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Abstract: The integration of solar energy with a power system brings great economic and environ-
mental benefits. However, the high penetration of solar power is challenging due to the operation
and planning of the existing power system owing to the intermittence and randomicity of solar
power generation. Achieving accurate predictions for power generation is important to provide high-
quality electric energy for end-users. Therefore, in this paper, we introduce a deep learning-based
dual-stream convolutional neural network (CNN) and long short-term nemory (LSTM) network
followed by a self-attention mechanism network (DSCLANet). Here, CNN is used to learn spatial
patterns and LSTM is incorporated for temporal feature extraction. The output spatial and temporal
feature vectors are then fused, followed by a self-attention mechanism to select optimal features
for further processing. Finally, fully connected layers are incorporated for short-term solar power
prediction. The performance of DSCLANet is evaluated on DKASC Alice Spring solar datasets,
and it reduces the error rate up to 0.0136 MSE, 0.0304 MAE, and 0.0458 RMSE compared to recent
state-of-the-art methods.

Keywords: solar power prediction; CNN; LSTM; dual-stream network

1. Introduction

Regarding solar energy generation, sustainable development and global climate
change are the two main issues [1]. Each year energy consumption is increased by 2%
globally, where the total energy production is significantly based on fossil fuels, such as
natural gas, coal, and oil, which considerably increases anthropogenic greenhouse gas
(GHG) emission [2,3]. Furthermore, power generation from fuels produces environmental
risks and energy crises, such as energy resource reduction and an increase in environ-
mental pollution, which is considered a major threat to lives [4–6]. These drawbacks of
energy generation from fossil fuels force governments to explore the resources of renewable
energies [6,7].

Solar power is considered the alternative when compared to fossil fuels due to var-
ious characteristics, such as being clean, green, and naturally replenished. Solar power
generation, either as an islanded or grid-connected mode of operation, brings unstable
uncertainty, which causes problems for the stability of the power systems, particularly
for the integration of solar power in a large microgrid system [8,9]. To overcome these
challenges a reliable solar power prediction is an effective way to decrease the uncertainty,
which is important for the planning, management, and operation of energy systems [10].
Therefore, the researchers investigated several techniques for solar power prediction. These
techniques are broadly categorized into statistical (ST), artificial intelligence (AI), and hy-
brid methods (HM) [11]. In ST-based methods, several algorithms are developed, including
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auto-regressive [12], Bayesian [13], Kalman [14], grey models [15,16], and the Markov chain
model [17]. Additionally, MaatAllah et al. [18] and Reikard et al. [19] developed ST-based
models for renewable power prediction. In contrast, statistical models rely on linear data
for learning but are unable to learn complex data; therefore, ST-based methods are not
recommended for problems requiring nonlinear predictions, such as those associated with
solar power.

Due to their potential for extracting representative features and data mining, AI-based
models have proven to be more successful than physical and statistical ones [20]. These
AI-based methods developed in the literature for solar power generation include neural
networks [21], SVR [22], the adaptive fuzzy approach [23], and ELM [24], etc. Unlike
ST-based approaches, most of these AI-based approaches are used to manage nonlinear
relationships between input and output. Additionally, in the literature on power generation
prediction, some special AI-based models, such as those models based on CNNs and
generative adversarial networks, were developed by [25], and it became evident that
weather classification played a significant role in developing such an accurate model.
Furthermore, a number of AI-based approaches, including RNN [26], LSTM [27], CNN [28],
GRU [29], etc., have been developed by the researchers for solar power generation, where
the details are given in a recent survey [30]. This survey [30] also concluded that due to
balancing parameter stability with accuracy, and their pros and cons, hybrid models are
effective for solar power prediction. These AI-based methods are constructed via shallow
architecture, requiring handcrafted feature engineering and having limited generalization
capabilities [31]. Furthermore, in AI-based methods, CNN and RNNs achieved better
performance; however, using CNN, the feature is extracted in spatial dimensions [32–34],
while the RNNS learns in temporal dimensions, while solar power generation includes
both types of features. Therefore, an approach with the ability of spatial and temporal
feature extraction is required for accurate solar power prediction.

