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Abstract: Fruit classification is required in many smart-farming and industrial applications. In the
supermarket, a fruit classification system may be used to help cashiers and customer to identify
the fruit species, origin, ripeness, and prices. Some methods, such as image processing and NIRS
(near-infrared spectroscopy) are already used to classify fruit. In this paper, we propose a fast and
cost-effective method based on a low-cost Vector Network Analyzer (VNA) device augmented by
K-nearest neighbor (KNN) and Neural Network model. S-parameters features are selected, which
take into account the information on signal amplitude or phase in the frequency domain, including
reflection coefficient S11 and transmission coefficient S21. This approach was experimentally tested
for two separate datasets of five types of fruits, including Apple, Avocado, Dragon Fruit, Guava,
and Mango, for fruit recognition as well as their level of ripeness. The classification accuracy of the
Neural Network model was higher than KNN with 98.75% and 99.75% on the first dataset, whereas
the KNN was seen to be more effective in classifying ripeness with 98.4% as compared to 96.6% for
neural network.

Keywords: VNA; KNN; neural network; fruit classification

1. Introduction

Classification and the grading of fruits and vegetables play an important role in
the post-harvest procedure. Traditionally, farmers and distributors perform this step
through human operators or human senses such as handpicking or touching. Such a
tedious, time-consuming, slow, and inconsistent method results in huge post-harvest
losses. Another application of post-harvest handling is identifying immature and over-
mature fruits, which is crucial to their subsequent storage, marketable life, and high-quality
products to customers. Indeed, in some fruits it is difficult to recognize ripeness according to
appearance before cutting the fruit, such as watermelon [1]. For these reasons, the increased
demand for an accurate, fast, and nondestructive technique of agricultural products has
increased in recent years. Many approaches have been introduced in the literature for the
automated inspection of fruit types, ripening stage identification [1] or detection, and the
classification of citrus diseases [2,3].

The ratio of the intensity of peak1 to peak2 (RPP) and the normalized difference
intensity of peak (NDIP) methods [4] employ the visible and near-infrared spectroscopy
(Vis/NIR) technology to determine the maturity level of watermelon. The Correct-RPP
(C-RPP) method presents little better accuracy than NDIP with CCR of 85.1%, and much
better than the LS-SVM classifier with CCR of 76.7% [5]. Ref. [6] proposed two families
of deep neural networks EfficientNet and MixNet for automated fruit recognition. This
system enhanced the prediction outcome compared to a well-established baseline and
assured the real-time recommendations [6]. Among these classifiers, the best accuracy

Sensors 2023, 23, 952. https://doi.org/10.3390/s23020952 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020952
https://doi.org/10.3390/s23020952
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8340-6270
https://orcid.org/0000-0003-4207-2128
https://doi.org/10.3390/s23020952
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020952?type=check_update&version=2


Sensors 2023, 23, 952 2 of 13

of 99.98% and 99.97% were respectively obtained by MixNetSmall and MixNetSmall,
among its counterparts. A dataset of 48,905 images for training and 16,421 images for
testing was used to evaluate the performance of this approach. A fuzzy model based on the
Classification and Regression Tree (CART) algorithm was introduced by Ref. [7] for grading
the ripening stages of bananas. Two simple features, namely peak hue and normalized
brown area (NBA), were employed as inputs for this model. An accuracy of 93.11% was
achieved by evaluating the proposed method on the MUSA database including banana
samples at different ripening stages. The authors in Ref. [8] investigated two deep learning
architectures, a small CNN model, and a VGG-16 fine-tuned model for fruit classification.
The approach’s performance has been validated on two datasets: dataset 1 of supermarket
produce [9] and dataset 2 of images collected from the Internet. Classification accuracies of
99.49% and 99.75% were achieved by evaluating the proposed models on dataset 1, while
the reported accuracy for these two models was 85.43% and 96.75%, respectively.

The novel approach in Ref. [10] relied on an ImageNet pre-trained convolutional
neural network to classify different types of fruits and vegetables. This fine-tuned classifier
includes relevant spatial and spectral features extracted from the hyperspectral images.
The additional information provided by this dataset allows to improve the overall accu-
racy of 85.22% and the average accuracy of 88.15%. However, the previous classification
techniques have one or more shortcomings, such as:

1. The image analysis may not be robust because different fruit images may have indis-
tinguishable shape and color features. Some fruits (e.g., some varieties of peaches,
apples, and watermelons) do not change their skin color as the fruit ripens or matures.
In this case, the global color cannot be used as a ripeness evaluation parameter;

2. Hyperspectral imaging-based techniques take a great deal of computational time
because of their complexity. A hyperspectral image includes a large number of bands
whose information is frequently highly correlated, leading to a huge amount of data;

3. Near-infrared spectroscopy-based methods depend highly on position measurement,
the surface of objects, as well as environmental white light.

