
Citation: Grubišić, I.; Oršić, M.;
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Abstract: Semi-supervised learning is an attractive technique in practical deployments of deep
models since it relaxes the dependence on labeled data. It is especially important in the scope of
dense prediction because pixel-level annotation requires substantial effort. This paper considers
semi-supervised algorithms that enforce consistent predictions over perturbed unlabeled inputs.
We study the advantages of perturbing only one of the two model instances and preventing the
backward pass through the unperturbed instance. We also propose a competitive perturbation
model as a composition of geometric warp and photometric jittering. We experiment with efficient
models due to their importance for real-time and low-power applications. Our experiments show
clear advantages of (1) one-way consistency, (2) perturbing only the student branch, and (3) strong
photometric and geometric perturbations. Our perturbation model outperforms recent work and
most of the contribution comes from the photometric component. Experiments with additional data
from the large coarsely annotated subset of Cityscapes suggest that semi-supervised training can
outperform supervised training with coarse labels. Our source code is available at https://github.
com/Ivan1248/semisup-seg-efficient.

Keywords: semi-supervised learning; semantic segmentation; dense prediction; one-way consistency;
deep learning; scene understanding

1. Introduction

Most machine learning applications are hampered by the need to collect large anno-
tated datasets. Learning with incomplete supervision [1,2] presents a great opportunity
to speed up the development cycle and enable rapid adaptation to new environments.
Semi-supervised learning [3–5] is especially relevant in the dense prediction context [6–8]
since pixel-level labels are very expensive, whereas unlabeled images are easily obtained.

Dense prediction typically operates on high resolutions in order to be able to recognize
small objects. Furthermore, competitive performance requires learning on large batches
and large crops [9–11]. This typically entails a large memory footprint during training,
which constrains model capacity [12]. Many semi-supervised algorithms introduce addi-
tional components to the training setup. For instance, training with surrogate classes [13]
implies infeasible logit tensor size, while GAN-based approaches require an additional
generator [6,14] or discriminator [7,15,16]. Some other approaches require multiple model
instances [17–20] or accumulated predictions across the dataset [21]. Such designs are less
appropriate for dense prediction since they constrain model capacity.

This paper studies semi-supervised approaches [3,5,18,21,22] that require consistent
predictions over input perturbations. In the considered consistency objective, input per-
turbations affect only one of two model instances, while the gradient is not propagated
towards the model instance which operates on the clean (weakly perturbed) input [4,5]. For
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brevity, we refer to the two model instances as the perturbed branch and the clean branch.
If the gradient is not computed in a branch, we refer to it as the teacher, and otherwise as
the student. Hence, we refer to the considered approach as a one-way consistency with the
clean teacher.

Let x be the input, T a perturbation to which the ideal model should be invariant, hθ

the student, and hθ′ the teacher, where θ′ denotes a frozen copy of the student parameters θ.
Then, one-way consistency with clean teacher can be expressed as a divergence D between
the two predictions:

Lct
θ (x, T) = D(hθ′(x), hθ(T(x))) . (1)

We argue that the clean teacher approach is a method of choice in case of perturbations
that are too strong for standard data augmentation. In this setting, perturbed inputs
typically give rise to less reliable predictions than their clean counterparts. Figure 1
illustrates the advantage of the clean teacher approach in comparison with other kinds of
consistency on the Two moons dataset. The clean student experiment (Figure 1b) shows that
many blue data points get classified into the red class due to teacher inputs being pushed
towards labeled examples of the opposite class. This aberration does not occur when the
teacher inputs are clean (Figure 1c). Two-way consistency [21] (Figure 1d) can be viewed
as a superposition of the two one-way approaches and works better than (Figure 1b), but
worse than (Figure 1c). In our experiments, D corresponds to KL divergence.

(a) No consistency loss (b) One-way; clean student:
D(hθ(x), hθ′ (T(x)))

(c) One-way: clean teacher:
D(hθ′ (x), hθ(T(x)))

(d) Two-way: one input clean:
D(hθ(x), hθ(T(x)))

Figure 1. A toy semi-supervised classification problem with six labeled (red, blue) and many un-
labeled 2D datapoints (white). All setups involve 20,000 epochs of semi-supervised training with
cross-entropy and default Adam optimization hyper-parameters. The consistency loss was set to
none (a), one-way with clean student (b), one-way with clean teacher (c), and two-way with one
input clean (d). One-way consistency with clean teacher outperforms all other formulations.



Sensors 2023, 23, 940 3 of 26

One-way consistency is especially advantageous in the dense prediction context since
it does not require caching latent activations in the teacher. This allows for better training
in many practical cases where model capacity is limited by GPU memory [12,23]. In
comparison with two-way consistency [20,21], the proposed approach both improves
generalization and approximately halves the training memory footprint.

This paper is an extended version of our preliminary conference report [24]. It exposes
the elements of our method in much more detail and complements them with many
new experiments. In particular, the most important additions are additional ablation and
validation studies, full-resolution Cityscapes experiments, and a detailed analysis of a large-
scale experiment that compares the contribution of coarse labels with semi-supervised
learning on unlabeled images. The new experiments add more evidence in favor of one-
way consistency with respect to other consistency variants, investigate the influence of
particular components of our algorithm and various hyper-parameters, and investigate the
behavior of the proposed algorithm in different data regimes (higher resolution; additional
unlabeled images).

The consolidated paper proposes a simple and effective method for semi-supervised
semantic segmentation. One-way consistency with clean teacher [4,5,25] outperforms the
two-way formulation in our validation experiments. In addition, it retains the memory
footprint of supervised training because the teacher activations depend on parameters
that are treated as constants. Experiments with a standard convolutional architecture [26]
reveal that our photometric and geometric perturbations lead to competitive generalization
performance and outperform their counterpart from a recent related work [25]. A similar
advantage can be observed in experiments with a recent efficient architecture [27], which
offers a similar performance while requiring an order of magnitude of less computation. To
our knowledge, this is the first account of the evaluation of semi-supervised algorithms for
dense prediction with a model capable of real-time inference. This contributes to the goals
of Green AI [28] by enabling competitive research with less environmental damage.

This paper proceeds as follows. Section 2 presents related work. Section 3 describes the
one-way consistency objective adapted to dense prediction, our perturbation model, and
a description of our memory-efficient consistency training procedure. Section 4 presents
the experimental setup, which includes information about datasets and training details,
as well as the performed experiments in semi-supervised semantic segmentation. Finally,
Section 5 presents the conclusion.

2. Related Work

Our work spans the fields of dense prediction and semi-supervised learning. The
proposed methodology is most related to previous work in semi-supervised semantic
segmentation.

2.1. Dense Prediction

Image-wide classification models usually achieve efficiency, spatial invariance, and
integration of contextual information by gradual downsampling of representations and
use of global spatial pooling operations. However, dense prediction also requires location
accuracy. This emphasizes the trade-off between efficiency and quality of high-resolution
features in the model design. Some common designs use a classification backbone as a
feature encoder and attach a decoder that restores the spatial resolution. Many approaches
seek to enhance contextual information, starting with FCN-8s [29]. UNet [30] improves
spatial details by directly using earlier representations of the encoder in a symmetric
decoder. Further work improves the efficiency with lighter decoders [23,31]. Some models
use context aggregation modules such as spatial pyramid pooling [32] and multi-scale
inference [31,33]. DeepLab [26] increases the receptive field through dilated convolutions
and improves spatial details through CRF post-processing. HRNet [34] maintains the
full resolution throughout the whole model and incrementally introduces parallel lower-



Sensors 2023, 23, 940 4 of 26

resolution branches that exchange information between stages. Semantic segmentation
gains much from ImageNet pre-trained encoders [23,26].