Table 1. Summary of hybrid methods developed for power generation prediction.

Ref. Method Comparison Summary

Agoua et al. [35] Spatiotemporal network Auto-regression and
decision tree

A spatiotemporal network is
developed for learning spatial and

temporal information.

Gensler et al. [36] Auto-LSTM MLP, ANN, LSTM,
DNN, DBN

Developed an LSTM- and
MLP-based hybrid model.

Sorkun et al. [37] LSTM LSTM, naive, GRU, RNN,
and LSTM

Developed an LSTM-based method
for power generation forecasting.

Khan et al. [38] CNNESN LSTM, GRU, ESN A combined CNN- and ESN-based
model is developed.

Dey et al. [39] SolarNet Gaussian regression,
SVR, ANN

A CNN-based model for power
generation prediction is developed.

Abdel et al. [26] LSTMRNN ANN and regression A RNN-LSTM-based hybrid model
is developed.

Khan et al. [38] CNNESN SVR, decision tree,
CNN, LSTM

A combined CNN- and ESN-based
model is developed.

Yan et al. [40] CNN-GRU LSTM and GRU A combined inception and
GRU model.

Dong et al. [41] chaotic hybrid CNN model CNN-based ablation study

The performance of a CNN-based
model was developed and

improved their performance with
the use of a chaotic hybrid model.

Khan et al. [7] ESN-CNN Detailed ablation study Integrated ESN and CNN for power
generation prediction
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In the light of current literature, hybrid models achieved state-of-the-art accuracy
for solar power prediction [38]. These models include CNN-RNN [42], CNN-GRU [43],
CNN-LSTM [44], CNNLSTM with autoencoder [45], convolutional LSTM (CLSTM) [46],
CNN-GRU with preprocessing [45,47], and LSTM-CNN [48]. Some recent hybrid models
for renewable power generation prediction are summarized in Table 1. Hybrid meth-
ods achieved improved prediction performance compared to other predictive modeling
techniques. However, the current literature focuses on the stacked layers procedure to
develop a hybrid model for solar power prediction where historical data of solar power
have a limited number of features, which makes it difficult to learn spatial and temporal
features using the stacked layers phenomena. Furthermore, prediction accuracy needs
to be improved for reliable and accurate solar energy prediction. Therefore, in this work,
we developed DSCLANet for solar power prediction with the ability to learn spatial and
temporal features parallelly from actual solar power and weather data. The first stream
of the proposed network utilizes CNN for spatial feature extraction, while the second
stream is responsible for temporal feature extraction. Finally, the outcome of these streams
is concatenated and passed to fully connected layers for solar energy prediction. The
performance of the proposed model is evaluated on benchmark datasets and extensively
decreases the error rates compared to state-of-the-art models. The following are the main
contributions of this work:

• To select the most suitable model for solar power prediction, an ablation study is con-
ducted, where the main objective is to evaluate the performance of several techniques
including CNN, LSTM, GRU, CNNLSTM, CNNGRU, and DSCLANet to select an
accurate prediction model for solar power.

• Our findings from this ablation study indicate that DSCLANet gives the best predic-
tion accuracy comparatively, which has been confirmed experimentally by various
comparisons. The DSCLANet process is the input via separate streams for spatial
and temporal features which are then fused and passed to the attention for feature
refinement. The refined features are then forwarded to a fully connected layer for final
solar power prediction.

• A number of benchmark datasets are utilized to assess the DSCLANet performance,
and the results indicate a marginal reduction in error rates compared to other state-of-
the-art methods.

• The remainder of this article is organized as follows. Section 2 describes the internal
architecture of DSCLANet, and Section 3 defines the datasets, evaluation metrics, and
performance comparison of DSCLANet with ablation study and baseline methods.
Finally, this article is concluded in Section 4, with possible future directions.