Recently, several non-invasive methods based on radio-frequency have been investi-
gated for fruit/vegetable classification to solve previous limitations. A contact-less mea-
surement of permittivity was proposed in Ref. [11] for agricultural applications. This
method can be a first step for the quality assessment of fruit but requires further develop-
ment to demonstrate it. In Ref. [12], quality assessment was performed at terahertz on thin
fruit slices. Even if the technique is non-invasive, the fruit has to be cut into slices, which
limits its application. In Ref. [13], a circular antenna array with 10 elements was used to
determine the maturity of watermelon. The imaging method is accurate but it requires a
large and complicated feeding mechanism.

To overcome these shortcomings, this paper introduces an efficient method based on
the combination between a low-cost Vector Network Analyzer (VNA) and machine learning
algorithms for two principal applications: fruit classification and fruit maturity prediction.
However, there has been no research on the combined use of low-cost VNA and basic
machine learning models, such as the neural network model or K-nearest neighbor, for the
identity recognition and freshness detection of fruits. Therefore, this study aims to explore
the potential that these two technologies can be used to determine fruit type as the first
step of the fruit freshness detection problem. This paper is organized as follows. Section 1
reviews related works on low-cost VNA and machine learning applications in food and
agriculture and the motivation of this study. The collection of VNA data is presented in
Section 2.1. Sections 2.2 and 2.3 describe our proposed solutions, including feature extrac-
tion methods. Section 2.4 describes pre-processing and two machine learning algorithms.
The experimental results are given in Section 3. Section 4 presents the conclusion and future
work of the current research.
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2. Proposed Method

Our predictive models are designed by using supervised machine learning algorithms,
including two steps. In the training step, the spectra of 40 data points that were swept from
5 types of fruits were used directly. After that, the S-parameters are selected as relevant
features for training the predictive models. The testing phase employed test data and
the same feature extraction as the training phase. The details of these technical steps are
described in Figure 1 and discussed below.

Figure 1. Technical steps diagram.

2.1. Data Collection

The main device used in data collection is NanoVNA, which is a tiny handheld Vector
Network Analyzer (VNA), designed by edy555. It is a very portable but high-performance
vector network analyzer. It is a standalone portable device with an LCD and battery.
NanoVNA was designed to work at 50kHz-1500MHz. Calibration is also needed before
measuring with NanoVNA.

The collected data are S-parameters, which can describe the input-output relationship
between ports (or terminals) in an electrical system. In NanoVNA, we have 2 ports (called
Port 0 and Port 1). In Port 0, the most commonly quoted parameter concerning antennas
is S11. S11 represents how much power is reflected from the antenna and hence is known
as the reflection coefficient (sometimes written as gamma, or return loss). The remainder
of the power is “accepted by” or delivered to the antenna. The accepted power is either
radiated or absorbed as losses within the antenna. Since antennas are typically designed to
be low loss, ideally the majority of the power delivered to the antenna is radiated. In Port
1, the S21 represents the power transferred from Port 0 to Port 1, which is known as the
transmission coefficient. The measurement device and antenna are shown in Figure 2.

To get S11 and S21, we use nanoVNASaver software, which was developed by Rune B.
Broberg. It is a multi-platform tool used to save Touchstone files from the NanoVNA. This
software connects to a NanoVNA, then extracts the data and saves Touchstone files into
the computer.
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Figure 2. Measurement components.

Two antennas are required to perform the reflection and transmission measurements.
The main specification for handheld near-field sensing antenna are sensitivity, polarization
and compactness. Circular polarization is desired to avoid polarization alignment mis-
match. Inverted F Antenna (IFA) are known to provide a compact form factor with linear
polarization. Circular polarization can be obtained with a triple and quadruple layout with
the rotational axis of symmetry and a suitable feeding network. A tri-fillar antenna has
been designed to radiate Right Hand Circular Polarization (RHCP) in the UHF band with
an ultra-small form factor by RFthings company for communication with a satellite [14].
The antenna provides a 110° wide beam angle RHCP radiation. A 3 dBic peak gain is
obtained in the broadside direction. The antenna is connected through an SMA Male or a
100 mm flexible cable using a U.FL connector. The structure is available for three different
frequency bands: 868, 915, or 923 MHz. In this measurement, we use a frequency band
at 923 MHz, which corresponds to the ISM band in Vietnam. Figure 3 shows the data
collection model.

