a lack of adaptability to data, condition-based approaches have been explored by reg-
ulating the segment interval dynamically as actual conditions change. This can also be 
called irregular interval sampling (IIS). Local-fixed IIS (LFIIS) performs different time-
based strategies in different conditions, and it can be realized via condition classification, 
condition identification and segment determination [12,13]. As LFIIS cannot adapt to con-
dition changing, step-fixed IIS (SFIIS) has been developed for increasing or decreasing 
intervals to efficiently cope with condition fluctuations [14–17]. For fast degradation, 
scale-fixed IIS (SFIIS-II) works better than SFIIS, as it can achieve multiplicative adjust-
ment [14,18] and even roughly minimize the segment interval to avoid information loss 
[18,19]. As illustrated in Figure 3, the three strategies above can be visually interpreted as 

Figure 1. Data problems in condition monitoring.

1.1. The Sampling Strategy and Its Control Variables

In CM, data acquisition is determined by the sampling strategy, and the selection of
control variables is the key to realize sampling strategy optimization. In this paper, control
variables are classified into two categories: exclusive variables and shared variables. The
former refers to variables unique to a specific scenario, including the variable types of
sampling objection [8], sensor types [9], sensor number [10], installation method [11], etc.
The latter denotes variables included in any scenario, as illustrated in Figure 2, it consists
of segment interval, sample length, and sampling frequency.
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Shared variables are a shortcut to solve existing problems. Among them, the sampling
frequency has received the most attention. This, however, is only effective for data redun-
dancy, and does nothing to help with the data loss. The segment interval can cope with
them both, but much less relevant research has been conducted.

1.2. A Sampling Strategy Based on Tuning the Segment Interval

The traditional time-based strategy samples data with a fixed segment interval. Due to
a lack of adaptability to data, condition-based approaches have been explored by regulating
the segment interval dynamically as actual conditions change. This can also be called
irregular interval sampling (IIS). Local-fixed IIS (LFIIS) performs different time-based
strategies in different conditions, and it can be realized via condition classification, condition
identification and segment determination [12,13]. As LFIIS cannot adapt to condition
changing, step-fixed IIS (SFIIS) has been developed for increasing or decreasing intervals
to efficiently cope with condition fluctuations [14–17]. For fast degradation, scale-fixed
IIS (SFIIS-II) works better than SFIIS, as it can achieve multiplicative adjustment [14,18]
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and even roughly minimize the segment interval to avoid information loss [18,19]. As
illustrated in Figure 3, the three strategies above can be visually interpreted as stepwise
methods, and they account for the largest proportion of existing studies. Nevertheless, they
are triggered methods, and the gaps between their steps inescapably become an obstacle
to possible ideal sampling. A continuous regulation method can resolve these gaps by
constructing successive functions to associate the condition to the segment interval: it
is, however, difficult to find a precise function for describing their relationship. Settling
for second-best, logical function-based IIS (LFBIIS) utilizes a logically correct function to
represent this relationship via an explicit or implicit function [19–22].
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The process of condition-based IIS has been summarized in Figure 4. A condition 
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lator is responsible for generating the final sampling strategy by synthesizing all infor-
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ever, there is only a qualitative correlation between the monitored condition and the seg-
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sample, the most promising method is to discover the mathematical relationship between 
them, i.e., to employ mathematical prediction-based IIS (MPBIIS). A comparison table of 
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types of sampling strategy in the table are represented by a circled number, where the 
time-based strategy is represented by a circled 0, and the other types refer to Figure 3. 
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The process of condition-based IIS has been summarized in Figure 4. A condition
evaluator is responsible for obtaining condition information, a compiler is responsible
for converting condition information to a theoretical segment interval, and a sampling
regulator is responsible for generating the final sampling strategy by synthesizing all
information. No matter whether a stepwise regulation method or LFBIIS is employed,
however, there is only a qualitative correlation between the monitored condition and the
segment interval, as no rigorous mathematical derivation has been shown. To obtain the
ideal sample, the most promising method is to discover the mathematical relationship
between them, i.e., to employ mathematical prediction-based IIS (MPBIIS). A comparison
table of different types of sampling strategies on segment interval is summarized in Table 1.
The types of sampling strategy in the table are represented by a circled number, where the
time-based strategy is represented by a circled 0, and the other types refer to Figure 3.
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Table 1. Comparison table of different types of sampling strategies on segment interval.

