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Abstract: In this study, we used image recognition technology to explore different ways to improve
the safety of construction workers. Three object recognition scenarios were designed for safety at
a construction site, and a corresponding object recognition model was developed for each scenario.
The first object recognition model checks whether there are construction workers at the site. The sec‑
ond object recognitionmodel assesses the risk of falling (falling off a structure or falling down) when
working at an elevated position. The third object recognitionmodel determines whether theworkers
are appropriately wearing safety helmets and vests. These three models were newly created using
the image data collected from the construction sites and synthetic image data collected from the vir‑
tual environment based on transfer learning. In particular, we verified an artificial intelligencemodel
based on a virtual environment in this study. Thus, simulating and performing tests on worker falls
and fall injuries, which are difficult to re‑enact by humans, are efficient algorithm verification meth‑
ods. The verification and synthesis data acquisition method based on a virtual environment is one
of the main contributions of this study. This paper describes the overall application development
approach, including the structure and method used to collect the construction site image data, struc‑
ture of the training image dataset, image dataset augmentationmethod, and the artificial intelligence
backbone model applied for transfer learning.

Keywords: worker safety management; virtual datasets; synthetic datasets; image processing;
transfer learning; virtual validation environment

1. Introduction
There are a variety of risk factors in construction sites, and injuries frequently occur

from workers not wearing protective equipment or a lack of proper safety training [1].
Therefore, various studies are being actively conducted to reduce risks and accidents occur‑
ring atwork sites using IoTdevices and technologies such as computer vision, big data, and
artificial intelligence [2–6]. Additionally, research onpreventingworker collision accidents
using ultra‑wideband (UWB) communication‑based worker location data is in progress.
However, worker safety management systems using Internet of things (IoT) devices are in‑
convenient, as each must be worn by workers. Camera‑based safety management systems
do not require the workers to wear IoT devices, allowing for efficient prevention of worker
safety accidents. In this regard, more research is necessary for developing image‑based
safety management systems using cameras. Similarly, such research is being conducted
based on images collected from CCTV cameras installed at construction sites to prevent
accidents involving construction workers [7–9]. In particular, object recognition technol‑
ogy iswidely used for the safetymanagement and security ofworkers at a construction site.
Object recognition technology, which recognizes various objects in image frames that are
input through a video, has been researched for many years in the field of computer vision,
and object recognition is a commonly used technology [10,11]. This study was conducted
to reduce safety accidents for workers at construction sites using deep learning‑based ob‑
ject recognition technology. In addition, three image recognition models were developed
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to prevent safety accidents involving construction workers. Moreover, the developed im‑
age recognition models were used to develop a CCTV‑based safety management applica‑
tion. Data consisting of many images of workers were collected from construction sites
and used to train the object recognition models. The object recognition models optimized
for construction sites were created using the collected image data and transfer learning
technology. The first model recognizes worker objects, and determines whether construc‑
tion workers are present at the construction sites. This object recognition model is used
to recognize workers wandering around or trespassing in a work site outside the working
hours. The second object recognition model perceives workers who are falling off a struc‑
ture or falling down. In particular, this model determines whether a worker has fallen
from a height by estimating the pose of the worker. The third object recognition model de‑
termines whether workers are wearing safety equipment. It mainly determines whether
workers are wearing hard hats and generates a warning notification when workers not
wearing hard hats are recognized. This paper is structured as follows. Section 2 presents
a literature review of studies on image‑based technology for construction site safety man‑
agement. Section 3 describes the object recognition models and the overall system that we
developed for construction site safety management. Section 4 presents the implementa‑
tion of the application using the trained models and the results of testing the application.
Finally, Section 5 provides some concluding remarks and areas of future research.