2. Materials and Methods

The main framework of the DSCLANet is shown in Figure 1. where the input data is
parallelly processed using CNN and LSTM architecture to extract spatiotemporal informa-
tion. The output of these two architectures is then fused and fed to the attention stage for
feature refinement and, finally, to the fully-connected layers for prediction. The internal
architecture of the proposed model is further described in the following subsection.
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Figure 1. The proposed DSCLANet framework for solar power prediction.

2.1. CNN-LSTM

Dual CNN-LSTM architecture integrates CNN and LSTM for solar energy prediction.
The proposed model has the ability to store the irregular complex trend and can extract
complex features from historical solar power generation data. The first stream is incorpo-
rated to extract spatial features via CNN from the input data, while the second stream is
responsible for temporal features extraction using LSTM. The CNN is a well-known deep
learning architecture consisting of four types of layers, namely convolutional, pooling, fully
connected, and regression layers [49]. The convolutional layers include multiple convolu-
tion filters which perform convolutional operations between convolutional neuron weights
and input volume connected regions which generate a feature map [50,51]. The LSTM
architecture is responsible for storing time information about important characteristics
of solar power data. It supplies a solution by maintaining log-term memory by merging
memory units that can update the previous hidden state [52]. With this function, it will be
easier to understand temporal relationships in a long-term sequence. In this case, gate units
receive the output values from the preceding CNN layer. The LSTM network addresses
vanishing and explosive gradient problems that can happen when learning basic RNNs.
The three gates unit’s mechanism can be used for determining the state of each individual
memory cell. The input, output, and forget gates represent the gate unit. The mathematical
of an LSTM from input to output generation is given in Equations (1)–(6).

ft = Φ
(
Ŵf · [ht−1, xt] + Bf

)
(1)

it = Φ
(
Ŵi · [ht−1, xt] + Bi

)
(2)

Ċt = tanh
(
ŴC · [ht−1, xt ] + BC

)
(3)

Ct = ft x Ct−1 + it x Ċt (4)

ot = Φ
(
Ŵo · [ht−1, xt] + Bo

)
(5)

ht = ot x tanh(Φ(Ct). (6)

where xt is the input, hidden layer output is represented by ht, Φ is the sigmoid function,
and Ct is the cell state, while its state candidate is represented by Ŵi, Ŵo, Ŵ f , and ŴC,
which are the input, output, forget gate, and memory cells weights, respectively, while Bi,
Bo, Bf, and Bc are the bias terms for the input, output, forget gate, and cell, respectively.
Finally, the output of CNN and LSTM streams are then fused with a concatenation layer
and faded to attention layers for further processing.
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2.2. Attention Mechanism

The final output of deep learning architectures named (CNN and LSTM) are integrated
to obtain a single feature vector, and then fed the output streams to the self-attention SA
mechanism to determine a representative feature vector for final forecasting. In addition,
the invisible detail at different timestamps has a high impact on final results, but the
CNN and LSTM streams are unable to predict forecasting accurately. To cope with these
issues, our work is focused on integrating the SA architecture which has the capability to
strengthen dominant and undermine trivial details by adaptively weighting the hidden
features. In this paper, we utilized the SA architecture for the recognition of dominant
features; in this regard, the combined feature vector of CNN and LSTM streams is used as
an input to the SA network before forecasting. Moreover, the correlation of the proposed
architecture at different timestamps among hidden features is investigated from every
dimension. The calculation of the hidden features score, such as the kth timestamp and Nth

dimension, is based on Equation (7), as follows:

SJ, d = fi(wk, n[h1, n, h2, n, h3, n, . . . hn, k), N = 1, 2, 3 . . . n, k = 1, 2, 3 . . . ni (7)

where gk, n indicates the dth dimension of the invisible state at kth timestamp, whereas
the weight matrix, such as wk, n, fi is a function applied using dense layers, and n and ni
describe the number of timestamps and hidden feature dimensions, respectively.