No. Literatures Benefits Challenges

0© - Easy to implement Data redundancy and data loss
1© [12,13] Improves the two data problems Lacks of adaptability to changing conditions
2© [14–17] Adaptable to changing conditions Inability to cope with large condition changing
3© [18,19] Responds quickly to large condition changing Sampling gaps caused by stepwise adjustment
4© [19–22] Continuous adjustment without sampling gaps Qualitative adjustment with principle error
5© - Quantitative adjustment without principle error Uncertainty risks caused by forecasting

At present, the following four problems hinder the realization of MPBIIS, and are
identified as P1~P4.

P1: Ambiguous sampling target: the ambiguity inevitably leads to a theoretical devia-
tion from the potential ideal sampling. Although attempts have been made by mathematical
prediction [23], remedies can only be carried out from the perspective of error control, due
to the absence of a clear target.

P2: Irregular time series prediction (ITSP): as real data tend to be nonlinear and
unrepeatable, predictions based on such data belong to the ITSP problem, which remains
unsolved in a wide range of fields.

P3: Time-lagging nature: existing methods adjust the sampling of next moment
according to the condition of previous moment, which does not take the condition’s time-
varying nature into account.

P4: The prediction of segment interval: time series forecasting is dedicated to predict-
ing condition at a given time, which is exactly the opposite of our needs for sampling.

Considering the huge difference in data characteristics, it is impossible to find a
universal solution. One practical solution is to explore domain-specific methods by focusing
on a specific scenario. Following this idea, an adaptive sampling strategy framework is
proposed aiming at the issue of degradation monitoring. The contributions of the work are
given below.

(1) We firstly define and summarize the control variables of sampling strategy methods,
and review the research related to sampling strategies on segment interval.

(2) We propose a new framework for degradation monitoring. This framework is further
implemented in mechanical degradation monitoring and can apparently improve or
even eliminate existing problems.

(3) We advance a new scheme to evaluate the data problems in CM from three perspec-
tives with five metrics.
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2. Methodology

Degradation is widespread in nature. Its evolution in time makes the individual
gradually tend toward a tipping point [24], while this transition to a state of failure can have
catastrophic consequences. To avoid the huge risks caused by degradation accumulation,
much attention has been paid to sensor development and data usage to detect, diagnose
and predict degradation. Such research focuses on information acquisition and mining,
whereas the issue of the sampling strategy is undervalued, especially concerning the
segment interval.

2.1. The Proposed Framework for an Adaptive Sampling Strategy

In response to the four problems of segment interval, an adaptive sampling framework
is proposed by adding targeted content to deal with the issue of degradation. Increments
are marked by red dashed lines in Figure 5.
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2.1.1. Hyperparameter Initialization

Except for traditional hyperparameters, those related to the distribution of sampling
objects are introduced to clarify the sampling needs in P1, and they involve the target
segment interval and target sample quantity. The target segment interval refers to the
degradation indicator intervals that are wanted, and the target sample quantity denotes
the desired sample number of each target segment interval.

The most widely used distribution is the uniform distribution, which has a target
sample quantity of 1 in each interval and equal length target segment intervals. In this
case, only the degradation interval needs to be specified. In addition, considering that the
influence of the same degradation amount may be different in different conditions, just
as people have different sensitivity to pain at different ages, these distributions must be
determined on a case-by-case basis.
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2.1.2. Time Series Collection

The collection of the initial time series relies on an initial sampling strategy, whereas
the subsequent sampling is based on the results of condition predictions in the sam-
pling regulator.