2. Related Work
Currently, studies for improving the safety of the construction sites based on com‑

puter vision technology are being widely conducted. In [8], an image recognition system
was proposed to improve the safety and productivity of tower cranes operating at con‑
struction sites. In that study, a camera‑based image recognition embedded systemwas de‑
veloped that could be mounted on a tower crane. Although the latest deep learning‑based
vision technology was not utilized, it was indicated that applying the developed system
to tower cranes can save a considerable amount of time by preventing delays occurring
from thework environment, lighting conditions, and blocked views. A studywas also con‑
ducted on combining semantic inferencewith computer vision technology for construction
site safety management [12]. A framework was presented that combines computer vision
and ontology technologies for managing the safety of construction workers. Computer vi‑
sion technology is used to analyze visual information in images from construction sites. By
comparing the visual information extracted from construction site images with the prede‑
fined Semantic Web Rule Language rules, construction site risks are inferred. That study
demonstrates that it is possible to identify and prevent risks on construction sites by recog‑
nizing the images of the construction site workers based on the proposed framework and
inferring hazardous situations through a semantic algorithm [12]. In addition, a studywas
conducted regarding the development of a real‑time computer vision system for recogniz‑
ing the helmet and safety gear of the worker in an actual construction site and estimating
the worker’s pose [13]. The study proposed a computer vision system that can detect con‑
struction site workers and their personal protective equipment in real time. In that study,
95 video datasets were constructed based on the data collected from an actual construc‑
tion site, and an object recognition model was created using Python in a TensorFlow en‑
vironment [13]. Moreover, research was conducted on the design of a framework for con‑
struction site safety management using deep learning and computer vision technologies.
In that research, unsafe actions by workers and the working conditions at the construc‑
tion site were identified using the proposed framework [14]. A study on the development
of an image‑based automated monitoring system for efficiently managing whether work‑
ers are wearing safety equipment at the work site was also conducted [15]. In that study,
a deep learning object recognition model was used to determine whether workers were
properly wearing their personal safety equipment while dismantling the Fukushima nu‑
clear power plant. Furthermore, a methodology for recognizing worker safety equipment
was proposed, and a corresponding model was developed based on the collected data and
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the proposed method conducted in the study [15]. In addition, a study was conducted to
determine whether the rules for wearing safety glasses are adhered to in a learning fac‑
tory, where safety risks occur. Such determination was made by combining the vision
technology of Microsoft Azure and an artificial intelligence (AI) service. The model pro‑
vided by the Azure platform was used as the artificial neural network [16]. Moreover,
a framework was designed that can recognize, in real time, whether construction work‑
ers are complying with the safety rules by recognizing the personal protective equipment
based on images [17]. A new neural networkmodel for safetymanagement was also devel‑
oped by applying transfer learning to the YOLOv3 model. That research emphasized that
the wearing of personal protective equipment for workers is evenmore important because
safety risks occur in a constructionwork environment [17]. Moreover, a study conducted a
critical review on the safety monitoring of construction site workers based on computer vi‑
sion technology [18]. That study indicated that computer vision technology is considered
an effective solution for achieving safety at a construction site. However, it also examined
the computer vision technology utilized at construction sites and presented the limitations
from technical and practical aspects [18]. As such, computer vision technology has been
researched within a wide range for the prevention of safety accidents at construction sites,
and is being applied either directly or indirectly to actual construction sites. Object recogni‑
tion technology based on computer vision and deep learning is being actively investigated
in various fields, including construction site safety. The automotive field is the typical re‑
search field in which object recognition models have been widely investigated. Various
studies have been conducted to further development object recognition models for the
autonomous driving of vehicles based on deep learning technology. In one study, a neu‑
ral network model was used to generate a steering command for a vehicle based on the
lane detection data of an object recognition model. The model does not merely recognize
lane objects but uses a neural network model to generate steering commands based on
lane data recognized by an object recognition model [19]. Furthermore, although this is
not a study related to safety improvement at construction sites using computer vision and
deep learning technology, which is the research direction of the current study, improve‑
ments to the performance of the object recognition model were attempted. A study was
conducted to solve the inefficiency problem of a recurrent attention convolutional neural
network (RA‑CNN), which selects a single feature region and recursively learns the fea‑
tures of the region. In that study, a novel fine‑grained visual recognition model was estab‑
lished, i.e., a multifeature RA‑CNN,which associatesmultiple feature regions to overcome
the inefficiency of RA‑CNN and improve the classification accuracy. Additionally, a fea‑
ture scale‑dependent algorithmwas developed to improve the classification accuracy, and
the performance of the developed algorithm was verified using the three most popular
benchmarks: CUB‑200‑2011, Cars196, and Aircrafts100 [20]. In addition, object recogni‑
tion model development using machine learning technology with multiple linear regres‑
sion (MLR) has been investigated. In particular, a machine learning model was developed
to recognize objects and human faces using three machine learning algorithms: linear dis‑
criminant analysis, fuzzy inference system, and fuzzy c‑mean clustering. Fuzzy c‑means
clustering was combined with an MLR function to reduce four‑dimensional variables to
two‑dimensional variables, and MLR was applied to logistic regression to minimize the
outlier. The disadvantages of each machine learning model were mitigated by combining
machine learning models with MLR, which additionally afforded a lower processing time
compared with using deep learning object recognition models [21]. In this study, we fo‑
cus on developing an object recognition model for construction site safety management
using a synthetic dataset based on transfer learning and improving the safety of construc‑
tion site workers by utilizing the developed object recognition model instead of focusing
on improving the performance of a single algorithm. Moreover, we prioritize the devel‑
opment structure and procedure of the object recognition model to improve the safety of
construction workers, safety management scenarios, synthetic dataset acquisition, object
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recognition model development based on transfer learning, and model verification using
a virtual environment.