The proposed network also contains dense layers, which are utilized to forecast power
(PV) for a certain period of time, for instance an hour ahead of the PV power forecasting.
The final output of the SA architecture is flattened to a Zi = z1, z2, z3 . . . .zn feature vector,
whereas i represents the output dimensions of the proposed model. The output of the
S-AM architecture is fed to the fully connected layers as an input, where the mathematical
form of these layers is presented as follows in Equation (9):

Zl
i= ∑j wl−1

ji (x
(

Xl−1
i

)
+ bl−1

j (8)

where wl−1
ji indicates a weigh metric, x describes the activation function, namely the Xl−1

i

input data in this equation, while Bl−1
j represents the bias term.

2.3. DSCLANet Archatecture

The architecture of DSCLANet includes CNN, LSTM, attention, and fully connected
layers. Optimal DSCLANet architecture is developed by adjusting various parameters,
including the size of the filter for CNN, the size of the kernel, the size of the LSTM cell,
etc. Several experiments are conducted to choose the optimal parameters for the model
before finalizing its internal parameters. The two streams allow for the parallel extraction
of spatiotemporal features from large data sets, which are inputs to both streams. The CNN
stream includes three CNN layers, while the LSMT stream includes two LSTM layers for
each type of feature extraction. A concatenation layer is then applied to the output of both
streams, followed by a feature-attentional layer and fully connected layers. The internal
architecture of DSCLANet in terms of number of parameters, filters, and kernels is given in
Table 2. In the first stream, the hyper-parameters of CNN layer 1 are as follows: the filter
size is set to 32, with a kernel size of 5, padding is set to the same, the stride is set to 1,
with default valid padding, and we used ReLU as the activation function. In the second
CNN layer, the filter size is set to 64 with a kernel size of 3 while other hyper-parameters
are the same as CNN layer 1. Furthermore, in the third CNN layer, the filter size is set
to 128 while the kernel size of 1 is used. Other hyper-parameters of CNN layer 3 are the
same as CNN layer 1. In the second stream, two LSTM layers are used with the same cell
size of 100. These streams are then concatenated with a fusion layer, and the output is
forwarded to the attention layer. The combined feature vector from both streams of the
network includes redundant information, making the network computationally expensive,
leading to non-convergence of the network, and achieving limited performance. Thus, the
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attention layer is used to enable the network to remove the redundant information and
to enable the network to focus on important information while ignoring the rest of the
information, which leads to fast convergence of the network and achieves considerable
performance. This optimal feature is then passed to a fully connected layer for the final
prediction, where 3 fully connected layers of sizes 64, 32, and 12 are used in DSCLANet.

Table 2. Internal architectures of DSCLANet.

Type No. of Filters Kernel-Size Params

Conv 32 5 992
Conv 64 3 6208
Conv 128 1 24,704

LSTM (100) - - 44,400
LSTM (100) - - 80,400

Fusion - - -
Attention - - 1089
Dense_64 - - 4128
Dense_32 - - 12,928
Dense_12 - - 396

3. Results

This section delivers a comprehensive discussion about evaluation metrics, datasets,
and experimental results. The experiments are conducted in the Keras framework with a
backend TensorFlow, utilizing a GeForce RTX 2070 graphics card.

3.1. Evaluation Metrics

The performance of the DSCLANet is assessed on standard evaluation metrics, such as
MAE, MBE, RMSE, and MSE. These are common metrics used in the literature to evaluate
the forecasting performance of solar power prediction models. The MAE is the average
absolute difference between actual and predicted values, and MBE indicates the average
difference between these values. The MSE is the square difference between predicted and
actual data, while RMSE is the square root of MSE. The mathematical equation of these
metrics is given in Equations (9)–(12), as follows:

MAE =
∑m

n=1|An − Pn|
N

(9)

MBE =
∑m

n=1(Pn − An)

N
(10)

MSE =
∑m

n=1(An − Pn)
2

N
(11)

RMSE =

√
∑m

n=1(An − Pn)
2

N
(12)

where A represents the actual and P represents the predicted values by the model.