2.1.3. Transforming from a Time Series to a Degradation Series

The main difference between the proposed framework and traditional strategies
lies in the increment operation of the variable swap, i.e., converting the time series to a
degradation series. Time series prediction enables numerical inferences at specific future
times. It, however, cannot estimate the time at a specific numerical value of degradation.
To eliminate the theoretical error of time estimation in P4, a variable swap is designed to
exchange the independent and dependent variables of the time series.

Before this conversion, the timesseries must be monotonic, a condition that is satisfied
in most cases, since degradation itself is irreversible. For the fluctuations caused by noise
and measurement error, smoothing and monotonization can be used to calibrate them to
approximate actual degradation.

2.1.4. Degradation Prediction

As most degradation laws are nonlinear, regardless of whether the collected samples
form an irregular time series or not, the obtained degradation series is commonly an irregular
series after the variable swap is conducted, and its prediction is an ITSP issue of P2.

One possible approach is to transform the irregular series to a regular series and
utilize times series forecasting methods for prediction. This would be best for predicting
irregular series directly without transformation error. However, existing solutions of this
sort are only applied in a few areas, such as astronomy [25]. The feasibility of existing
ITSP methods can be explored for specific datasets. In addition, machine learning methods
are very promising options. Meanwhile, the realization of prediction settles the time lag
problem of P3.

2.1.5. Segment Interval Calculation

After obtaining the forecasted segment interval, the actual segment interval still
requires the consideration of certain time boundaries to avoid possible surprises, as the
laws on which our predictions are based may change or even mutate. These boundaries
should be valued in Section 2.1.1. Subsequently, based on the actual segment interval, a
new sample should be obtained in a loop until the failure threshold is reached.

2.2. A Proposed Method for Mechanical Systems

Mechanical equipment is pervasive in industry and a great deal of effort has been ded-
icated to its reliability and safe operation. At present, condition-based maintenance (CBM)
is the state-of-the-art solution for counteracting the influence of mechanical degradation
on reliability and safety. The realization of CBM includes the following three steps [26,27]:
data acquisition, data processing method and maintenance decision-making. The latter
two have received the most attention. Taking the popular statistical learning techniques as
the example, many methods has been applied in degradation monitoring, including super-
vised learning [28], unsupervised learning [29], transfer learning [30], statistical model [31],
integrated learning [32], etc. For existing data problems, a large number of studies have
also been carried out to reduce their impacts in the tasks of classification [33,34] and regres-
sion [5,35]. However, they all deal with this problem from the perspective of methodology,
and the solutions from a data perspective have been underestimated. Considering its
significance in practice, mechanical degradation monitoring was chosen as the object of the
framework’s application.

Combined with the specific characteristic of mechanical degradation, a concrete
method is advanced based on the proposed framework. The method can be applied
to available monitoring data in numerical data formats, including pressure, temperature,
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acoustic emission, wear amount, voltage, current, etc. The applicability of the method
depends on whether the data type can effectively reflect the condition degradation, which
needs to be determined according to the specific scenarios. Since it is implemented based
on the condition prediction, the most beneficial conditions are closely related to the pre-
dictability of the degradation, as follows: (1) The degradation indicator can effectively
represent the degradation; (2) the degradation process is stable; (3) the degradation law is
consistent and no mutation occurs. The method flow is illustrated in Figure 6.
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Step 1. Hyperparameter initialization. The first step is the determination of the
target sampling distribution. Generally, the existing condition-based methods tend to
accelerate or reduce sampling, for poor or good health conditions. Although not explicitly
mentioned, the logic behind this is to make the difference of adjacent samples as small
as possible. In other words, the implied target sampling is the uniform distribution.
Occasionally, this target sampling may be a non-uniform distribution, which needs to be
determined specifically.

In addition, the initial sampling strategy and sampling boundary should be specified.
The former generally adopts a time-based strategy for the data accumulation process before
the loop. For the latter, the upper limit of sampling is to prevent a sudden change of the
condition law as well as possible large errors in prediction, and the lower limit of sampling
is to avoid the sampling moment of the prediction being earlier than the moment when the
prediction is completed.