The most significant differences between this study and previous studies are in the
areas of data acquisition, model learning, and model validation. In terms of data acquisi‑
tion, object recognition models reported in previous studies were primarily created using
only image data acquired directly from construction sites. To create an image object recog‑
nition model of a construction site or to improve the performance of an object recognition
model, a significant amount of image datamust be obtained, and themethod of directly ac‑
quiring image data at the construction site is inefficient. In this study, we directly create a
synthetic dataset for learning an object recognition model based on a virtual environment.
This method solves many problems associated with data acquisition. Next, we develop an
object recognition model for construction site safety management based on transfer learn‑
ing. Because transfer learning technology uses a prelearned model, the learning time can
be reduced and an efficient object recognition model can be learned using a small amount
of image data. An efficient object recognitionmodel can be developed rapidly using a trans‑
fer learning algorithm when developing an object recognition model for a new domain in
which acquired and accumulated data are insufficient. Finally, it is an environment for
model verification. Testing developed object recognition models is difficult, particularly
object recognition models pertaining to worker fall detection. In this study, we test an
object recognition model for worker fall detection based on a virtual environment and
experimentally verify the possibility of creating a virtual verification environment. This
verification method is regarded as extremely efficient and can be realistically tested before
it is applied to an actual construction site.

3. Development of Object Recognition Models for Construction Site
Safety Management

In this section, we comprehensively describe the overall development approach of
the object recognition models for construction site safety management, including the de‑
velopment environment, the procedure for collecting the image data for training, the image
preprocessing technique, the structure of the image datasets, the backbone model, and the
development of the construction worker safety management model.

3.1. Development Structure and Procedure
Figure 1 shows the structure andprocess of the image analysismodel developed for an

intelligent image analysis of a construction site, and the development structure andprocess
are briefly described as follows. First, construction image data are collected through con‑
struction site CCTV, Internet crawling, and public data. The collected image data are then
converted into high‑quality data through preprocessing and stored on the server. Next,
the stored dataset is structured into a dataset required by the learning model, and trans‑
fer learning is conducted using a previously trainedmodel based on the structured dataset.
Finally, the generatedmodel is tested and verified, and the construction site safetymanage‑
ment system was developed based on the verified model. Transfer learning is an artificial
intelligence technology that creates a deep learning model by training with a new dataset
based on the weights of a model trained on a very large dataset such as ImageNet [22].
Building image data to create a newmodel and training the model starting with the initial
values require significant time and resources. However, an artificial intelligencemodel can
be created with a small dataset when creating a new model based on transfer learning be‑
cause the object recognitionmodel already has the trainedweights (*.Weight) [23,24]. Even
Google’s GoogleNet [25] and Microsoft’s ResNet [26] have not been trained with all data.
It would therefore be efficient to derive a new model by applying only the dataset that is
to be classified to the previously trained model, as used in transfer learning. To conduct
the transfer learning, a basic model, called a backbone model, is required. Various models,
such as VGGNet [27], YOLOv3 [28], ResNet, and ImageNet, are used as backbone models.
Because a VGGNet or ResNetmodel has been trainedwith the feature vectors of the convo‑
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lutional layers, only a single layer needs to be trained again based on the customized data.
Models generated in this way have an advantage in that they achieve a better performance
and significantly faster training speed than models that have been trained from the ini‑
tial state. In this study, the ResNet model was used as the backbone model to create object
recognitionmodels for preventing safety accidents involvingworkers at construction sites.
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3.2. Development Environment and System Configuration
The development environment (hardware/software) of the transfer learning‑based ob‑

ject recognition model for preventing safety accidents involving construction site workers
is summarized in Table 1.

Table 1. Development environment.

Hardware Server Platform Software Server Platform

CPU AMD Ryzen 9 3950x Operating System Ubuntu 18.04
RAM 64 GB Kernel 5.4.0‑54‑generic
GPU GeForce RTX3080 Language Python 3.8.0
LAN Gigabit Ethernet Virtual Environment Anaconda 4.9.2

Main Storage NVMe 1 Tb Vision Library OpenCV 4.2.0
Data Storage HDD 4 TB TensorFlow 1.15.2

The hardware platform used to train and operate the artificial intelligence model is
as follows. As shown in Table 1, an AMD Ryzen 9 3950x CPU, 64 GB of RAM, a high‑
performance GeForce RTX3080 GPU, and 1 Terabyte of NVMe storage were used. Be‑
cause three models will be operated on a single platform, in addition to training the ar‑
tificial intelligence models, high‑end CPUs and GPUs were used. Furthermore, the soft‑
ware development environment is briefly described as follows. The operating system is
an Ubuntu 18.04 environment, and the virtual environment for developing the artificial
intelligence models was developed using Python 3 (Python 3.8.0) and TensorFlow (1.15.2)
based on Anaconda 4.9.2. Because OpenCV is a programming library for real‑time com‑
puter vision processing, it was used to process the images more efficiently [29]. Moreover,
a virtual environment was built in Unity (2019.4.2.f1) to augment the image data. After
creating 3D virtual image data such as helmets in the virtual environment, the data were
converted into two‑dimensional data, and the image data were accumulated.
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3.3. Image Data Collection
A large number of training data need to be collected to create an object recognition

model for a construction site. Figure 2 shows the procedure for collecting the image data
required for training.
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In this study, construction site image data were collected using videos, pictures, and
web crawling, and the procedure for image data collection is as follows. First, the collected
video file was segmented into each frame, from the first frame to the last frame of the
video. Among the segmented frames, only the frames in which a worker object exists
were used for training, and were saved in a picture format. Images (frames) that had been
classified from the video were labeled as part of the MS COCO dataset [30] structure for
ResNet training. Next, only those pictures that contained workers or helmets, which are
needed for training, were classified from the collected image files and labeled as the MS
COCO dataset structure. In addition, over 15,000 pictures of image data were collected
through web crawling, and these images were also labeled according to the MS COCO
dataset structure and then used for training. The image data collected through public data
consists of a total of 32,150 photographs.