2.2. Semi-Supervised Learning

Semi-supervised methods often rely on some of the following assumptions about
the data distribution [35]: (1) similar inputs in high density regions correspond to similar
outputs (smoothness assumption), (2) inputs form clusters separated by low-density regions
and inputs within clusters are likely to correspond to similar outputs (cluster assumption),
and (3) the data lies on a lower-dimensional manifold (manifold assumption). Semi-
supervised methods devise various inductive biases that exploit such regularities for
learning from unlabeled data.

Entropy minimization [36] encourages high confidence in unlabeled inputs. Such
designs push decision boundaries towards low-density regions, under assumptions of
clustered data and prediction smoothness. Pseudo-label training (or self-training) [37–39]
also encourages high confidence (because of hard pseudo-labels) as well as consistency
with a previously trained teacher. The basic forms of such algorithms do not achieve
competitive performance on their own [40], but can be effective in conjunction with other
approaches [4,41]. Pseudo-labels can be made very effective by confidence-based selection
and other processing [37,38,42]. Note that some concurrent work [42] uses the term pseudo-
label as a synonym for processed teacher prediction in one-way consistency, but we do not
follow this practice.

Many approaches exploit the smoothness assumption by enforcing prediction consis-
tency across different versions of the same input or different model instances. Introducing
knowledge about equivariance has been studied for understanding and learning useful
image representations [43,44] and improving dense prediction [45–47]. Exemplar train-
ing [13] associates patches with their original images (each image is a separate surrogate
class). Temporal ensembling [21] enforces per-datapoint consistency between the current
prediction and a moving average of past predictions. Mean Teacher [3] encourages consis-
tency with a teacher whose parameters are an exponential moving average of the student’s
parameters.

Clusterization of latent representations can be promoted by penalizing walks which
start in a labeled example, pass over an unlabeled example, and end in another example
with a different label [48]. PiCIE [46] obtains semantically meaningful segmentation without
labels by jointly learning clustering and representation consistency under photometric and
geometric perturbations.

MixMatch [49] encourages consistency between predictions in different MixUp pertur-
bations of the same input. The average prediction is used as a pseudo-label for all variants
of the input. Deep co-training [19] produces complementary models by encouraging them
to be consistent while each is trained on adversarial examples of the other one.

Consistency losses may encourage trivial solutions, where all inputs give rise to the
same output. This is not much of a problem in semi-supervised learning since there the
trivial solution is inhibited through the supervised objective. Interestingly, recent work
shows that a variant of simple one-way consistency evades trivial solutions even in the
context of self-supervised representation learning [50,51].

Virtual adversarial training (VAT) [4] encourages one-way consistency between pre-
dictions in original datapoints and their adversarial perturbations. These perturbations
are recovered by maximizing a quadratic approximation of the prediction divergence in
a small L2 ball around the input. Better performance is often obtained by additionally
encouraging low-entropy predictions [36]. Unsupervised data augmentation (UDA) [5]
also uses a one-way consistency loss. FixMatch [52] shows that pseudo-label selection and
processing can be useful in a one-way consistency. However, instead of adversarial additive
perturbations, they use random augmentations generated by RandAugment. Different
from all previous approaches, we explore an exhaustive set of consistency formulations.
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2.3. Semi-Supervised Semantic Segmentation

In the classic semi-supervised GAN (SGAN) setup, the classifier also acts as a dis-
criminator which distinguishes between real data (both labeled and unlabeled) and fake
data produced by the generator [14]. This approach has been adapted for dense prediction
by expressing the discriminator as a segmentation network that produces dense C+1-way
logits [6]. KE-GAN [53] additionally enforces semantic consistency of neighbouring predic-
tions by leveraging label-similarity recovered from a large text corpus (MIT ConceptNet).
A semantic segmentation model can also be trained as a GAN generator (AdvSemSeg) [7].
In this setup, the discriminator guesses whether its input is ground truth or generated
by the segmentation network. The discriminator is also used to choose better predictions
for use as pseudo-labels for semi-supervised training. s4GAN + MLMT [8] additionally
post-processes the recovered dense predictions by emphasizing classes identified by an
image-wide classifier trained with Mean Teacher [3]. The authors note that the image-wide
classification component is not appropriate for datasets such as Cityscapes, where almost
all images contain a large number of classes.

A recent approach enforces consistency between outputs of redundant decoders with
noisy intermediate representations [54]. Other recent work studies pseudo-labeling in
the dense prediction context [55–57]. Zhu et al. [55] observe advantages in hard pseudo-
labels. A recent approach [20] proposes a two-way consistency loss, which is related to
the Π-model [21], and perturbs both inputs with geometric warps. However, we show
that perturbing only the student branch generalizes better and has a smaller training
footprint. A concurrent work [58] successfully applies a contrastive loss [59,60] between
two branches which receive overlapping crops, and proposes a pixel-dependent consistency
direction. Mean Teacher consistency with CutMix perturbations achieved state-of-the-art
performance on half-resolution Cityscapes [25] prior to this work. Different than most
presented approaches and similar to [25,55,56,61], our method does not increase the training
footprint [12]. In comparison with [55,56,61], our teacher is updated in each training step,
which eliminates the need for multiple training episodes. In comparison with [25], this
work proposes a perturbation model which results in better generalization and shows that
simple one-way consistency can be competitive with Mean Teacher. None of the previous
approaches addresses semi-supervised training of efficient dense prediction models. We
examine the simplest forms of consistency, explain advantages of perturbing only the
student with respect to other forms of consistency, and propose a novel perturbation model.
None of the previous approaches considered semi-supervised training of efficient dense-
prediction models, nor studied composite perturbations of photometry and geometry.

3. Method

We formulate dense consistency as a mean pixel-wise divergence between correspond-
ing predictions in the clean image and its perturbed version. We perturb images with a
composition of photometric and geometric transformations. Photometric transformations
do not disturb the spatial layout of the input image. Geometric transformations affect the
spatial layout of the input image and the same kind of disturbance is expected at the model
output. Ideally, our models should exhibit invariance to photometric transformations and
equivariance [44] to the geometric ones.

3.1. Notation

We typeset vectors and arrays in bold, sets in blackboard bold, and we underline
random variables. P[y|x = x] denotes the distribution of a random variable y|x, while
P(y|x) is a shorthand for the probability P(y = y|x = x). We denote the expectation of
a function of a random variable as e.g., IEτ f (τ). We use similar notation to denote the
average over a set: IEx∈D f (x). We use the Iverson bracket notation: given a statement P,
JPK = 1 if P is true; 0 otherwise. We denote cross-entropy with Hy (y∗) := IEy∼y∗ ln p(y =
y), and entropy with H(y) [62]. We use Python-like array indexing notation.
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We denote the labeled dataset as Dl, and the unlabeled dataset as Du. We consider
input images x ∈ [0, 1]H×W×3 and dense labels y ∈ {1 . . . C}H×W . A model instance maps
an image to per-pixel class probabilities: hθ(x)[i,j,c] = P(y[i,j] = c|x, θ). For convenience, we
identify output vectors of class probabilities with distributions: hθ(x)[i,j] ≡ P[y[i,j]|x, θ].