Step 2. Convert the time series to a degradation series. After obtaining the samples,
we need to check whether they have reached the failure threshold or not. If yes, the sam-
pling should be finished and an output should be obtained from the samples. Otherwise,
smoothing the time series via robust locally weighted regression can balance the trend and
outliers well, and is especially useful for the robust handling of outliers. If the time series
does not satisfy monotonicity at this time, additional monotonic processing is required.
Finally, the independent variable and dependent variable of the time sequence must be
exchanged to obtain the degradation series.

Step 3. Degradation series prediction. After the variable swap, the obtained sequences
are basically irregular series. In this method, the regular time series forecasting method is
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selected to realize irregular time series forecasting, on the basis of interpolating irregular
time series to obtain a regular series. Before this, the minimum account of the degradation
series V1 must be set to meet the data volume requirement for prediction. Accordingly, the
maximum allowable degradation interval can be calculated:

MADI = (hlast − h1)/V1 (1)

where MADI is the abbreviation for the maximum degradation interval, and h1 and hlast
are the first and last items, respectively.

On this basis, an actual segment interval can be determined and further utilized
for scale transformation with Equation (2), that is, the segment interval selection and
degradation series transformation.

SIs = min(SId, MADI), St = S/SIs (2)

Hereere, SIs and SId are the selected and target segment intervals, respectively. S and
St respectively indicate the sequence before and after transformation. and min( ) is the
minimum function.

Let the transformed degradation sequence be expressed as {thi: i = 1, 2, . . . , n} and
construct a series of interpolation points {Hj}. Since the degradation sequence was normal-
ized by SIa via scale transformation, the actual segment interval has been converted to the
unit length in {thi}. Consequently, {Hj} is an arithmetic sequence, whose last term is thlast.
The difference is 1 and j = floor(thlast − th1), where floor( ) only outputs the integer part of
the value in parentheses. Then, the piecewise cubic Hermite interpolating polynomial is
selected to obtain the regular series. This can preserve the data’s shape and corresponding
monotonicity, which is exactly what we want. For a subinterval [hk, hk+1], let

lk = hk+1 − hk, dk = (tk+1 − tk)/lk, sk = F′(hk) (3)

where sk is the slope of point hk equal to dk or dk+1 for the piecewise linear interpolation.
The fitted cubic polynomial F(h) can be represented as follows, for hk ≤h≤ hk+1:

F(h) =
3lk∆2 − 2∆3

lk3 tk+1 +
lk3 − 3lk∆2 + 2∆3

lk3 tk +
∆2(∆− lk)

lk2 sk+1 +
∆(∆− lk)

2

lk2 sk (4)

∆ = h− hk (5)

Bringing {Hj} into F(h) on the corresponding subintervals to obtain the new time
sequence {Tj}, then, the time series {(tj, hj)} is transformed into a degradation series {(Hj, Tj)}.

Afterwards, the autoregressive integrated moving average is utilized for sampling
time prediction, which has been widely adopted and proven effective for mechanical
degradation processes. This model can be represented by ARIMA(p, d, q), where p is the
lag order that denotes the number of lag observations in the model; d is the differencing
degree that refers to the number of times the raw observations are differentiated; q is the
moving average order, which means the size of the moving average window. The model is
expressed as follows:

ϕ(B)(1− B)dTt = θ(B)εt (6)

where εt is the random error at time t; ϕ( ) is a function of a p-order autoregressive coefficient
polynomial, and θ( ) is a function of a q-order self-moving average coefficient polynomial,
and they are expressed by Equation (7):

ϕ(B) = 1−
p

∑
i=1

ϕiBi, θ(B) = 1 +
q

∑
i=1

θiBi (7)
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Hereere, B is the backshift operator defined as