3.2. Datasets

In this work, we utilized DKASC Alice Spring DKASC-AS datasets to evaluate the
performance of the proposed and other models. Three datasets are selected from DKASC-
AS, namely Trina 10.5 kW mono-Si Dual 2009 (Trina 1A), Trina 23.4 kW mono-Si Dual 2009
(Trina 1B), and eco-Kinetics 26.5 kW mono-Si Dual 2010 (Eco 2). These datasets include
historical weather and solar power generation data with different generation capacities
installed on different dates. Detailed information of the datasets, such as installation
date, number of panels, type of panel, etc., are available of the DKASC website [53].
All the datasets are split into 70%, 20%, and 10% training, testing, and validation data,
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respectively. The proposed model and other ablation study models are evaluated using
two-hour historical data as input to predict one hour ahead power generation.

3.3. Performance Evaluation of Deep Learning-Based Models

To substantiate the robustness of the proposed DSCLANet, we conducted experiments
on several models based on deep learning. These models include LSTM, CNN, GRU,
CNNGRU, CNNLSTM, and DCNN-BRLSTM. The results attained by each model for every
dataset is demonstrated in Table 3. For instance, LSTM achieved 0.0804 MSE, 0.143 MAE,
and 0.2836 RMSE over the Trina 1A dataset, while these values were 0.0767, 0.1473, and
0.2769, and 0.0416, 0.1069, and 0.2041 over the Trina 1B and Eco 2 datasets, respectively.
The CNN achieved 0.0699 MSE, 0.1526 MAE, and 0.3108 RMSE over the Trina 1A dataset,
0.1196 MSE, 0.2041 MAE, and 0.3458 RMSE over the Trina 1B dataset, and 0.0433 MSE,
0.1288 MAE, and 0.2081 for the RMSE Eco 2 dataset. Furthermore, GRU attained 0.0848
MSE, 0.1518 MAE, and 0.2912 RMSE over the Trina 1A dataset, 0.065 MSE, 0.1196 MAE,
and 0.2549 RMSE over the Trina 1B dataset, and 0.0384 MSE, 0.1011 MAE, and 0.196 RMSE
over the Eco 2 dataset. Compared to the output of these models’ hybrid models, such as
CNNGRU and CNNLSTM, DSCLANet achieved better prediction results due to learning
both spatiotemporal information from historical data. For instance, CNNLSTM achieved
0.0679 MSE, 0.12 MAE, and 0.2606 RMSE over the Trina 1A dataset, 0.0648 MSE, 0.131
MAE, and 0.2546 RMSE over the Trina 1B dataset, and 0.0298 MSE, 0.088 MAE, and 0.1725
RMSE over the Eco 2 dataset. Similarly, CNNGRU achieved (0.0793, 0.01519, and 0.2817),
(0.0641, 0.1365, and 0.2531), and (0.032, 0.0879, and 0.1789) values for the Trina 1A, Trina
1B, and Eco 2 datasets, respectively. The proposed DSCLANet further reduces the error
metrics and achieved the lowest error rate as compared to the abovementioned models.
The proposed DSCLANet achieved 0.0167 MSE, 0.0632 MAE, and 0.1291 RMSE over the
Trina 1A dataset, 0.0279 MSE, 0.0889 MAE, and 0.167 RMSE over the Trina 1B dataset, and
0.0074 MSE, 0.0479 MAE, and 0.0858 RMSE over the Eco 2 dataset. Furthermore, the actual
and predicted results of DSCLANet over each dataset are given in Figure 2.

Table 3. Performance comparison of several models developed during the ablation study.

Dataset Method MSE MAE RMSE

Trina 1A

CNN 0.0966 0.1526 0.3108
LSTM 0.0804 0.143 0.2836
GRU 0.0848 0.1518 0.2912

CNNLSTM 0.0679 0.12 0.2606
CNNGRU 0.0793 0.1519 0.2817
DSCLANet 0.0167 0.0632 0.1291

Trina 1B

CNN 0.1196 0.2041 0.3458
LSTM 0.0767 0.1473 0.2769
GRU 0.065 0.1196 0.2549

CNNLSTM 0.0648 0.131 0.2546
CNNGRU 0.0641 0.1365 0.2531
DSCLANet 0.0279 0.0889 0.167

Eco 2

CNN 0.0433 0.1288 0.2081
LSTM 0.0416 0.1069 0.2041
GRU 0.0384 0.1011 0.196

CNNLSTM 0.0298 0.088 0.1725
CNNGRU 0.032 0.0879 0.1789
DSCLANet 0.0074 0.0479 0.0858
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Figure 2. Prediction performance of DSCLANet with (a) dataset1, (b) dataset2, and (c) dataset 3.