In this study, a virtual construction environment was constructed to collect a more
abundant image dataset, and a variety of image data (construction workers, hardhat, etc.)
were collected from the virtual construction site. The virtual environment was constructed
usingUnity tools, and the physics engine provided by theUnity development environment
was used to simulate the fall of workers andmovements at the state of fall injuries. Figure 3
presents some of the image data collected based on the virtual environment, and the red
bounding box shows the collected construction worker data. In this method, collecting
image data based on the virtual environment allows an efficient construction of a large
image dataset, and the developed object recognition algorithm can be tested numerously
based on the virtual environment to derive the optimal algorithm.

3.4. Preprocessing Module
The preprocessing module used for creating the models for construction site safety

management is as follows. First, image binarization is performed as shown in Table 2.
Image binarization is a technique that converts videos or images into black andwhite based
on the given threshold value. Image binarization is used to distinguish the objects from the
background before applying the image processing algorithm [31]. The threshold value that
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minimizes the classification error owing to a binarization is called the optimal threshold.
Algorithms such as the locally adaptive thresholding algorithm, hysteresis algorithm, and
binarization considering timescale have also been developed.
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A grayscale preprocessing algorithm was used to convert the color of the videos or
images into gray. The algorithm is used to remove color valueswhen colors are not needed
in image processing. The grayscale values were divided into a total of 256 levels, from 0 to
255, based on the light intensity. Black color is expressed as 0, whereas white is expressed
as 255, and gray, which is the middle level, is expressed as 128. When an image is con‑
verted into grayscale, the data used for expressing color can be reduced. As a result, the
efficiency of the classification increases, and overfitting can be reduced when training with
images [32]. Next, an image pyramid module was developed to enlarge or reduce the im‑
ages. The image pyramid algorithm changes the size of the image so that it can be sampled
efficiently at the desired level [33]. In other words, this module can be used to enlarge or
reduce the size of an image to the desired level. In addition, an image rotation module
was designed to rotate the image data collected from the construction sites at various an‑
gles (e.g., 90◦, 45◦, and −45◦). This module is used to correct the images used in training
and rotate the images at various angles. Other preprocessingmodules include a histogram
and the image segmentation module. A histogram is a frequency distribution table, and is



Sensors 2023, 23, 944 8 of 22

a graph that divides the data distribution into several segments and visually expresses the
data belonging to each segment. The features of the image can be more easily identified
by expressing the pixel values of the image as a histogram [34]. Image segmentation refers
to segmenting a digital image into several regions, and has been used to classify mean‑
ingful objects in the construction site images [35]. In addition, the image segmentation
module finds important parts in the construction site images and is used to collect image
objects needed for transfer learning. Table 3 shows the preprocessing results of the image
segmentation module.

Table 3. Image segmentation.
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3.5. Image Dataset Structure
In this study, we created object recognition models by applying transfer learning

based on the ResNet backbone model. To conduct this transfer learning, the structure
of the training data needs to be modified to match the MS COCO dataset structure. This
section describes the training data structure for each model. DarkNet is an open‑source
object recognition neural network framework written in C language. The DarkNet YOLO
dataset refers to the image dataset required for training the YOLO neural network. The
DarkNet YOLO dataset is classified into training data and test image data. The training
dataset comprises the image files to be trained, the labels of the objects, and text files (*.txt)
indicating the region of the image to be trained. These text files contain information includ‑
ing the object class, the location of the object (x, y), and the size of the object (width, height).
The lines are added according to the number of objects used to express the information.

Keras is an open‑source neural network library written in Python, and was devel‑
oped in the Open‑endedNeuro‑Electronic Intelligent Robot Operating System (ONEIROS)
project. This library is used for training and testing Keras‑based neural networks. The
Keras image dataset is divided into training image data and test image data folders. Each
dataset comprises the image files, the text files (_class.txt) indicating the object labels, and
the text files (_annotations.txt) indicating the region of the images to be trained [36]. Un‑
like the DarkNet dataset, which saves the region to be trained in each image as a separate
text file, the Keras image dataset defines the regions of the images to be trained in a single
text file. This text file defines the image name, the starting coordinates (top‑left corner of
the bounding box), and ending coordinates (the bottom‑right corner of the bounding box)
of the object to be trained, as well as the object class.