3.2. Dense One-Way Consistency

We adapt one-way consistency [4,5] for dense prediction under our perturbation model
Tτ = TG

γ ◦ TP
ϕ , where TG

γ is a geometric warp, TP
ϕ a per-pixel photometric perturbation,

and τ = (γ,ϕ) perturbation parameters. TG
γ displaces pixels with respect to a dense

deformation field. The same geometric warp is applied to the student input and the teacher
output. Figure 2 illustrates the computational graph of the resulting dense consistency loss.
In simple one-way consistency, the teacher parameters θ′ are a frozen copy of the student
parameter θ. In Mean Teacher, θ′ is a moving average of θ. In simple two-way consistency,
both branches use the same θ and are subject to gradient propagation.

x

hθ′ TG
γ

TG
γ ◦ TP

ϕ hθ

D

Figure 2. Dense one-way consistency with clean teacher. Top branch: the input is fed to the teacher
hθ′ . The resulting predictions are perturbed with geometric perturbations TG

γ . Bottom branch: the
input is perturbed with geometric and photometric perturbations and fed to the student hθ. The loss
D corresponds to the average pixel-wise KL divergence between the two branches. Gradients are
computed only in the blue part of the graph.

A general semi-supervised training criterion L(θ;Dl,Du) can be expressed as a weighted
sum of a supervised term Ls over labeled data and an unsupervised consistency term Lc:

L(θ;Dl,Du) = IE
(x,y)∈Dl

Ls(θ; x, y) + α IE
x∈Du

IE
τ

Lc(θ; x, τ). (2)

In our experiments, Ls is the usual mean per-pixel cross entropy with L2 regularization. We
stochastically estimate the expectation over perturbation parameters τ with one sample
per training step.

We formulate the unsupervised term Lc at pixel (i, j) as a one-way divergence D
between the prediction in the perturbed image and its interpolated correspondence in the
clean image. The proposed loss encourages the trained model to be equivariant to TG

γ and
invariant to TP

ϕ :

Li,j
c (θ; x, τ) = D(TG

γ (hθ′(x))[i,j], hθ((TG
γ ◦ TP

ϕ)(x))[i,j]) . (3)

We use a validity mask vγ ∈ {0, 1}H×W , vγ
[i,j] =

r
TG

γ (1H×W)[i,j] = 1
z

to ensure that the loss
is unaffected by padding sampled from outside of [1, H]× [1, W]. A vector produced by
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TG
γ (hθ(x))[i,j] represents a valid distribution wherever vγ

[i,j] = 1. Finally, we express the
consistency term Lc as a mean contribution over all pixels:

Lc(θ; x, τ) =
1

∑(vγ) ∑
i,j

vγ
[i,j]L

i,j
c (θ; x, τ) . (4)

Recall that the gradient is not computed with respect to θ′. Consequently, Lc allows
gradient propagation only towards the perturbed image. We refer to such training as one-
way consistency with clean teacher (and perturbed student). Such formulation provides
two distinct advantages over other kinds of consistency. First, predictions in perturbed
images are pulled towards predictions in clean images. This improves generalization when
the perturbations are stronger than data augmentations used in Ls (cf. Figures 1 and 3).
Second, we do not have to cache teacher activations during training since the gradients
propagate only towards the student branch. Hence, the proposed semi-supervised objective
does not constrain model complexity with respect to the supervised baseline.

We use KL divergence as a principled choice for D:

D(y, ỹ) := IE
y

ln
P(y = y)
P(ỹ = y)

= H ỹ (y)−H(y) . (5)

Note that the entropy term −H(y) does not affect parameter updates since the gradients
are not propagated through θ′. Hence, one-way consistency does not encourage increasing
entropy of model predictions in clean images. Several researchers have observed improve-
ment after adding an entropy minimization term [36] to the consistency loss [4,5]. This
practice did not prove beneficial in our initial experiments.

Note that two-way consistency [20,21] would be obtained by replacing θ′ with θ. It
would require caching latent activations for both model instances, which approximately
doubles the training footprint with respect to the supervised baseline. This would be
undesirable due to constraining the feasible capacity of the deployed models [12,63].

We argue that consistency with clean teacher generalizes better than consistency with
clean student since strong perturbations may push inputs beyond the natural manifold and
spoil predictions (cf. Figure 1). Moreover, perturbing both branches sometimes results in
learning to map all perturbed pixels to similar arbitrary predictions (e.g., always the same
class) [64]. Figure 3 illustrates that consistency training has the best chance to succeed if the
teacher is applied to the clean image, and the student learns on the perturbed image.

Ac 

BpBc

Ap

clean student and 

perturbed teacher: risky

Ac 

BpBc

Apperturbed student and 

clean teacher: useful

clean student and 

perturbed teacher: risky

perturbed student and 

clean teacher: useful

Figure 3. Two variants of one-way consistency training on a clean image (left) and its perturbed
version (right). The arrows designate information flow from the teacher to the student. The proposed
clean-teacher formulation trains in the perturbed pixels (Ap) according to the corresponding predic-
tions in the clean image (Ac). The reverse formulation (training in Bc according to the prediction in
Bp) worsens performance, since strongly perturbed images often give rise to less accurate predictions.
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3.3. Photometric Component of the Proposed Perturbation Model

We express pixel-level photometric transformations as a composition of five simple
perturbations with five image-wide parameters ϕ = (b, s, h, c, π). These perturbations
are applied in each pixel in the following order: (1) brightness is shifted by adding b
to all channels, (2) saturation is multiplied with s, (3) hue is shifted by addition with
h, (4) contrast is modulated by multiplying all channels with c, and (5) RGB channels
are randomly permuted according to π. The resulting compound transformation TP

ϕ is
independently applied to all image pixels.

Our training procedure randomly picks image-wide parameters ϕ for each unlabeled
image. The parameters are sampled as follows: b ∼ U (−0.25, 0.25), s ∼ U (0.25, 2), h ∼
U (−36◦, 36◦), c ∼ U (0.25, 2), and π ∼ U (S3), where S3 represents the set of all 6 3-element
permutations.

3.4. Geometric Component of the Proposed Perturbation Model

We formulate a fairly general class of parametric geometric transformations by lever-
aging thin plate splines (TPS) [65,66]. We consider the 2D TPS warp f : R2 → R2, which
maps each image coordinate pair q to the relative 2D displacement of its correspondence q′:

f (q) = q′ − q . (6)

TPS warps minimize the bending energy (curvature)
∫

dom( f )

∥∥∥ ∂2 f (q)
∂q2

∥∥∥2

F
dq given a set of

control points and their displacements {(ci, di) : i = 1 . . . n} ⊂ R2 ×R2. In simple words, a
TPS warp produces a smooth deformation field which optimally satisfies all constraints
f (ci) = di. In the 2D case, the solution of the TPS problem takes the following form:

f (q) = A
[

1
q

]
+ W

[
φ(‖q− ci‖)

]T
i=1...n , (7)

where q denotes a 2D coordinate vector to be transformed, A is a 2× 3 affine transformation
matrix, W is a 2× n control point coefficient matrix, and φ(r) = r2 ln(r). Such a 2D TPS
warp is equivariant to rotation and translation [66]. That is, f (T(q)) = T( f (q)) for every
composition of rotation and translation T.

TPS parameters A and W can be determined as a solution of a standard linear sys-
tem which enforces deformation constraints (ci, di), and square-integrability of second
derivatives of f . When we determine A and W , we can easily transform entire images.

We first consider images as continuous domain functions and later return to images
as arrays from [0, 1]H×W×3. Let I : dom(I) → [0, 1]3 be the original image of size (W, H),
where dom(I) = [0, W]× [0, H]. Then the transformed image I′ can be expressed as

I′(q + f (q)) =

{
I(q), q ∈ dom(I),
0, otherwise.