Figure 3. Data collection model.

The white box made of wood, as shown in Figure 4, was designed as a proper place
not only to put fruit inside but also to adjust the distance between the two antennas and
fruits corresponding to the size of each fruit. In this measurement, NanoVNA is set with
a sweep from 700 MHz to 1 GHz with sweep frequency spans in segments to retrieve 40
data points.
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Figure 4. Data collection.

2.2. Feature Extraction

As presented in the previous section, S11 and S12 are scattering parameters that
measure how radio frequency energy transmits or reflects through a multi-port sys-
tem. Thus, we propose to construct the S-parameters feature vector to present the reflec-
tion/transmission capacity quantified by amplitude and optionally phase in the frequency
domain. Such features can be used in various shape analysis problems such as fruit ripeness
detection [15]. Figure 5 illustrates the difference between S11 and S12 for two types of fruits
with different inside and outside characteristics, such as guava and tomato.

Figure 5. S11 and S21 of tomato and guava.

In this measurement, we use the *.s2p format, which includes Stim(Frequency),
Real(S11), Imag(S11), Real(S21), and Imag(S21). Although S-Parameters (S11 and S21) are



Sensors 2023, 23, 952 6 of 13

provided with Real and Imaginary complex values, they can be easily converted to Mag-
nitude and Phase information as the feature. Consequently, the full feature vector is the
combination of four parts including Real, Image, Magnitude, and Phase of S11 and S21.

The formulas for calculating the Magnitude and Phase from the Real and Image
numbers are:

S(Magnitude)[dB] = 20 log(
√

S(Real) + S(Image)) (1)

S(Phase) = arctan(
S(Image)
S(Real)

) (2)

Figure 6 describes the Magnitude, Phase, Real, and Image of S11 and S21 of guava.

Figure 6. Magnitude (a), Phase (b), Real (c), and Image (d) of S11 and S21.

Figure 7 shows the magnitude of S11 and S21 for five kinds of fruits: Guava, Tomato,
Orange, Avocado, and Mango. In this figure, 10 samples of each fruit are plotted in order
to illustrate measurement variability. The fruits are clearly distinguished by the line group
colors with S11 and S21 Magnitude; it is clearly visible in the zoom area. They also converge
fruits into line groups. However, the result also has a line that is difficult to distinguish,
such as S21 of Avocado (black line).
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Figure 7. S11 and S21 of fruits.

2.3. Preprocessing

Many sources of unwanted random radio frequency, electrical signals, and fluctuating
voltages always exist around the proposed sources. The collected spectral data are then
obtained by subtracting the background data with no fruit inside the box from the sample
data before putting it into the machine learning system.

Figure 8 shows how the sweep background noise varied for different measuring
positions. Figure 9 shows an example of the original spectra and the background noise
cancellation spectra of a sample fruit.

data = SweepObject − BackgroundNoise (3)

2.4. Machine Learning Model

In this research, two kinds of machine learning were implemented. K-nearest neigh-
bors (KNN) is one of the simplest machine learning algorithms, and is known as lazy
learning. Each time we want to make a prediction, KNN searches for the nearest neigh-
bor(s) in the entire training set. It does not have a training phase, and requires tuning
only one hyper-parameter (the value of k). On the other hand, a neural network is more
complex. It requires a training phase and involves many hyper-parameters controlling the
size and structure of the network and the optimization procedure.
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Figure 8. S11 and S21 of background noise in two different locations with positions 1 and 2.

Figure 9. Data after noise cancellation.
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2.4.1. KNN (K-Nearest Neighbor)

The first machine learning method is KNN (K-Nearest Neighbor), which is suitable
when using a small dataset and is often the first choice of machine learning method.
The KNN is a non-parametric method used for classification and regression. The K-Nearest
Neighbor classifier usually applies either the Euclidean distance or the cosine similarity
between the training tuples and the test tuple, but for the purpose of this research work,
the Euclidean distance approach will be applied when implementing the KNN model for
our recommendation system.