Next, the Microsoft Common Objects in Context (COCO) dataset is a dataset used
for object detection, object segmentation, and key point detection. In addition, universi‑
ties and companies around the world use the COCO dataset in diverse ways. In addition,
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the COCO dataset folder contains many different image files, as shown in Figure 4, and
information about each image object datum is defined in a single JavaScript Object No‑
tation (JSON) file format. In addition, the Pascal Video Object Class (VOC) dataset is an
image dataset used in object class recognition technology competitions to evaluate the per‑
formance of object recognitionmodels. Basically, the Pascal VOC image dataset consists of
an image dataset for training and an image dataset for testing. Each dataset folder contains
image files and Extensible Markup Language (XML) files describing the information about
the objects in each image. The XML files are defined by the location of the image folder,
the name of the image file, the path to the image file, the object class, and the X‑coordinates
(xMin, xMax) and Y‑coordinate (yMin, yMax) of the object [37].
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Figure 4. Structure of the Microsoft COCO dataset.

Lastly, TensorFlow is an open‑source library developed byGoogle for both deep learn‑
ing and machine learning. This library is widely used in artificial neural networks, includ‑
ing image object recognition. The TensorFlow‑based image training dataset comprises im‑
age files and an Excel file. The Excel file contains the name of each image file, the class of
the objects corresponding to the image file, the class size (width, height), and the location
(x min, y min, x max, y max) data.

3.6. Backbone Model
ResNet is the backbone model used for creating the safety management object recog‑

nition model based on images to reduce safety accidents involving construction workers.
ResNet is a convolutional neural network (CNN)model developed byMicrosoft for image
classification. This model has residual blocks, and thus there are shortcuts to add weights
to the input and output values. As a result, the performance of the ResNet model tends to
increase in proportion to the depth of its neural network. In other words, the existing neu‑
ral networks aim to obtain function H(x), which maps the input value x to the target value
y. However, the objective of the ResNet model is to minimize F(x) + x. This model is called
ResNet because it is an algorithm that minimizes the residuals. In addition, ResNet is ba‑
sically a structure in which shortcuts are added after increasing the depth of the network
by adding convolutional layers to the VGG‑19 neural network.
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3.7. Model Creation
The object recognition model was created based on transfer learning to distinguish

workers at a construction site using the collected image data. ResNet was used as the back‑
bone model in transfer learning, and the learning procedure is as shown in Figure 5. First,
data consisting of images of workers at construction sites were collected. The collected im‑
ages were then refined by applying the preprocessing module to them. Next, data needed
for training were extracted based on the features of the image data (e.g., worker, face, and
image distribution). The extracted data were processed to fit the MS COCO data format.
Finally, transfer learning was conducted based on the refined images and training data
used to create the model. The ResNet backbone model used in transfer learning consists
of 152 layers. In general, the performance of the neural network does not increase simply
because the neural network is deep. However, because there are shortcuts in the ResNet
neural network, the network has been designed to improve the performance in propor‑
tion to the network depth. ResNet is basically a structure in which shortcuts were added
after increasing the depth of the network by adding convolutional layers to the VGG‑19
neural network.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 23 
 

 

3.7. Model Creation 

The object recognition model was created based on transfer learning to distinguish 

workers at a construction site using the collected image data. ResNet was used as the 

backbone model in transfer learning, and the learning procedure is as shown in Figure 5. 

First, data consisting of images of workers at construction sites were collected. The col-

lected images were then refined by applying the preprocessing module to them. Next, 

data needed for training were extracted based on the features of the image data (e.g., 

worker, face, and image distribution). The extracted data were processed to fit the MS 

COCO data format. Finally, transfer learning was conducted based on the refined images 

and training data used to create the model. The ResNet backbone model used in transfer 

learning consists of 152 layers. In general, the performance of the neural network does not 

increase simply because the neural network is deep. However, because there are shortcuts 

in the ResNet neural network, the network has been designed to improve the performance 

in proportion to the network depth. ResNet is basically a structure in which shortcuts 

were added after increasing the depth of the network by adding convolutional layers to 

the VGG-19 neural network. 

 

Figure 5. Development of the object recognition model for recognizing workers at a construction 

site (Model 1). 

To determine whether a worker operating at a height has fallen down or fallen off a 

structure, the fall of the worker is detected based on the pose estimation algorithm. This 

model classifies the state of whether a worker has fallen into “normal,” “warning,” and 

“danger” categories, and Figure 6 shows the procedure used for developing this model. 

Figure 5. Development of the object recognition model for recognizing workers at a construction
site (Model 1).

To determine whether a worker operating at a height has fallen down or fallen off a
structure, the fall of the worker is detected based on the pose estimation algorithm. This
model classifies the state of whether a worker has fallen into “normal,” “warning,” and
“danger” categories, and Figure 6 shows the procedure used for developing this model.