(8)

The resulting formulation is known as forward warping [67] and is tricky to implement.
We, therefore, prefer to recover the reverse transformation f̃ , which can be conducted by
replacing each control point ci with c′i = ci + di. Then, the transformed image is:

Ĩ(q′) =

{
I(q′ − f̃ (q′)), q′ − f̃ (q′) ∈ dom(I),
0, otherwise.

(9)

This formulation is known as backward warping [67]. It can be easily implemented for discrete
images by leveraging bilinear interpolation. Contemporary frameworks already include the
implementations for the GPU hardware. Hence, the main difficulty is to determine the TPS
parameters by solving two linear systems with (n + 3)× (n + 3) variables [66].
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In our experiments, we use n = 4 control points corresponding to the centers of

the four image quadrants:
(
c′1, . . . , c′4

)
=

([
1
4 H, 1

4 W
]T

, . . . ,
[ 3

4 H, 3
4 W
]T)

. The parameters

of our geometric transformation are four 2D displacements γ = (d1, . . . , d4). Let fγ

denote the resulting TPS warp. Then, we can express our transformation as TG
γ (x) =

backward_warp(x, fγ).
Our training procedure picks a random γ for each unlabeled image. Each displacement

is sampled from a bivariate normal distributionN (02, 0.05× H × I2), where H is the height
of training crops.

3.5. Training Procedure

Algorithm 1 sketches a procedure for recovering gradients of the proposed semi-
supervised loss (2) on a mixed batch of labeled and unlabeled examples. For simplicity, we
make the following changes in notation here: xl and yl are batches of size Bl, xu, γ and ϕ
batches of size Bu, and all functions are applied to batches. The algorithm computes the
gradient of the supervised loss, discards cached activations, computes the teacher predic-
tions, applies the consistency loss (3), and finally accumulates the gradient contributions of
the two losses. Backpropagation through one-way consistency with clean teacher requires
roughly the same extent of caching as in the supervised baseline. Hence, our approach
constrains the model complexity much less than the two-way consistency.

Algorithm 1. Evaluation of the gradient of the proposed semi-supervised loss given perturbation
parameters (γ, ϕ) on a mixed batch of labeled (xl, yl) and unlabeled (xu) examples. CE denotes
mean cross entropy, while KL_masked denotes mean KL divergence over valid pixels.
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18 303

19 return g 304
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c3 R1-1: Text added.

Figure 4 illustrates GPU memory allocation during a semi-supervised training iter-
ation of a SwiftNet-RN34 model with one-way and two-way consistency. We recovered
these measurements by leveraging the following functions of the torch.cuda package:
max_memory_allocated, memory_allocated, reset_peak_memory_stats, and
empty_cache. The training was carried out on a RTX A4500 GPU. Numbers on the x-
axis correspond to lines of the pseudo-code in Algorithm 1. Line 9 backpropagates through
the supervised loss and caches the gradients. The memory footprint briefly peaks due
to temporary storage and immediately declines since PyTorch automatically releases all
cached activations immediately after the backpropagation. Line 13 computes the teacher
output. This step does not cache intermediate activations due to torch.no_grad. Line
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16 computes the unsupervised loss, which requires the caching of activations on a large
spatial resolution. The memory footprint briefly peaks since we delete perturbed inputs
and teacher predictions immediately after line 16 (for simplicity, we omit opportunistic
deletions from Algorithm 1). Line 17 triggers the backpropagation algorithm and accu-
mulates the gradients of the consistency loss. The memory footprint briefly peaks due
to temporary storage and immediately declines due to automatic deletion of the cached
activations. At this point, the memory footprint is slightly greater than at line 4 since we
still hold the supervised predictions in order to accumulate the recognition performance on
the training dataset.

The ratio between memory allocations at lines 16 and 9 reveals the relative memory
overhead of our semi-supervised approach. Note that the absolute overhead is model
independent since it corresponds to the total size of perturbed inputs and predictions, and
intermediate results of dense KL-divergence. On the other hand, the memory footprint of
the supervised baseline is model dependent, since it reflects the computational complexity
of the backbone. Consequently, the relative overhead approaches 1 as the model size
increases, and is around 1.26 for SwiftNet-RN34.
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Pseudo-code line
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Figure 4. GPU memory allocation during and after execution of particular lines from Algorithm 1
during the 2nd iteration of training. Our PyTorch implementations involve SwiftNet-RN18 and
SwiftNet-RN34 models with one-way and two-way consistency, 768× 768 crops, and batch sizes
(Bl, Bu) = (8, 8). Line 9 computes the supervised gradient. Line 13 computes the teacher output
(without caching interemediate activations). Lines 16 and 17 compute the consistency loss and
its gradient.

4. Results

Our experiments evaluate one-way consistency with clean teacher and a composition
of photometric and geometric perturbations (TG

γ ◦ TP
φ ). We compare our approach with

other kinds of consistency and the state of the art in semi-supervised semantic segmentation.
We denote simple one-way consistency as “simple”, Mean Teacher [3] as “MT”, and our
perturbations as “PhTPS”. In experiments that compare consistency variants, “1w” denotes
one-way, “2w” denotes two way, “ct” denotes clean teacher, “cs” denotes clean student, and
“2p” denotes both inputs perturbed. We present semi-supervised experiments in several
semantic segmentation setups as well as in image-classification setups on CIFAR-10. Our
implementations are based on the PyTorch framework [68].

4.1. Experimental Setup

Datasets.We perform semantic segmentation on Cityscapes [9], and image classification
on CIFAR-10. Cityscapes contains 2975 training, 500 validation and 1525 testing images
with resolution 1024× 2048. Images are acquired from a moving vehicle during daytime
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and fine weather conditions. We present half-resolution and full-resolution experiments.
We use bilinear interpolation for images and nearest neighbour subsampling for labels.
Some experiments on Cityscapes also use the coarsely labeled Cityscapes subset (“train-
extra”) that contains 19,998 images. CIFAR-10 consists of 50,000 training and 10,000 test
images of resolution 32× 32.

Common setup. We include both unlabeled and labeled images in Du, which we
use for the consistency loss. We train on batches of Bl labeled and Bu unlabeled images.
We perform b|Dl|/Blc training steps per epoch. We use the same perturbation model
across all datasets and tasks (TPS displacements are proportional to image size), which
is likely suboptimal [69]. Batch normalization statistics are updated only in non-teacher
model instances with clean inputs except for full-resolution Cityscapes, for which updating
the statistics in the perturbed student performed better in our validation experiments (cf.
Appendix B). The teacher always uses the estimated population statistics, and does not
update them. In Mean Teacher, the teacher uses an exponential moving average of the
student’s estimated population statistics.

Semantic segmentation setup. Cityscapes experiments involve the following models:
SwiftNet with ResNet-18 (SwiftNet-RN18) or ResNet-34 (SwiftNet-RN34), and DeepLab
v2 with a ResNet-101 backbone. We initialize the backbones with ImageNet pre-trained
parameters. We apply random scaling, cropping, and horizontal flipping to all inputs and
segmentation labels. We refer to such examples as clean. We schedule the learning rate
according to e 7→ η cos(eπ/2), where e ∈ [0 . . . 1] is the fraction of epochs completed. This
alleviates the generalization drop at the end of training with standard cosine annealing [70].
We use learning rates η = 4× 10−4 for randomly initialized parameters and η = 10−4 for
pre-trained parameters. We use Adam with (β1, β2) = (0.9, 0.99). The L2 regularization
weight in supervised experiments is 10−4 for randomly initialized and 2.5× 10−5 for pre-
trained parameters [27]. We have found that such L2 regularization is too strong for our
full-resolution semi-supervised experiments. Thus, we use a 4× smaller weight there.
Based on early validation experiments, we use α = 0.5 unless stated otherwise. Batch
sizes are (Bl, Bu) = (8, 8) for SwiftNet-RN18 [27] and (Bl, Bu) = (4, 4) for DeepLab v2
(ResNet-101 backbone) [26]. The batch size in corresponding supervised experiments is Bl.