BTt = Tt−1 (8)

where Tt and Tt-1 represent the tth and (t-1)th element in {Ti}.
The Box–Jenkins methodology is utilized to set up an ARIMA model that only needs a

one-step prediction to forecast the sampling time of the target segment interval.
Step 4. Segment interval output. The upper and lower sampling limits are denoted as

Imax and Imin, and the actual segment interval is decided as follows:

SIa =


Imax, Imax ≤ SIp
SIp, Imin ≤ SIp ≤ Imax
Imin, SIp ≤ Imin

(9)

where SIa denotes the final segment interval and SIp is the predicted interval. In this way,
we can sample with SIa and update the sample set of the time series. Afterwards, we return
to Step 2 and loop until the termination condition is reached.

3. Experimental Validation and Discussion

Simulation and real experimental data are used to test the performance of the proposed
sampling method. All of the experiments are performed on a laptop with the Windows 11
operating system, an Intel Core i5-10210U CPU and 8 GB memory.

3.1. Comparison Experiment Setup

Three comparison methods and five performance metrics are introduced to verify the
effect of the proposed method.

3.1.1. Comparison Methods

As a representative stepwise method, SFIIS-II is selected as the first comparison
method, of which the degradation rate is chosen to adjust the sampling and defined as
follows [14,18]:

Rate =
∆HI
∆t

(10)

where ∆HI and ∆t represent the change of degradation indicator and time.
A big scale∈(1, +∞) is used to multiplicatively adjust the segment interval for slow

degradation, and a small scale∈(0, 1) is used for fast degradation. Otherwise, the interval
stays unchanged.

As the only strategy of continuous regulation, LFBIIS is selected as another comparison
method. Its logistic function is a variant of the sigmoid function [20]. The segment interval
is represented by its abbreviation SI, and the reciprocal of SI can be regarded as the
horizontally transposed sigmoid function of the Rate. Let y = 1/SI, the logistic function
expressed as follows.

y(Rate) = ymin +
(ymax − ymin)

1 + e−coe f ∗(Rate−lhm)
(11)

where ymin = 1/Imax, ymax = 1/Imin and lhm represents the horizontal moving length of the
sigmoid function. The term coef is a coefficient to adjust the speed of change rate.

3.1.2. Performance Metrics

Five metrics are designed to assess the sampled data; see Table 2. In addition, since
a short execution time is important for sampling adjustment, fixed model parameters are
chosen to reduce model prediction time, and the execution time for a single prediction
is given subsequently. For all the three types of data, the prediction model of arima(1,
2, 0) works well and is adopted for prediction. In the model, the lag order p equals to 1,
which indicates that only the previous value in the process and the noise contribute to the
prediction result. In addition, a second order difference is applied to eliminate a quadratic
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trend of data. The differencing degree d is greater than 0, which reflects the non-stationary
nature present in the experimental data.

Table 2. Performance metrics and their representation.

Problems Performance Metrics Symbol

Data redundancy Total density of sample ρt
Data redundancy Redundancy density of sample ρr
Data redundancy Rate of information redundancy Rr

Data loss Rate of information loss Rl
Sampling deviation Average deviation Da

Assuming the initial sample set is {xi, i = 1, 2, . . . , p}, the set of target segment intervals
{Sm} can be constructed by using SId as the length of the sub-intervals. Let Ij express the
jth sub-interval, {Sm} = {I1 U I2 U . . . U Im | Ij = [xp + (j − 1/2) × SId, xp + (j+1/2) × SId)}.
Then, the obtained samples {Xi, i = 1, 2, . . . , n} can be judged by the data distribution in
{Sm}. All the metrics are relative values for ease of comparison.

ρt =
n

INt
, ρr =

n
INt − INl

, Rr =
INr

INt
, Rl =

INl
INt

(12)

Da =
1
n

n−1

∑
i=1
|Xi+1 − Xi − SId| (13)

where INl, INr and INt refer to the numbers of loss sub-intervals, redundancy sub-intervals
and total sub-intervals, respectively.