The pose estimation dataset, as well as the image dataset, were collected to create a
model for preventing falls involving constructionworkers. For the pose estimation dataset,
datawere collected based on theMPIIHuman Pose dataset [38] andDensePose‑COCO [39]
datasets, which are commonly used in the field of pose estimation and prediction. The
MPII Human Pose dataset consists of 25,000 images containing 40,000 people. This dataset
also provides annotations and labels for 410 human activities, which have been analyzed
and classified based on YouTube video data. The structure of the joints in the human
body was mainly analyzed in the collected dataset. In particular, training was conducted
based on the tilt of the knee, the position of the head, and the position and direction of the
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torso to create a model for detecting a fall from a structure or falling down of a construc‑
tion worker. Furthermore, the model was designed and implemented using a “top‑down”
method, which first recognizes a person in the image and then estimates the person’s pose
inside the bounding box, to improve the fall detection performance. This design method
can improve the object recognition accuracy compared to a “bottom‑up” method, which
estimates the key points of a person in the image and analyzes the correlation between the
key points to estimate the person’s pose. ResNet was also used as the backbone model
of the encoder and decoder in the model used to detect fallen workers. Moreover, the
Hourglass model was also used to capture various pose information at different scales.
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tion workers (Model 2).

One of the eight major reasons for accidents that occur at construction sites is workers
not using the safety equipment that has been provided to them. The safety index measure‑
ment model recognizes the worker’s safety equipment (e.g., helmet and safety vest) and
determines whether the worker is wearing proper safety equipment. Figure 7 shows the
structure and procedure for the development of the worker safety index measurement
model. As shown in Figure 7, the collected image dataset is converted into images opti‑
mized for training and creating the model through preprocessing. In addition, the model
was designed to enhance low‑resolution images. Furthermore, the Unity virtual environ‑
ment was created to increase the training data, and the amount of training data was dras‑
tically increased by creating virtual helmet images based on the virtual environment. The
backbone models used in designing the construction worker safety index measurement
system are ResNet18, ResNet34, and ResNet101, among others. After conducting vari‑
ous tests, a new safety index measurement model was developed based on the ResNet
101 backbone model. In other words, the weights were used as they are for the middle
layers of the backbone model, and only the last 512 fully connected layers were trained
anew to reproduce the image analysis model.
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3.8. Internal Structure of Object Recognition Model and Data Flow for Each Model
Figure 8 shows the specific structures of each object recognition model. From the

left of the figure are the specific structures and execution procedures of (1) the worker
detection algorithm, (2) the worker fall detection algorithm, and (3) the algorithm for the
determination of the wearing of personal protective equipment. The execution structure
of the worker object recognition model and the personal protective equipment (PPE) ob‑
ject recognition model for determining whether a safety cap is worn are very similar. The
worker object recognition model and the PPE object recognition model recognize worker
and safety hat objects from the Full HD video received through the Open Network Video
Interface Forum (ONVIF) protocol. The image data input to each algorithm is adjusted
to a resolution of 640 × 480 suitable for the input size for the object recognition model.
The object recognition model detects from each frame the worker and safety hat objects
in the image adjusted to 640 × 480 resolution. The detected objects were designed to be
output to the screen through the user interface module. In addition, the execution pro‑
cedure for the worker falls and fall injuries detection model is as follows. Through the
one‑class YOLO v3, which only recognizes human objects, only the human objects within
the frames are recognized, and the recognized data are delivered to the posture estima‑
tion model. The ResNet‑based posture estimation model extracts the skeleton‑pose data
from human objects, and the workers’ movements are predicted every 30 frames in the
LSTM action recognition model based on the skeleton‑pose data. The workers’ falls are
detected in the LSTM model based on the predicted movements, and the workers’ falls
are determined. Figure 9 shows the simplified data flow of the algorithm pertaining to
the safety management of construction sites. First, the safety management algorithm re‑
ceives video data from the construction site CCTVbased on theONVIF protocol, andwhen
an (accident) event occurs, the message is transmitted to the safety management platform
via the TCP/IP (UDP) protocol. In addition, the worker detection algorithm calculates the
number of workers at the construction site and continuously transmits data to the safety
management platform, as shown in Figure 9 (2.0). Theworker fall detection algorithm (3.0)
detects the fall of a worker at a construction site. At this time, the walking, standing, and
sitting motions of the worker are considered normal, and a fully fallen state is assumed



Sensors 2023, 23, 944 13 of 22

to be a risk (danger). The case where the worker is not in a normal or dangerous state
and the case where the worker’s posture changes rapidly are judged as warning states.
The danger signal detected by the worker fall detection algorithm is transmitted to the
safety management platform via the UDP socket. The worker safety index measurement
algorithm determines whether workers at the construction site are appropriately wearing
safety equipment, such as hard hats and safety vests. When workers who do not wear pro‑
tective equipment properly are present at a construction site, a danger signal is transmitted
to the safety management platform.
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The algorithm proposed herein allows one to verify whether workers enter and exit
the construction site outside of working hours, thus promoting worker safety via unau‑
thorized worker access control. Next, an initial response is realizable when a fall accident
occurs to a worker, i.e., the worker can be transported immediately to a hospital by the
safety manager at the construction site. In addition, worker safety can be improved by pre‑
venting workers from entering construction sites without safety equipment. However, the
proposed algorithm does not completely and automatically improve the safety of the con‑
struction site but can efficiently improve the safety of workers through the safety manager.