In half-resolution Cityscapes experiments the size of crops is 448× 448 and the log-
arithm of the scaling factor is sampled from U (ln(1.5−1), ln(1.5)). We train SwiftNet for
200× 2975

|Dl|
epochs (200 epochs or 74,200 iterations when all labels are used), and DeepLab

v2 for 100× 2975
|Dl|

epochs (100 epochs or 74,300 iterations when all labels are used). In
comparison with SwiftNet-RN18, DeepLab v2 incurs a 12-fold per-image slowdown during
supervised training. However, it also requires less epochs since it has very few parame-
ters with random initialization. Hence, semi-supervised DeepLab v2 trains more than
4× slower than SwiftNet-RN18 on RTX 2080Ti. Appendix A.2 presents more detailed
comparisons of memory and time requirements of different semi-supervised algorithms.

Our full-resolution experiments only use SwiftNet models. The crop size is 768× 768
and the spatial scaling is sampled from U (2−1, 2). The number of epochs is 250 when all
labels are used. The batch size is 8 in supervised experiments, and (Bl, Bu) = (8, 8) in
semi-supervised experiments.

Appendix A.1 presents an overview and comparison of hyper-parameters with other
consistency-based methods that are compared in the experiments.

Classification setup. Classification experiments target CIFAR-10 and involve the
Wide ResNet model WRN-28-2 with standard hyper-parameters [71]. We augment all
training images with random flips, padding and random cropping. We use all training
images (including labeled images) in Du for the consistency loss. Batch sizes are (Bl, Bu) =

(128, 640). Thus, the number of iterations per epoch is
⌊
|Dl|
128

⌋
. For example, only one

iteration is performed if |Dl| = 250. We run 1000× 4000
|Dl|

epochs in semi-supervised, and

100 epochs in supervised training. We use default VAT hyper-parameters ξ = 10−6,
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ε = 10, α = 1 [4]. We perform photometric perturbations as described, and sample TPS
displacements from N (0, 3.2× I2).

Evaluation. We report generalization performance at the end of training. We report
sample means and sample standard deviations (with Bessel’s correction) of the correspond-
ing evaluation metric (mIoU or classification accuracy) of 5 training runs, evaluated on the
corresponding validation dataset.

4.2. Semantic Segmentation on Half-Resolution Cityscapes

Table 1 compares our approach with the previous state of the art. We train using
different proportions of training labels and evaluate mIoU on half-resolution Cityscapes
val. The top section presents the previous work [7,8,25,57]. The middle section presents our
experiments based on DeepLab v2 [26]. Note that here we outperform some previous work
due to more involved training (as described in Section 4.1). since that would be a method
of choice in all practical applications. Hence, we get consistently greater performance.
We perform a proper comparison with [25] by using our training setup in combination
with their method. Our MT-PhTPS outperforms MT-CutMix with L2 loss and confidence
thresholding when 1/4 or more labels are available, while underperforming with 1/8 labels.

The bottom section involves the efficient model SwiftNet-RN18. Our perturbation
model outperforms CutMix both with simple consistency, as well as with Mean Teacher.
Overall, Mean Teacher outperforms simple consistency. We observe that DeepLab v2 and
SwiftNet-RN18 get very similar benefits from the consistency loss. SwiftNet-RN18 comes
out as a method of choice due to about 12× faster inference than DeepLab v2 with ResNet-
101 on RTX 2080Ti (see Appendix A.2 for more details). Experiments from the middle and
the bottom section use the same splits to ensure a fair comparison.

Table 1. Semantic segmentation performance (mIoU/%) on half-resolution Cityscapes val after
training with different proportions of labeled data. The top section reviews experiments from
previous work. The middle section presents our experiments with DeepLab v2. The bottom section
presents our experiments with SwiftNet-RN18. We run experiments across 5 different dataset splits
and report mean mIoUs with standard deviations. The subscript “∼[25]” denotes training with L2

loss, confidence thresholding, and α = 1, as proposed in [25]. The best results overall are bold, and
best results within sections are underlined.

Method Label Proportion
1/8 1/4 1/2 1/1

DLv2-RN101 supervised [8,25] 56.2 60.2 64.61 66.0
DLv2-RN101 s4GAN+MLMT [8] 59.3 61.9 – 65.8
DLv2-RN101 supervised [7] 55.5 59.9 64.1 66.4
DLv2-RN101 AdvSemSeg [7] 58.8 62.3 65.7 67.7
DLv2-RN101 supervised [57] 56.0 60.5 – 66.0
DLv2-RN101 ECS [57] 60.3 63.8 – 67.7
DLv2-RN101 MT-CutMix [25] 60.31.2 63.90.7 – 67.70.4

DLv2-RN101 supervised 56.40.4 61.91.1 66.60.6 69.80.4
DLv2-RN101 MT-CutMix∼[25] 63.21.4 65.60.8 67.60.4 70.00.3
DLv2-RN101 MT-PhTPS 61.51.0 66.41.1 69.00.6 71.00.7

SN-RN18 supervised 55.50.9 61.50.5 66.90.7 70.50.6
SN-RN18 simple-CutMix 59.80.5 63.81.2 67.01.4 69.31.1
SN-RN18 simple-PhTPS 60.81.6 64.81.5 68.80.7 71.10.9
SN-RN18 MT-CutMix∼[25] 61.60.9 64.60.5 67.60.7 69.90.6
SN-RN18 MT-CutMix 59.31.3 63.31.0 66.80.6 69.70.5
SN-RN18 MT-PhTPS 62.01.3 66.01.0 69.10.5 71.20.7

Now, we present ablation and hyper-parameter validation studies for simple-PhTPS
consistency with SwiftNet-RN18. Table 2 presents ablations of the perturbation model, and
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also includes supervised training with PhTPS augmentations in one half of each mini-batch
in addition to standard jittering. Perturbing the whole mini-batch with PhTPS in supervised
training did not improve upon the baseline. We observe that perturbing half of each mini-
batch with PhTPS in addition to standard jittering improves the supervised performance,
but quite less than semi-supervised training. Semi-supervised experiments suggest that
photometric perturbations (Ph) contribute most, and that geometric perturbations (TPS)
are not useful when there is 1/2 or more of the labels.

Table 2. Ablation experiments on half-resolution Cityscapes val (mIoU/%) with SwiftNet-RN18.
Subscripts denote the difference from the supervised baseline. The label “supervised PhTPS-aug”
denotes supervised training where half of each mini-batch is perturbed with PhTPS. The bottom three
rows compare PhTPS with Ph (only photometric) and TPS (only geometric) under simple one-way
consistency. We present means of experiments on 5 different dataset splits. Numerical subscripts are
differences with respect to the supervised baseline.