3.2. Simulation Data

We conclude three typical forms of mechanical degradation curves, as shown in
Figure 7. The first, type “E” is the most used exponential degradation model with a single
degradation law. The types “J” and “S” are used to simulate two-stage and three-stage
degradation laws, respectively. Since the simulation data are a continuous numerical
simulation, the available data points are theoretically infinite, and the actual data obtained
are calculated according to the predicted sampling time.
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Figure 7. Three typical mechanical degradation curves. 

Figure 7. Three typical mechanical degradation curves.

The distributions of the sampling results are shown in Figure 8, and the color bar on
the right indicates the collected points number of each interval in {Sm}. It can be seen that
the time-based strategy tends to lose some information in rapid degradation and gains
redundancy in slow degradation. The scale-based and LFBIIS strategies improve upon
both of these problems to some extent, but they also sometimes have side-effects. For
instance, information loss appears when they try to reduce the redundancy in (b), and
information redundancy is caused when reducing the information loss in (a) and (c). The
reason behind this lies in the fact that they are essentially qualitative methods. Due to
the constant scale coefficients of scale-based strategy, different collection volumes result
in different conditions. Additionally, although the LFBIIS strategy seems more flexible
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to different conditions, it is impractical to find a universally applicable function to fit
a changeable degradation law. Compared to their unstable performance, the proposed
strategy achieves near perfect performance as a whole. Although there is still information
loss, and although redundancy appears when conditions change, perfect sampling can be
restored quickly.
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All the result analyses above are shown in the quantitative metrics of Table 3, and the
average execution time for a single prediction is 0.0392 s. The first row are ideal values that
denote the best values of certain degradation laws. Consistent with the previous analysis,
the performance of the proposed strategy surpasses the others in almost all items. The
only parameter that does not seem to be optimal is the amount of data under “S” type
degradation. The best performance of ρt is, however, a source of massive information loss,
which makes this advantage meaningless. Therefore, the proposed strategy achieves a
state-of-the-art performance on all datasets.

Table 3. The results of performance metrics for simulation data.

ρt Rm ρr Rl Da

Ideal Value 1 0 1 0 0

Time-based 1.29 0.04 1.35 0.30 0.72

Type “E”SFIIS-II 2.37 0 2.37 0.63 0.87
LFBIIS 3.86 0 3.88 0.91 1.12

Proposed 1 0 1 0 9 × 10−4

Time-based 1.26 0.22 1.61 0.25 0.015

Type “J”SFIIS-II 0.74 0.36 1.16 0.10 0.018
LFBIIS 1.05 0.08 1.14 0.13 0.006

Proposed 0.99 0.02 1.01 0.01 9 × 10−4

Time-based 1.06 0.39 1.73 0.13 0.0194

Type “S”SFIIS-II 2.11 0.22 2.71 0.48 0.0186
LFBIIS 1.91 0.07 2.06 0.57 0.0141

Proposed 1.11 0.06 1.18 0.06 0.0048

3.3. Real Experimental Data

As the quality, volume and type of real experimental data have considerable influence
on the implementation of a sampling strategy, available public datasets on mechanical
degradation are investigated, and the results are shown in Table 4. The time-based sam-
pling strategy is the mainstream sampling strategy, and bearings are the most widely
researched subject.
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Table 4. Some available public datasets.

Name Data Type Research Object

FEMTO-ST Regular Series

Bearing
PU Regular Series

XJTU-SY Regular Series
IMS Regular Series
SJTU Irregular Series

PCoE-Milling Irregular Series
CutterPHM2010 Regular Series

PCoE-PHM08 Regular Series Engine

For real experimental data, degradation indicator acquisition is both critical and
challenging. Available options consist of physical indicators and feature indicators, and
both of them can be utilized in cutter degradation measurement. By contrast, bearings
and engines are hard to monitor by direct physical indicators, but feature indicators can
be extracted from indirect measurements, such as vibration and temperature. To test the
performance of these two types of indicators, cutter data are the choice for the physical
indicator, and bearings are chosen as the feature indicator.