In our work, we applied the distance weighted KNN approach, in which we experi-
mented with different values of K on our sample data, starting from K = 1, up to K = 9. We
discovered that the experiment works best with K = 5, so we selected K = 5, which gives us
the minimum error rate.

2.4.2. Neural Network

In the neural network model, we use a signal neural perception for a simple model
with configuration as below. The hyper-parameters of the neural network were selected
after several rounds of testing.

• Input Layer: series of 40 data points were sweep from 700 Mhz to 1 GHz;
• Hidden Layers: 1 hidden layer with 20 neural node;
• Activation function: tansig;
• Output Layer: 5 outputs in Dataset 1 and 10 outputs in Dataset 2.

The database processing and neural network model execution is done in the Matlab
environment. Simulation is performed on a computer with the following configuration:

• Processor: Xeon E5-2630—2.40 GHz;
• RAM memory: 32 GB;
• GPU: NVIDIA TITAN V 12GB VGA;
• Environment: MATLAB R2018a.

2.4.3. K-Fold Cross-Validation

Cross-validation is a re-sampling procedure used to evaluate machine learning models
on a limited data sample. The value of K specifies the number of folds you plan to split the
dataset into. Smaller values of K means that the dataset is split into fewer parts, but each
part contains a larger percentage of the dataset. As such, the procedure is often called
k-fold cross-validation. In our work, we choose a value of k = 10, which is very common in
the field of applied machine learning.

3. Experimental Results

We carried out many experiments to evaluate the proposed classification algorithm and
compare its performance with each other for fruit classifications. K-fold cross-validation
was used to evaluate a model’s performance with two datasets. S-parameters, which
include S11 and S21 with both magnitude and phase, are the input of the machine learning
algorithms. The masured datasets are openly available on Ref. [16].

3.1. Experiments on Dataset 1

Dataset 1: In Dataset 1, 80 samples of 5 types of fruits were collected for classification,
as described in Table 1. Then we evaluated the classification accuracy using KNN and
neural network. We achieved the best accuracy of 98.75% and 99.75% with the KNN and
neural network algorithm, respectively, on the test dataset using both S11 and S21 in Image
parameter, as illustrated in Table 2. The confusion matrix in Table 3 shows the performance
of the model on the test dataset. In the confusion matrices, the row represents the actual
fruit class and the column represents the predicted fruit obtained by the proposed models.
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Table 1. Dataset 1.

Fruit Quantity Size (Diameter) Sweep

Orange 80 7 cm +/−1 cm 700–1500
Guava 80 7 cm +/−2 cm 700–1500
Tomato 80 5 cm +/−1 cm 700–1500
Avocado 80 15 cm +/−3 cm 700–1500
Mango 80 9 cm +/−2 cm 700–1500

Table 2. Classification accuracy.

KNN

Feature S11 S21 S11 + S21

Amplitude 95% 95.25% 96%

Real 95.75% 98.5% 98.25%

Image 98% 98.25% 98.75%

Phase 89.25% 91.75% 94.75%

Neural Network

Feature S11 S21 S11 + S21

Amplitude 97.25% 95.75% 99.25%

Real 97.75% 99% 99%

Image 98.25% 99.5% 99.75%

Phase 91% 90.75% 96%

Table 3. Dataset 1—confusion matrix.

KNN

Avocado Tomato Orange Guava Mango

Avocado 75 0 0 3 2

Tomato 0 80 0 0 0

Orange 0 0 80 0 0

Guava 0 0 0 80 0

Mango 0 0 0 0 80

Neural Network

Avocado Tomato Orange Guava Mango

Avocado 80 0 0 0 0

Tomato 0 79 0 1 0

Orange 0 0 80 0 0

Guava 0 0 0 80 0

Mango 0 0 0 0 80

3.2. Experiments on Dataset 2

Dataset 2: For extended investigation of fruit ripening, we developed another database,
called Dataset 2 in Table 4, which contains 500 samples of 5 different types of fruits, includ-
ing Avocado, Tomato, Orange, Guava, and Mango. Tables 5 and 6 report the confusion
matrix and classification accuracy on this dataset using KNN and neural network for
comparison. It can be observed that the KNN model achieves a slightly higher correct
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classification rate on the test set compared to the neural network one (98.4% and 96.6%,
respectively) for both S11 and S21 in Real parameter.

Table 4. Dataset 2.