4. Implementation and Simulation
This sectiondescribes the implementation of the application for construction site safety

management using the developed object recognitionmodel. The interface design for video
reception, verification of the created model, and the simulation and test results of the im‑
plemented system are described.

4.1. Data Flow and User Interface Design
The object recognition model for construction site safety management is operated on

an independent server platform in a remote location. The server platform receives the
CCTV video data from the construction site based on the Open Network Video Interface
Forum (ONVIF) protocol. In addition, the video data are input into the object recognition
model of the construction site safety management system. ONVIF is one of the worldwide
open industry forums, and is an open standard for the interface of physical IP‑based prod‑
ucts. In other words, ONVIF is used to standardize the communication between network‑
based video devices and enhance their interoperability. Hence, we developed the ONVIF
standard interface module to receive construction site image data efficiently, as shown in
Figure 10 [40].
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Figure 11 shows the test structure for receiving the video data of a construction site
based on the ONVIF standard protocol. The ONVIF server module for collecting the test
videos was implemented using Raspberry Pi. The video data are received by the construc‑
tion site safety management server platform, which operates the object recognition model,
through the ONVIF client module.

4.2. Evaluation Indices
In this study, the precision, recall, and F1 score were used as indices to verify the

performance of the createdmodels. Precision indicates the ratio of the actual “true” objects
to the objects classified as true by the object recognition model. Equation (1) below shows
itsmathematical expression. In otherwords, precision signifies the proportion of the actual
true objects among the objects classified by themodel, and is also called positive predictive
value (PPV).
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Precision = 〖〖TP〗〗/〖〖TP+ FP〗〗 =〖〖TP〗〗/〖〖All detection〗〗 (1)
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Recall is the proportion of objects themodel predicted to be true among the actual true
objects. Recall can be expressed as Equation (2) below, and indicates the proportion of the
true objects among the actual values (all ground truths) that represent the corresponding
object information in the actual construction site images.

Recall =〖〖TP〗〗/〖〖TP+ FN〗〗 = TP〗〗/〖〖All Ground Truths〗〗 (2)

In general, precision and recall are inversely proportional to each other, and the F1
score can be defined as the harmonic mean of the precision and recall. The F1 score is an
index that can evaluate the performance of the model more accurately when the labeled
data are imbalanced.

F1 Score = 2 ∗〖〖Precision ∗ Recall〗〗/〖〖Precision+ Recall〗〗 (3)

The intersection over union (IoU) is an evaluation index used tomeasure the accuracy
of the object recognition. The IoU numerically represents the degree of overlap between
the location of the labeled object and the location of the object predicted by the object recog‑
nition model. In other words, an IoU value close to 1 indicates that the object recognition
model has accurately predicted the location of the object (bounding box).

Figure 12 illustrates the concept of IoU in a diagram form. The area of union repre‑
sents the entire area of the predicted bounding box and the ground‑truth bounding box.
The area of overlap represents the overlapped area between the predicted bounding box
and the ground‑truth bounding box. The IoU value is calculated by dividing the area of
overlap by the area of union, and the performance of the model, such as the precision and
recall, is measured based on this value. In general, the IoU threshold is set to 0.5, and
Table 4 shows the performance measurement results of the model using a threshold value
of 0.5.

The performance of the object recognition model was evaluated using workers and
their safety helmets. That is, the performance was evaluated by the accuracy of the object
recognition model in detecting the object (worker, helmet, etc.) in the validation image
dataset. The total number of bounding boxes of the image dataset used to verify the ob‑
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ject recognition model was 6535, which can be expressed as the sum of true positives (TPs)
and false negatives (FNs). The number of false positives (FPs) varies depending on the per‑
formance of the object recognition model. Herein, TP refers to the case where the object
recognitionmodel accurately detects an object (e.g., when the object recognitionmodel rec‑
ognizes workers as workers in the image). FP implies that the object recognitionmodel rec‑
ognizes an incorrect object (e.g., when the object recognition model recognizes nonworker
objects as workers in the image). FN implies that the object recognition model does not ac‑
curately recognize the object (e.g., when the object recognition model does not recognize
the workers present in the image). “All detection” is the sum of TP and FP, and it implies
all objects or the number of objects detected by the object recognition model (e.g., the num‑
ber of objects classified as workers by the worker object recognition model). “All ground
truths” can be expressed as the sum of TP and FN, which can be regarded as a labeled
high‑fidelity dataset used to train an object recognition model.
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Table 4. PR curve graph of worker object recognition model (worker detection).
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Aprecision–recall (PR) curve graphwas utilized to assess the object recognitionmodel
performance developed in this study. We measured the data while decreasing the confi‑
dence level (the model threshold) of the object recognition model by 0.01 from 1 to 0.1;
subsequently, we plotted a PR curve graph based on the measured data. The PR curve is
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a graph illustrated according to the precision of the recall values, in which the x‑axis and
y‑axis represent the recall and precision, respectively. High performance in both precision
and recall indicates an object recognition model with good performance. In general, the
precision and recall are inversely proportional. Table 4 presents the PR curve for the con‑
struction site worker object recognition model, where the precision value does not rapidly
decrease as the recall value increases, and both precision and recall values are numerically
high. In the construction worker object recognition model, the precision value was 0.93
(93%), and the recall 0.73 (73%) when the threshold (confidence level) was 0.5.