The main challenge in using real experiment data is data discontinuity, which hinders
the accurate acquisition of data at desired time. The more data there are, the less influence
this may have. As such, the datasets of PHM2010 and FEMTO-ST are selected for validation,
and the closest point available is used as the actual sampling time.

3.3.1. Physical Indicator Case

The PHM2010 dataset was collected on a high-speed CNC machine with a fixed
segment interval of each tool walk. After each tool walk, the wear amount of three cutting
edges were measured with a microscope. Six batches of data are captured from six cutters,
half of which are marked with labels for wear amount and can, thus, be used for the
experiment: this includes Cutter#1, #4 and #6. Each batch of data collected 315 samples,
and each sample records the wear amount on the three edges of the cutter. Suppose that
the segment interval of adjacent samples is 1, then the interval of a time-based strategy is
set to 2 to give irregular strategies a chance to obtain more compact sampling. The average
wear amount of three edges is set as the physical indicator value of tool degradation.

The sampling results are shown in Figure 9. Compared with the simulation data, more
data loss appears in all strategies, which is caused by the limited data volume. Still, the
proposed strategy obtains the least amount of loss. When we focus on sample value, the
deviation between segment interval and the ideal value is also much greater than in the
simulation data, which not only relates to the restriction of data volume but also involves
the influence of data fluctuations to condition forecasting. Although the ideal sampling is
unachievable based on the available data, the proposed strategy still tries to approach the
ideal value by adjusting the segment interval, whereas other strategies do not. Referring to
the metrics in Table 5, the performance of the proposed strategy far exceeds the others, and
the average execution time for a single prediction is 0.0363 s.

Table 5. Results of performance metrics for the PHM2010 dataset.

ρt Rm ρr Rl Da

Ideal Value 1 0 1 0 0

Time-based 1.36 0.15 1.59 0.28 0.49

Cutter #1
SFIIS-II 1.77 0.12 2.01 0.57 0.58
LFBIIS 0.95 0.17 1.15 0.10 0.28

Proposed 0.96 0.10 1.07 0.04 0.17

Time-based 1.59 0.21 2.01 0.25 0.93
Cutter #4SFIIS-II 1.24 0.17 1.49 0.27 0.69
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Table 5. Cont.

ρt Rm ρr Rl Da

LFBIIS 1.28 0.07 1.38 0.29 0.48
Proposed 1.17 0.07 1.26 0.19 0.38

Time-based 1.10 0.201 1.38 0.14 0.47

Cutter #6
SFIIS-II 1.43 0.101 1.59 0.45 0.43
LFBIIS 1.17 0.065 1.25 0.28 0.24

Proposed 1.06 0.058 1.13 0.12 0.18
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3.3.2. Feature Indicator Case

The FEMTO-ST dataset used in this section was gathered on the PRONOSTIA platform.
During the rotation of the bearings, a radial force is applied by a pneumatic jack and
adjusted by a digital electro-pneumatic regulator. Vibration data are collected by miniature
accelerometers with a frequency of 25.6 kHz. Three conditions are designed to simulate
different working conditions with multiple experiments under each condition. To ensure
as much degradation data as possible, Bearings 1_1, 1_3, and 1_4 are chosen as candidates.
Their sample point numbers are 2803, 2375, and 1428, respectively; each sample records
the vibration data of three directions, and each direction includes 2560 points. Root mean
square values are extracted as the feature indicator, and only the degradation data are
selected for experiments.