3.4. Comparison with State-of-the-Art

In this section, we compared the performance of DSCLANet with other baselines. The
performance of the proposed approach is compared with the wavelet packet decomposition
(WPD-LSTM) [54], RCC-LSTM [55], HIMVO-SVM [56], ESN-CNN [7], CNN-LSTM [57],
DenseNet [28], LSTM-CNN [48], ELM [58], graph-network [59], and SolarNet [60] models.
The detailed performance of these models is given in Table 4, where the DSCLANet attained
the smallest error rates comparatively. The DKASC Alice Spring sites include several solar
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power plants, and the researcher evaluated their model performance over one, two, or three
sites’ data. Therefore, in this work, we compared the average performance of DSCLANet for
three sites’ data, namely Trina 1A, Trina 1B, and Eco 2, with these methods. Comparatively,
the DSCLANet achieved a better performance in all error metrics, as shown in Table 4.

Table 4. Performance comparison of several models developed during the ablation study.

Method MSE MAE RMSE

WPD-LSTM [54] - - 0.2357
RCC-LSTM [55] - 0.587 0.94

HIMVO-SVM [56] - - 2805
ESN-CNN [7] 0.0309 0.0971 0.1731

CNN-LSTM [57] - 0.126 0.343
DenseNet [28] 0.081 0.152 -

LSTM-CNN [48] - 0.221 0.621
ELM [58] - 0.2367 -

Graph-network [59] - 0.117 0.336
SolarNet [60] - 0.175 0.309
DSCLANet 0.0173 0.0667 0.1273

4. Conclusions

It is important to forecast solar power generation accurately to avoid penalties from
customers, build trust in the energy markets, and schedule power generation. In main-
stream deep learning and traditional learning methods, features are based on simple
phenomena, and they only take into account spatial or temporal features to get around
the nonlinearities of solar power generation series. However, some studies combine differ-
ent methods for spatial and temporal feature extraction via a stacked layers mechanism.
Therefore, in this work, we developed a dual-stream CNN-LSTM network for solar power
prediction. The performance of DSCLANet is evaluated for real solar power datasets
collected from a photovoltaic system located in Alice Springs, Australia. Before selecting
the proposed model, extensive experiments are performed over different deep learning-
based models. Furthermore, we compared the performance of the DSCLANet with other
baselines and found that the proposed model outperforms them in terms of error reduction.
Alongside higher performance, the DSCLANet uses two architectures, namely LSTM and
CNN, for spatial and temporal feature extraction. However, combining multiple methods
for spatial and temporal feature extraction increases the model complexity. Therefore, in the
near future, we intend to develop a solo architecture with the ability to extract both types
of features. Furthermore, we also intend to investigate emerging technologies, such as
probabilistic forecasting, incremental learning, active learning, and reinforcement learning
for solar power prediction.
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50. Wang, F.; Li, K.; Duić, N.; Mi, Z.; Hodge, B.-M.; Shafie-khah, M.; Catalão, J.P. Association rule mining based quantitative analysis
approach of household characteristics impacts on residential electricity consumption patterns. Energy Convers. Manag. 2018, 171,
839–854. [CrossRef]

51. Ullah, W.; Ullah, A.; Hussain, T.; Khan, Z.A.; Baik, S.W. An efficient anomaly recognition framework using an attention residual
LSTM in surveillance videos. Sensors 2021, 21, 2811. [CrossRef]