Fruit Quantity Antenna Sweep
Mhz Mhz

Ripe Avocado 50 923 700–1500
Avocado 50 923 700–1500
Ripe Tomato 50 923 700–1500
Tomato 50 923 700–1500
Yellow Orange 50 923 700–1500
Green Orange 50 923 700–1500
Ripe Guava 50 923 700–1500
Guava 50 923 700–1500
Mango 50 923 700–1500
Ripe Mango 50 923 700–1500

Table 5. Dataset 2—confusion matrix.

KNN

Ripe Avocado Avocado Ripe
Tomato Tomato Yellow

Orange
Green
Orange

Ripe
Guava Guava Mango Ripe

Mango

Ripe Avocado 47 2 0 0 0 0 0 1 0 0

Avocado 1 48 0 0 0 0 0 0 0 1

Ripe Tomato 0 0 50 0 0 0 0 0 0 0

Tomato 0 0 0 50 0 0 0 0 0 0

Yellow Orange 0 0 0 0 50 0 0 0 0 0

Green Orange 0 0 0 0 0 50 0 0 0 0

Ripe Guava 0 0 0 0 0 0 50 0 0 0

Guava 0 0 0 0 0 0 0 50 0 0

Mango 0 1 0 0 0 0 0 0 48 1

Ripe Mango 0 0 0 0 0 0 0 0 1 49

Neural Network

Ripe Avocado Avocado Ripe
Tomato Tomato Yellow

Orange
Green
Orange

Ripe
Guava Guava Mango Ripe

Mango

Ripe Avocado 46 2 1 0 0 0 1 0 0 0

Avocado 0 47 0 0 0 0 1 0 0 2

Ripe Tomato 0 1 49 0 0 0 0 0 0 0

Tomato 0 0 0 48 0 0 0 1 0 1

Yellow Orange 0 0 0 0 50 0 0 0 0 0

Green Orange 0 0 0 0 0 50 0 0 0 0

Ripe Guava 1 0 0 0 0 0 48 1 0 0

Guava 0 0 0 0 0 0 0 50 0 0

Mango 1 1 0 0 0 0 0 0 46 3

Ripe Mango 0 0 0 0 0 0 0 1 0 49
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Table 6. Classification accuracy.

KNN

Feature S11 S21 S11 + S21

Amplitude 80.2% 93.2% 93.6%

Real 88% 97.2% 98.4%

Image 89.2% 96.4% 96.6%

Phase 66.8% 83.4% 85.6%

Neural Network

Feature S11 S21 S11 + S21

Amplitude 77.2% 83.2% 92.2%

Real 88.2% 95.2% 96.6%

Image 90.2% 95% 95.4%

Phase 67.6% 81.6% 80%

3.3. Comparison with Other Classification Methods

The following Table 7 presents the comparison between our proposed approach with
the other approaches in terms of their accuracy, costs, speed, cost, and their disadvantages.
It can be observed that the VNA approach achieves a slightly better recognition performance
as compared to the NIR one for the same dataset. In terms of the recognition time, it took
both of the two methods (NIR and VNA) from 2 to 3 ms to give the prediction on a
fruit sample as well as ripeness recognition. Additionally, cost-effectiveness is another
advantage of the VNA machine, whose price is only 60$ for the same identification purpose.
These results confirm the potential of applying the VNA technique and machine learning
technologies for fruit classification and ripeness classification.

Table 7. Comparison with other methods.

Method Accuracy Speed Cost Advantage Drawback

VNA 99.75% fast ∼ 60$ sense inside of the
fruit sensitive to RF

NIR [17] 99% fast ∼ 1200$ sense surface of
the fruit

sensitive to
sunlight

Image
processing [8] 99.75% slow ∼ 100$ sense color and

shape of fruit
sensitive to

lighting conditions

4. Conclusions and Discussion

This paper presents a new technology adoption low-cost Vector Network analyzer
and machine learning algorithms for sorting and grading fruits. For two existing KNN and
NN models, we proposed feature extraction methods using four components of reflection
coefficient S11 and transmission coefficient S21. The proposed models were evaluated on
two separate datasets using five types of fruits, including Apple, Avocado, Dragon Fruit,
Guava, and Mango. The experimental results showed that the neural network model
achieved a slightly higher accuracy than the KNN one for fruit classification. On the
other hand, KNN performed better than the other for the ripening dataset. For both
applications, the two models achieved excellent accuracy on the two datasets, which shows
the robustness of our novel approach. As for future work, the evaluation of the proposed
framework will be extended by using extra fruit and vegetable species. A Faraday cage
could be used to reduce the impact of environmental noise.
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