The graphical results of sample distributions are shown in Figure 10. Compared
with the previous experiments, the amount of information loss and distribution imbalance
significantly increases in Bearings 1_1 and 1_3. Although the metrics of the proposed
strategy in Table 5 still dominate, the advantage is negligible or even inferior to that of other
strategies. By contrast, the application on Bearing 1_4 shows extremely good performance,
in which all the metrics have a clear advantage over the other strategies, which stems from
a discrepancy in the data volatility. There are many fluctuations in the first two sets of
data, whereas the last set of data is relatively smooth. The fluctuations create difficulties
for condition forecasting, which seriously impacts the effect of the proposed strategy. In
addition, the average execution time for a single prediction is 0.0376 s.
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3.4. Summary

Synthesizing the performances on experimental data, there is no doubt that the pro-
posed method obtained the best results. Its performance on different datasets varied,
showing that:

(1) Data status and degradation indicator are critical to the performance of the sampling
strategy, and the influence factors include the data fluctuation, data volume, the
selection of the degradation indicator, the stability of the degradation trend, etc.;

(2) Abrupt changes in degradation greatly influence the sampling result, no matter which
strategy is chosen. This serves as a reminder to maintain a safety margin in sampling
strategy formulation to avoid possible information loss;

(3) Sampling strategies based on feature indicators are still of great significance, com-
bining their dominant position in mechanical CM. Although their performance in
the experiments is the worst, feature indicators still have huge potential. They are
already able to properly describe the degradation process in many scenarios, as seen,
for example, with the intelligent algorithms that have emerged in recent years and,
especially the superior performance of deep learning methods in feature extraction;

(4) As well as improving the condition indicator, the methods of irregular series predic-
tion can also be introduced to sampling optimization. The series conversion of the
proposed method inevitably introduces errors. Thus, direct prediction with irregular
series may be of promise in promoting sample quality;

(5) Real experimental data come from public datasets, which restricts the full realization
of sampling strategies. Research on sampling strategies of the segment interval is still
in its infancy. If dedicated public datasets can be built, they will greatly promote the
development of related research;

(6) Reasonable strategy selection and parameter setting are necessary to avoid sampling
results being affected, or even worse than those of time-based sampling.

(7) The average execution time for a single prediction is less than 0.04 s, which shows
that the proposed method has good work performance in a real-time scenario.

Considering the fact that the degradation law and data status are objective factors, the
selection of the sampling strategy type is crucial to the sampling results. For sudden faults,
SFIIS is the most suitable type due to its fastest sampling adjustment, including the faults
of component shedding, fatigue fracture, unbalance and misalignment during operation,
etc. For degradation faults, the most suitable type is closely related to the characteristics of
degradation indicators, and can be selected according to the summary of different types of
strategies shown in Table 1, such as the faults of wear, peeling, corrosion, cracks, etc. With
the development of predictive technologies, the proposed framework will become more
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and more perfect and promising. Four benefits and two challenges of the proposed method
are summarized in Table 6.

Table 6. The benefits and challenges of the proposed method.

Benefits

1. Reduce or even eliminate the data loss
2. Reduce or even eliminate the data redundancy

3. Improve the problem of data imbalance
4. Reduce the amount of sampled data

Challenges 1. Uncertainty risks caused by forecasting
2. Accurate degradation expression, especially for feature indicators

4. Conclusions

CM suffers from the problems of data redundancy and data loss, and sampling
optimization is expected to solve these at the source. As a key part of the sampling strategy,
the segment interval choice has not received due attention and lacks extensive research.
This paper proposes a new framework to improve degradation monitoring with respect
to existing problems of segment interval. The proposed framework is implemented on
the CM of mechanical degradation by specifying methods, including adding sampling
object hyperparameters in the module of hyperparameter initialization for the problem
of sampling targets ambiguity, applying the interpolation method of the piecewise cubic
Hermite interpolating polynomial to solve the issue of ITSP, adopting the prediction
method of the autoregressive integrated moving average model to answer the lagging
nature of available solutions, and designing a variable swap to resolve the error problem
caused by inaccurate estimation of the sampling time. Subsequent experiments showed the
comprehensive superiority of the proposed method over comparable methods. Through
the improvements to existing problems, the proposed method greatly alleviates or even
eliminates the influences of data redundancy and data loss. The selection of the degradation
indicator is a key factor affecting the effect of sampling strategy implementation. As the
research on segment interval sampling strategy is still in its infancy, it still has huge potential
for further improvement.
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