Method Label Proportion
1/8 1/4 1/2 1/1

SN-RN18 supervised 55.5 61.5 66.9 70.5
SN-RN18 supervised PhTPS-aug 56.2+1.5 62.2+0.7 67.4+0.5 70.4−0.1
SN-RN18 simple-Ph 59.2+3.7 64.9+3.4 68.3+1.4 71.8+1.3
SN-RN18 simple-TPS 58.2+3.1 63.4+1.9 66.7−0.2 70.1−0.4
SN-RN18 simple-PhTPS 60.8+5.3 64.8+3.3 68.8+1.9 71.1+0.6

Figure 5 shows perturbation strength validation using 1/4 of the labels. Rows corre-
spond to the factor that multiplies the standard deviation of control point displacements
sG defined at the end of Section 3.4. Columns correspond to the strength of the photo-
metric perturbation sP. The photometric strength sP modulates the random photometric
parameters according to the following expression:

(b, s, h, c) 7→ (sP · b, exp(sP · ln(s)), sP · h, exp(sP · ln(c)) . (10)

We set the probability of choosing a random channel permutation as min{sP, 1}. Hence,
sP = 0 corresponds to the identity function. Note that the “1/4” column in Table 2 uses
the same semi-supervised configurations with strengths sG, sP ∈ {0, 1}. Moreover, note
that the case (sG, sP) = (0, 0) is slightly different from supervised training in that batch
normalization statistics are still updated in the student. The differences in results are due to
variance—the estimated standard error of the mean of 5 runs is between 0.35 and 0.5. We can
observe that the photometric component is more important, and that a stronger photometric
component can compensate for a weaker geometric component. Our perturbation strength
choice (sG, sP) = (1, 1) is close to the optimum, which the experiments suggests to be at
(1, 0.5).

Figure 6 shows our validation of the consistency loss weight α with SN-RN18 simple-
PhTPS. We observe the best generalization performance for α ∈ [0.25 . . . 0.75]. We do
not scale the learning rate with (1 + α)−1 because we use a scale-invariant optimization
algorithm.
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Figure 5. Validation of perturbation strength hyper-parameters on Cityscapes val (mIoU/%). We use
5 different subsets with 1/4 of the total number of training labels. The hyper-parameters sP (photo-
metric) and sG (geometric) are defined in the main text. SD denotes the sample standard deviation.
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Figure 6. Validation of the consistency loss weight α on Cityscapes val (mIoU/%). We present the
same results in two plots with different x-axes: the proportion of labels (left), and the consistency
loss weight α (right).

Appendix B presents experiments that quantify the effect of updating batch normal-
ization statistics when the inputs are perturbed.

Figure 7 shows qualitative results on the first few validation images with SwiftNet-
RN18 trained with 1/4 of labels. We observe that our method displays a substantial
resilience to heavy perturbations, such as those used during training.
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input ground truth simple-PhTPS supervised

Figure 7. Qualitative results on the first few validation images with SwiftNet-RN18 trained with 1/4
of half-resolution Cityscapes labels. Odd rows contain unperturbed inputs, and even rows contain
PhTPS perturbed inputs. The columns are (left to right): ground truth segmentations, predictions of
simple-PhTPS consistency training, and predictions of supervised training.

4.3. Semantic Segmentation on Full-Resolution Cityscapes

Table 3 presents our full resolution experiments in setups such as in Table 1, and
comparison with previous work, but with full-resolution images and labels. In comparison
with KE-GAN [53] and ECS [57], we underperform with 1/8 labeled images, but outperform
with 1/2 labeled images. Note that KE-GAN [53] also trains on a large text corpus (MIT
ConceptNet) as well as that ECS DLv3+-RN50 requires 22 GiB of GPU memory with batch
size 6 [57], while our SN-RN18 simple-PhTPS requires less than 8 GiB of GPU memory with
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batch size 8 and can be trained on affordable GPU hardware. Appendix A.2 presents more
detailed memory and execution time comparisons with other algorithms.

We note that the concurrent approach DLv3+-RN50 CAC [58] outperforms our method
with 1/8 and 1/1 labels. However, ResNet-18 has significantly less capacity than ResNet-50.
Therefore, the bottom section applies our method to the SwiftNet model with a ResNet-34
backbone, which still has less capacity than ResNet-50. The resulting model outperforms
DLv3+-RN50 CAC across most configurations. This shows that our method consistently
improves when more capacity is available.

We note that training DLv3+-RN50 CAC requires three RTX 2080Ti GPUs [58], while
our SN-RN34 simple-PhTPS setup requires less than 9 GiB of GPU memory and fits on a
single such GPU. Moreover, SN-RN34 has about 4× faster inference than DLv3+-RN50 on
RTX 2080Ti.

Table 3. Semi-supervised semantic segmentation performance (mIoU/%) on full-resolution
Cityscapes val with different proportions of labeled data. We compare simple-PhTPS and MT-
PhTPS (ours) with supervised training and previous work. DLv3+-RN50 stands for DeepLab v3+

with ResNet-50, and SN for SwiftNet. We run experiments across 5 different dataset splits and report
mean mIoUs with standard deviations. Best results overall are bold, and best results within sections
are underlined.

Method Label Proportion
1/8 1/4 1/2 1/1

KE-GAN [53] 66.9 70.6 72.2 75.3
DLv3+-RN50 supervised [57] 63.2 68.4 72.9 74.8
DLv3+-RN50 ECS [57] 67.4 70.7 72.9 74.8
DLv3+-RN50 supervised [58] 63.9 68.3 71.2 76.3
DLv3+-RN50 CAC [58] 69.7 72.7 − 77.5

SN-RN18 supervised 61.10.4 67.31.1 71.90.1 75.40.4
SN-RN18 simple-PhTPS 66.31.0 71.00.5 74.30.7 75.80.4
SN-RN18 MT-PhTPS 68.60.6 72.00.3 73.80.4 75.00.4

SN-RN34 supervised 64.90.8 69.81.0 73.81.4 76.10.8
SN-RN34 simple-PhTPS 69.20.8 73.10.7 76.30.7 77.90.2
SN-RN34 MT-PhTPS 70.81.5 74.30.5 76.00.5 77.20.4

Finally, we present experiments in the large-data regime, where we place the whole
fine subset into Dl. In some of these experiments, we also train on the large coarsely
labeled subset. We denote the extent of supervision with subscripts “l” (labeled) and
“u” (unlabeled). Hence, Cu in the table denotes the coarse subset without labels. Table 4
investigates the impact of the coarse subset on the SwiftNet performance on the full-
resolution Cityscapes val. We observe that semi-supervised learning brings considerable
improvement with respect to fully supervised learning on fine labels only (columns Fl vs.
Fl ∪ Cu). It is also interesting to compare the proposed semi-supervised setup (Fl ∪ Cu)
with classic fully supervised learning on both subsets (Fl, Cl). We observe that semi-
supervised learning with SwiftNet-RN18 comes close to supervised learning with coarse
labels. Moreover, semi-supervised learning prevails when we plug in the SwiftNet-RN34.
These experiments suggest that semi-supervised training represents an attractive alternative
to coarse labels and large annotation efforts.
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Table 4. Effects of an additional large dataset on supervised and semi-supervised learning on full-
resolution Cityscapes val (mIoU/%). Tags F and C denote fine and coarse subsets, respectively. Subset
indices denote whether we train with labels (l) or one-way consistency (u).