Table 5 presents the PR curve of the PPE object recognition model. This graph also
shows high numerical values for the precision, despite the increase in recall value. Specif‑
ically, the precision value was 0.89 (89%) and recall was 0.72 (72%) when the threshold
(confidence level) value was 0.5, demonstrating excellent performance.

Table 5. PR curve graph of PPE object recognition model (PPE detection).
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4.3. Simulation and Tests
In this paper, we have performed validation of our developed model. First, we con‑

ducted a test in a lab environment to check the object recognition model that determines
whether workers are present at the construction site using the construction site integrated
safety management system. The main objective of this model is to detect whether there
are workers at the construction site. In the lab environment, we were able to verify that
the model accurately detects the workers. In addition, the model was developed to count
how many workers are in the camera image. Moreover, the second AI model detects the
tilt of the head and torso and the bending of the knee joint. By incorporating factors such
as the time and speed for the bending of each joint, the model was able to recognize the
features more accurately. Finally, tests were performed to determine whether PPE was
worn. Here, the model determined whether each worker was properly wearing a helmet.
This model does not simply determine whether the helmet is recognized in the image, but
also whether the worker is wearing the helmet properly.

Furthermore, we performed verification of the artificial intelligence model that we de‑
veloped based on the virtual environment. Figure 13 shows the results of testing a worker
fall injury detection algorithm by simulating images of the fall of construction workers in a
virtual environment. In the virtual environment, efficient detection ofworker objects could
be observed, and appropriate recognition of a worker fall detection model as a dangerous
situation when the worker fell or tripped over can be observed in Figure 13. Verification
of the performance of the object recognition model, which was developed based on the
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virtual environment, and structure and procedure of applying the optimized object recog‑
nition to the construction site are essential schemes proposed in this study. In particular,
simulating and performing tests on worker falls and fall injuries, which are difficult to
re‑enact by actual humans, will be efficient algorithm verification methods.
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Figure 13. The verification of artificial intelligence object recognition model based on virtual envi‑
ronment (Fall detection of workers).

Figures 14–16 present the results of field demonstrations of the developed algorithms.
The initial object recognition model was a model trained with data only documented at
the front of the camera, which was unsuccessful in recognizing images received from a
camera installed laterally at a construction site. This study enhanced the rate of object
recognition by additionally collecting lateral image data from virtual environments and
actual construction sites and training with them (data‑centric AI).

Figure 14 shows the results of testing the object recognition model that detects work‑
ers from construction sites, which efficiently recognized far‑flung worker objects in empir‑
ical environments. Figure 15 shows the demonstration results of the worker fall detection
model. Although an actual worker’s fall could not be detected in an empirical environ‑
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ment, efficient detection of the worker’s skeletons was observed. In addition, the walking
or sitting states of workers were effectively detected. Finally, Figure 16 presents the empir‑
ical test results of the PPE detection model. Despite the images being in bird’s‑eye view, it
effectively determined workers with safety hats and no safety hats.
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5. Conclusions and Future Research Direction
In this study, we conducted research on the development of an integrated safety man‑

agement system for preventing safety accidents at construction sites by creating image
recognition models using synthetic data based on transfer learning. In particular, an ob‑
ject recognition model was created to detect workers wandering around the construction
site outside working hours or people trespassing at the site. In addition, a model was cre‑
ated to recognize dangerous situations in advance, such as the fall (falling off a structure or
falling down) of a worker, by sensing the fall (falling down) of workers who are working
at a height. The model that detects worker falls (falling off a structure or falling down) can
be utilized to respond to a worker accident within the shortest amount of time possible
after it occurs. Finally, an object recognition model was developed to determine whether
constructionworkers are properlywearing personal protective equipment such as helmets.
This object recognition model determines whether workers are complying with the rules
for wearing safety helmets. Based on the developed object recognition models, an inte‑
grated safety management application was developed to manage the safety of workers at
the construction site. In this paper, the collection of construction site image data, the pre‑
processing of the collected data, the image data augmentation method, the structure of the
datasets, the virtual environment‑based data collection and simulation environment, the
structure of the training data for each model, the procedure for the development of the
object recognition models, the implementation of the safety management system, and test
results are comprehensively described. The developed and tested object recognition mod‑
els will be applied to actual construction sites, and it is expected that these models will
significantly reduce the number of accidents involving construction workers. As a direc‑
tion of future research, we will conduct a study to optimize each model and maximize the
performance based on the actual construction site. Furthermore, we will conduct more in‑
depth research on collecting and augmenting image data based on a virtual environment.
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