52. Ullah, W.; Hussain, T.; Khan, Z.A.; Haroon, U.; Baik, S.W. Intelligent dual stream CNN and echo state network for anomaly
detection. Knowl.-Based Syst. 2022, 253, 109456. [CrossRef]

53. Jia, X.; Han, Y.; Li, Y.; Sang, Y.; Zhang, G. Condition monitoring and performance forecasting of wind turbines based on denoising
autoencoder and novel convolutional neural networks. Energy Rep. 2021, 7, 6354–6365. [CrossRef]

54. Ding, Y.; Li, Y.; Cheng, L. Application of Internet of Things and virtual reality technology in college physical education. IEEE
Access 2020, 8, 96065–96074. [CrossRef]

55. Chen, B.; Lin, P.; Lai, Y.; Cheng, S.; Chen, Z.; Wu, L. Very-short-term power prediction for PV power plants using a simple and
effective RCC-LSTM model based on short term multivariate historical datasets. Electronics 2020, 9, 289. [CrossRef]

http://doi.org/10.1016/j.ijepes.2019.105790
http://doi.org/10.1109/JIOT.2020.3013306
http://doi.org/10.3390/s22072602
http://doi.org/10.1155/2021/5195508
http://doi.org/10.1016/j.engappai.2022.105403
http://doi.org/10.1109/TIP.2022.3207006
http://www.ncbi.nlm.nih.gov/pubmed/36129860
http://doi.org/10.3390/electronics11213581
http://doi.org/10.1016/j.jksus.2021.101815
http://doi.org/10.3390/info11010032
http://doi.org/10.1016/j.ijepes.2019.105411
http://doi.org/10.1016/j.enbuild.2019.04.034
http://doi.org/10.1109/ACCESS.2020.3009537
http://doi.org/10.1016/j.energy.2021.120996
http://doi.org/10.3390/s20051399
http://www.ncbi.nlm.nih.gov/pubmed/32143371
http://doi.org/10.3390/app8081286
http://doi.org/10.3390/app10238634
http://doi.org/10.1016/j.energy.2019.116225
http://doi.org/10.1016/j.solener.2019.01.096
http://doi.org/10.1016/j.enconman.2018.06.017
http://doi.org/10.3390/s21082811
http://doi.org/10.1016/j.knosys.2022.109456
http://doi.org/10.1016/j.egyr.2021.09.080
http://doi.org/10.1109/ACCESS.2020.2992283
http://doi.org/10.3390/electronics9020289


Sensors 2023, 23, 945 12 of 12

56. Li, L.-L.; Wen, S.-Y.; Tseng, M.-L.; Wang, C.-S. Renewable energy prediction: A novel short-term prediction model of photovoltaic
output power. J. Clean. Prod. 2019, 228, 35is9–375. [CrossRef]

57. Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural
network. Appl. Energy 2019, 251, 113315. [CrossRef]

58. Zhou, Y.; Zhou, N.; Gong, L.; Jiang, M. Prediction of photovoltaic power output based on similar day analysis, genetic algorithm
and extreme learning machine. Energy 2020, 204, 117894. [CrossRef]

59. Cheng, L.; Zang, H.; Ding, T.; Wei, Z.; Sun, G. Multi-meteorological-factor-based graph modeling for photovoltaic power
forecasting. IEEE Trans. Sustain. Energy 2021, 12, 1593–1603. [CrossRef]

60. Korkmaz, D. SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for
hourly photovoltaic power forecasting. Appl. Energy 2021, 300, 117410. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jclepro.2019.04.331
http://doi.org/10.1016/j.apenergy.2019.113315
http://doi.org/10.1016/j.energy.2020.117894
http://doi.org/10.1109/TSTE.2021.3057521
http://doi.org/10.1016/j.apenergy.2021.117410

	Introduction 
	Materials and Methods 
	CNN-LSTM 
	Attention Mechanism 
	DSCLANet Archatecture 

	Results 
	Evaluation Metrics 
	Datasets 
	Performance Evaluation of Deep Learning-Based Models 
	Comparison with State-of-the-Art 

	Conclusions 
	References