Method Fl (Fl, Fu) (Fl, Fu ∪Cu) (Fl, Cl)

SN-RN18 simple-PhTPS 75.40.4
75.80.4 76.50.3 76.90.3SN-RN18 MT-PhTPS 75.00.4 75.50.3

SN-RN34 simple-PhTPS 76.10.8 77.90.2 78.50.4 77.70.4

4.4. Validation of Consistency Variants

Table 5 presents experiments with supervised baselines and four variants of semi-
supervised consistency training. All semi-supervised experiments use the same PhTPS
perturbations on CIFAR-10 (4000 labels and 50,000 images) and half-resolution Cityscapes
(the SwiftNet-RN18 setups with 1/4 labels from Table 1). We investigate the following
kinds of consistency: one-way with clean teacher (1w-ct, cf. Figure 1c), one-way with
clean student (1w-cs, cf. Figure 1b), two-way with one clean input (2w-c1, cf. Figure 1d),
and one-way with both inputs perturbed (1w-p2). Note that two-way consistency is not
possible with Mean Teacher. Moreover, when both inputs are perturbed (1w-p2), we have
to use the inverse geometric transformation on dense predictions [20]. We achieve that by
forward warping [72] with the same displacement field. Two-way consistency with both
inputs perturbed (2w-p2) is possible as well. We expect it to behave similarly to 1w-2p
because it could be observed as a superposition of two opposite one-way consistencies, and
our preliminary experiments suggest as much.

We observe that 1w-ct outperforms all other variants, while 2w-c1 performs in-between
1w-ct and 1w-cs. This confirms our hypothesis that predictions in clean inputs make
better consistency targets. We note that 1w-p2 often outperforms 1w-cs, while always
underperforming with respect to 1w-ct. A closer inspection suggests that 1w-p2 sometimes
learns to cheat the consistency loss by outputting similar predictions for all perturbed
images. This occurs more often when batch normalization uses the batch statistics estimated
during training. A closer inspection of 1w-cs experiments on Cityscapes indicates the
consistency cheating combined with severe overfitting to the training dataset.

Table 5. Comparison of 4 consistency variants under PhTPS perturbations: one-way with clean
teacher (1w-ct), one-way with clean student (1w-cs), two-way with one input clean (2w-c1), and one-
way with both inputs perturbed (1w-p2). Algorithms are evaluated on CIFAR-10 test (accuracy/%)
while training on 4000 out of 50,000 labels (CIFAR-10, 2/25) and half-resolution Cityscapes val
(mIoU/%) while training on 1/4 of labels from Cityscapes train with SwiftNet-RN18 (CS-half, 1/4).

Dataset Method sup. 1w-ct 1w-cs 2w-c1 1w-p2

CIFAR-10, 4k WRN-28-2 simple-PhTPS 80.80.4 90.80.3 69.34.2 72.92.6 73.37.0
CIFAR-10, 4k WRN-28-2 MT-PhTPS 80.80.4 90.80.4 80.50.5 - 73.41.4
CS-half, 1/4 SN-RN18 simple-PhTPS 61.50.5 65.31.9 1.61.0 16.73.0 61.60.5
CS-half, 1/4 SN-RN18 MT-PhTPS 61.50.5 66.01.0 61.51.4 - 62.01.1

4.5. Image Classification on CIFAR-10

Table 6 evaluates the image classification performance of two supervised baselines and
4 semi-supervised algorithms on CIFAR-10. The first supervised baseline uses only labeled
data with standard data augmentation. The second baseline additionally uses our pertur-
bations for data augmentation. The third algorithm is VAT with entropy minimization [4].
The simple-PhTPS approach outperforms supervised approaches and VAT. Again, two-way
consistency results in the worst generalization performance. Perturbing the teacher input
results in accuracy below 17% for 4000 or less labeled examples, and is not displayed. Note
that somewhat better performance can be achieved by complementing consistency with
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other techniques that are either unsuitable for dense prediction or out of the scope of this
paper [5,49,69].

Table 6. Classification accuracy [%] on CIFAR-10 test with WRN-28-2. We compare two supervised
approaches (top), VAT with entropy minimization [4] (middle), and two-way and one-way consistency
with our perturbations (bottom three rows). We report means and standard deviations of 5 runs.
The label “supervised PhTPS-aug” denotes the supervised training, where half of each mini-batch is
perturbed with PhTPS.

Method Number of Labeled Examples
250 1000 4000 50,000

supervised 31.80.6 59.31.4 81.00.2 94.7
supervised PhTPS-aug 48.70.9 67.20.5 81.70.2 95.0

VAT + entropy minimization 41.02.5 73.21.5 84.20.4 90.50.2
1w-cs simple-PhTPS 27.75.9 51.73.5 69.34.2 91.61.5
2w-c1 simple-PhTPS 30.31.8 54.81.5 72.92.6 95.90.2
1w-ct simple-PhTPS 68.85.4 84.20.4 90.60.4 96.20.2

5. Discussion

We have presented the first comprehensive study of one-way consistency for semi-
supervised dense prediction, and proposed a novel perturbation model, which leads to
the competitive generalization performance on Cityscapes. Our study clearly shows that
one-way consistency with clean teacher outperforms other forms of consistency (e.g., clean
student or two-way) both in terms of generalization performance and training footprint.
We explain this by observing that predictions in perturbed images tend to be less reli-
able targets.

The proposed perturbation model is a composition of a photometric transformation
and a geometric warp. These two kinds of perturbations have to be treated differently,
since we desire invariance to the former and equivariance to the latter. Our perturbation
model outperforms CutMix both in standard experiments with DeepLabv2-RN101 and in
combination with recent efficient models (SwiftNet-RN18 and SwiftNet-RN34).

We consider two teacher formulations. In the simple formulation, the teacher is a
frozen copy of the student. In the Mean Teacher formulation, the teacher is a moving
average of student parameters. Mean Teacher outperforms simple consistency in low data
regimes (half resolution; few labels). However, experiments with more data suggest that
the simple one-way formulation scales significantly better.

To the best of our knowledge, this is the first account of semi-supervised seman-
tic segmentation with efficient models. This combination is essential for many practical
real-time applications where there is a lack of large datasets with suitable pixel-level
groundtruth. Many of our experiments are based on SwiftNet-RN18, which behaves sim-
ilarly to DeepLabv2-RN101, while offering about 9× faster inference on half-resolution
images, and about 15× faster inference on full-resolution images on RTX 2080Ti. Experi-
ments on Cityscapes coarse reveal that semi-supervised learning with one-way consistency
can come close and exceed full supervision with coarse annotations. Simplicity, competi-
tive performance and speed of training make this approach a very attractive baseline for
evaluating future semi-supervised approaches in the dense prediction context.
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Abbreviations
The following abbreviations are used in this manuscript:

DLv2 DeepLab v2
DLv3+ DeepLab v3+

CS Cityscapes
MT Mean Teacher
PhTPS Our composition of photometric and geometric perturbations
pp Percentage point
RN ResNet
simple-X Simple one-way consistency with clean teacher, with perturbation model X
1w-ct One-way consistency with clean teacher
1w-cs One-way consistency with clean student
2w-c1 Two-way consistency with one input perturbed
1w-p2 One-way consistency with both inputs perturbed
SD Sample standard deviation with Bessel’s correction
SN SwiftNet
TPS Thin plate spline
WRN Wide ResNet

Appendix A. Additional Algorithm Comparisons

Appendix A.1. Hyper-Parameters

Tables A1 and A2 review hyper-parameters of consistency-based semi-supervised
algorithms from Tables 1 and 3.

https://www.cityscapes-dataset.com/
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https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/Ivan1248/semisup-seg-efficient
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Table A1. Overview of hyper-parameters of consistency-based algorithms for semi-supervised semantic segmentation. We denote the setup that we use in our
experiments including supervised training with “our”. We use the following symbols: y is the teacher prediction, ỹ is the student prediction, hard is a function that

maps a vector representing a distribution to the closest one-hot vector (hard[c] =
r

c = arg maxk y[k]
z

), e is the proportion of completed epochs, α is the consistency
loss weight, and η is the base learning rate. The if-clause in the “Consistency loss” column represents confidence thresholding, i.e., determines whether the pixel is
included in loss computation.

Model Method Crop Size Jitter. Scale Iterations Epochs Bl Bu Consistency Loss α Learning Rate Schedule

DLv2 MT-CutMix [25] 321 [0.5 . . . 1.5] 40,000 135 * 10 10 ‖hard(y)− ỹ‖2
2 if maxc y[c] > 0.97 0.5 η(1− e)0.9

DLv2 MT-CutMix∼[25] 321 [0.5 . . . 1.5] 37,100 100 4 4 ‖hard(y)− ỹ‖2
2 if maxc y[c] > 0.97 1 η(1− e)0.9

DLv2 ours 448 [0.5 . . . 2] 74,200 200 4 4 D(y, ỹ) 0.5 η(1− e)0.9

SN ours 448 [0.5 . . . 2] 74,200 200 8 8 D(y, ỹ) 0.5 η cos(eπ/2)
SN ours 768 [0.5 . . . 2] 92,750 250 8 8 D(y, ỹ) 0.5 η cos(eπ/2)
DLv3+ CAC [58] 720 [0.5 . . . 1.5] 92,560 249 * 8 8 see [58] Je > 5/80K× 0.1 η(1− e)0.9

DLv3+ ours 720 [0.5 . . . 1.5] 92,560 249 * 8 8 D(y, ỹ) 0.5 η(1− e)0.9

∗ Some authors [25,58] use the word “epoch” to refer to a fixed number of iterations — 1000 and 1157 iterations, respectively.

Table A2. Optimizer hyper-parameter configurations for Cityscapes semantic segmentation experiments, represented in a PyTorch-like style.

Model Method Optimizer Configuration
Main Backbone (Difference)

DLv2 MT-CutMix [25] SGD, lr = 3× 10−5, momentum = 0.9, weight_decay = 5× 10−4

DLv2 MT-CutMix∼[25] SGD, lr = 3× 10−5, momentum = 0.9, weight_decay = 5× 10−4

DLv2 ours Adam, betas = (0.9, 0.99), lr = 4× 10−4, weight_decay = 1× 10−4 lr = 1× 10−4, weight_decay = 2.5× 10−5

SN ours Adam, betas = (0.9, 0.99), lr = 4× 10−4, weight_decay = 2.5× 10−5 lr = 1× 10−4, weight_decay = 6.25× 10−6

DLv3+ CAC [58] SGD, lr = 1× 10−1, momentum = 0.9 lr = 1× 10−2, weight_decay = 1× 10−4

DLv3+ ours SGD, lr = 1× 10−1, momentum = 0.9 lr = 1× 10−2, weight_decay = 1× 10−4
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Appendix A.2. Time and Memory Performance Characteristics

Table A3 shows memory requirements and training times of methods from Tables 1 and 3.
The times include data loading and processing, and do not include the evaluation on the
validation set. The memory measurements are based on the max_memory_allocated and
reset_peak_memory_stats procedures from the torch.cuda package. Note that some
overhead that is required by PyTorch is not included in this measurement (see PyTorch
memory management documentation for more information: https://pytorch.org/docs/
master/notes/cuda.html (accessed on 8 Jan 2023). Some algorithms did not fit into the
memory of GTX 2080Ti. The memory allocations are higher than in Figure 4 because the
supervised prediction, perturbed inputs, and perturbed outputs are unnecessarily kept
in memory.

For DeepLabv3+-RN50, we use the number of iterations, batch size, and crop size
from [58]. Note, however, that the method from [58] has the memory requirements of
two-way consistency because of per-pixel directionality.

Table A3. Half resolution Cityscapes (top section) and Cityscapes (bottom section) maximum memory
allocation and training time on two GPUs.

Duration /min
Model Method Crop Size Iterations Bl Bu Memory /MiB A4500 2080Ti

DLv2-RN101 MT-CutMix [25] 321 40,000 10 10 16,289 1067 –
MT-CutMix∼[25] 321 37,100 4 4 7037 794 1314

DLv2-RN101 supervised 448 74,300 4 – 6611 338 602
MT-PhTPS 448 74,300 4 4 7021 816 1397

SN-RN18 supervised 448 74,200 4 – 1646 119 161
simple-PhTPS 448 74,200 8 8 2398 228 279
MT-PhTPS 448 74,200 8 8 2456 234 297

SN-RN18 supervised 768 92,750 8 – 4444 321 432
simple-PhTPS 768 92,750 8 8 6683 732 963
MT-PhTPS 768 92,750 8 8 6727 768 965

SN-RN34 supervised 768 92,750 8 – 5500 422 570
simple-PhTPS 768 92,750 8 8 7737 994 1268
MT-PhTPS 768 92,750 8 8 7818 1013 1276

DLv3+-RN50 supervised 720 92,560 8 – 11,645 1229 –
simple-PhTPS 720 92,560 8 8 13,384 1884 –
CAC [58] 720 92,560 8 8 25,165 † >3000 * –

† Estimated by running on NVidia A100. * The original implementation requires 36,005 MiB. Approximately
10.6 GiB can be saved by accumulating gradients as in Algorithm 1.

Table A4 shows the numbers of model parameters, and Table A5 shows inference
speeds of models from Tables 1 and 3.

Table A4. Number of model parameters.

Model Number of Parameters

DeepLabv2-RN101 43.80× 106

DeepLabv3+-RN50 40.35× 106

SwiftNet-RN34 21.91× 106

SwiftNet-RN18 11.80× 106

https://pytorch.org/docs/master/notes/cuda.html
https://pytorch.org/docs/master/notes/cuda.html
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Table A5. Model inference speed (number of iterations per second) on three different GPUs and
two input resolutions. Inputs are processed one by one, without overlap in computation. The
measurements include the computation of the cross-entropy loss, but do not include data loading
and preparation.

1024× 2048 512× 1024
A4500 2080Ti 1080Ti A4500 2080Ti 1080Ti

DeepLabv2-RN101 5.1 3.0 1.5 19.6 12.2 6.3
DeepLabv3+-RN50 16.1 9.6 5.2 54.2 30.7 23.5
SwiftNet-RN34 39.2 30.5 23.6 93.4 86.1 73.5
SwiftNet-RN18 56.5 45.3 34.6 139.5 115.8 98.4

Appendix B. Effect of Updating Batch Normalization Statistics in the
Perturbed Student

Batch normalization layers estimate population statistics during training as exponen-
tial moving averages. Training on perturbed images can adversely affect the suitability
of these estimates. Consequently, we explore the design choice to update the statistics
only on clean inputs (when the supervised loss is computed), instead of both on clean and
on perturbed inputs. Note that this configuration difference does not affect parameter
optimization because the training always relies on mini-batch statistics.. Figure A1 shows
the effect of disabling the updates of batch normalization statistics when the model instance
(student) receives perturbed inputs in our semi-supervised training (one way consistency
with clean teacher). The experiments are conducted according to the corresponding descrip-
tions in Section 4. In case of half-resolution Cityscapes, disabling updates in the perturbed
student (blue) increased the validation mIoU by between 0.3 and 1.4 pp, depending on
the proportion of labels. However, in case of full-resolution Cityscapes, an opposite effect
occured—mIoU decreased by between 0.1 and 1.1 pp. In CIFAR-10 experiments, the effect
is mostly neutral.
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Figure A1. Effect of updating batch normalization statistics in the perturbed student. (a) Half-
resolution Cityscapes val. (b) Cityscapes val. (c) CIFAR-10 validation set.
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