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Abstract: In the last decade, biosignals have attracted the attention of many researchers when
designing novel biometrics systems. Many of these works use cardiac signals and their representation
as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire
reliable ECG records by using wearable devices. This paper moves in that direction and proposes
a novel approach for an ECG identification system. For that, we transform the ECG recordings
into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other
domains but not very common with biosignals. Specifically, the time series is transformed using polar
coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a
proof-of-concept identification system built on a tuned VGG19 convolutional neural network using
this approach. We confirm our proposal’s feasibility through experimentation using two well-known
public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB
(individuals under four specific activities). In both scenarios, the identification system reaches an
accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection
Rate (FRR).

Keywords: biometrics; ECG; wearables; gramian angular field; deep learning

1. Introduction and Related Work

Lately, some researchers have proposed the use of physiological signals for cybersecu-
rity purposes [1]. These signals are helpful in a broad amalgam of applications, ranging
from authentication and identification systems [2], through key generation functions [3], to
cryptographic primitives [4].

The strength of this type of solution is its universality, as every living person has vital
signs (e.g., electroencephalograms or electrocardiograms). Signal acquisition can be made
without interfering with the users’ daily lives, guaranteeing collectability and acceptability.
The permanence of the signal-based solutions is superior to commonly used systems such
as passwords or token-based solutions. These approaches offer high performance (e.g.,
accuracy), proving the uniqueness of each user signal. Finally, low error rates hinder
counterfeiting attacks (resistance to circumvention).

Biopotential signals represent the action potentials originated by a set of different
cells [5]. In this work, we focus on electrocardiogram (ECG) records, which represent how
the electrical activity of the heart muscle (myocardium) evolves. In particular, changes in
the electrical potentials occur due to the contraction (polarization) and relaxation (depolar-
ization) of the myocardium. Five waves make up one cycle of an ECG signal, as depicted in
Figure 1. First, the depolarization of the atria occurs (P-wave). Then the Q, R, and S waves
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(QRS complex) reproduce the ventricle depolarization. Lastly, we have a wave caused by
the repolarization of the ventricles (T wave) [6].

Figure 1. An ECG trace (three beats).

Regarding ECG, in the literature, we can find many proposals focused on biometrics
identification [7–9]. Rathore classified the proposals into two categories: handcrafted and
non-handcrafted approaches. Within the former, we can distinguish between fiducials and
non-fiducials solutions. The fiducial points of an ECG trace consist, among other things,
of amplitude peaks (e.g., R-peaks) or the time intervals between two peaks. (e.g, ∆RS).
Using a subset of all possible fiducial points, some authors have built up identification
systems [10]. Some authors consider that the extraction of fiducial points may be compu-
tationally demanding and propose using statistical features without the necessity of any
fiducial point. In this vein, some authors propose to use autocorrelations [11] and others
extract features in a transform domain using Discrete Cosine Transforms (DCTs) [12] or
Wavelet Transforms (WT) [13].

Nowadays, the trend is a deep learning-based approach [14–16], which is within the
non-handcrafted category. This ECG identification approach avoids the computation cost
of feature extraction while offering proper performance (e.g., high accuracy and low error
rate). The first step in many of these approaches is transforming the temporal signal into
an image. For instance, spectrograms [17] or spectral correlation images [2] have been
tested for that purpose. Alternatively, some authors extract features using a CNN. In this
vein, in Ref. [18] the authors proposed to use what they called a “cascade CCN”. As for
the two CCNs used, the first one is employed for feature extraction and the second one for
classification (user identification).

There has been a remarkable evolution in ECG signal acquisition in recent years. A
few years ago, the subject had to visit a cardiologist, who placed seven or nine electrodes
on the body to acquire a reliable ECG. Nowadays, due to the proliferation of smartwatches
and their advanced functionalities, some of these devices (e.g., Ref. [19] or Ref. [20] already
have sensors that can record an ECG trace by touching the device with a finger (i.e., 1-lead
ECG). Interestingly, the FDA has accredited some of the newest smartwatches as medical
devices [21]. The records collected by these are, therefore, equivalent to those that can be
collected in a medical setting. Therefore, wearable devices such as smartwatches or sports
bands make biometric systems based on ECG signals more realistic nowadays.

Contribution: Cardiologists use electrocardiograms daily in their diagnoses. Apart
from that, researchers have also shown the effectiveness of using ECG records for biometrics
identification. In this wave, our proof-of-concept proposal is the first contribution—to the
best of our knowledge—that proposes to use Gramian Angular Field images to transform
the temporal ECG recordings and feed a Convolutional Neuronal Network with the purpose
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of user identification. We have assessed our proposal using the subject’s recordings from
two public and very accepted datasets (MIT-BIH Normal Sinus Rhythm Database [22], and
ECG-GUDB [23]) to facilitate the reproducibility of our results. The subjects are at rest in
the first dataset, in line with the datasets used in many other previous works. In the second
dataset, the subjects were recorded during four activities, and the experiment represents
the system’s evaluation under real-world conditions of the subjects’ daily life.

Organization: We will explain the paper’s organization shortly. We introduce in
Section 2 the used dataset and present the image transformation method used as well
as the network used for classification. Then, we interpret the results obtained in our
experimentation (see Section 3). Finally, in Section 4, we analyze how our proposed system
satisfied the seven properties commonly required by a biometrics system, and we end by
extracting some conclusions.

2. Methods and Materials

This section starts by explaining the chosen dataset and how we eliminate noise and
preprocess each ECG record. After that, we describe how to convert a time series (ECG
recording) into an image via the Gramian Angular Field. Finally, we explain the network
used for user identification, which is inspired by the VGG19 network.

2.1. Dataset and Preprocessing

We can find in the literature many public datasets with ECG recordings [22,24,25]. In
most of these datasets, the users suffer a cardiac pathology (e.g., arrhythmias or coronary
artery disease) since the recordings were collected in a clinical setting. In our experiments,
we employ the MIT-BIH Normal Sinus Rhythm Database (The database is available at
https://physionet.org/content/nsrdb/1.0.0/ (last accessed on 1 January 2023).) (Physionet-
NSRDB in short) [22] in which cardiologists detected no significant cardiac conditions. Note
that the existence of pathologies may introduce a bias in the identification problem we
aim to address. The mentioned dataset was collected at Boston’s Beth Israel Hospital and
included 13 women aged 20 to 50 and 5 men aged 26 to 45. For each user sample, the
recordings of leads ECG1 and ECG2 were acquired. In our experimentation, we use the
ECG1 (a modified lead II) inspired by previous works [26,27].

Before working with the ECG recordings, the first step is to clean the signal. The
DC component is eliminated first by subtracting the mean value. Next, we cut the noise
components (respiration and power-line) using a pass-band filter. Concerning the filter
parameters, 0.67 Hz and 0.45 Hz are the lower-cut-off-frequency and the upper-cut-off-
frequency used, respectively. All the recordings in the database were cleaned using this
process. After this, we split each user recording in windows of W seconds. We set the
window length to five seconds due to three main reasons: (1) similar values were used in
previous works [28]; (2) it includes several heartbeats, and (3) it is a reasonable time window
for authenticating a user. Once each ECG record is divided into segments, we convert
them into an image using the Gramian Angular Field (GAF), which preserves the temporal
dependency. The procedure to compute the GAF is summarized in the following section.

2.2. Gramian Angular Field

In 2015, Wang and Oates introduced the concept of the Gramian Angular field to con-
vert a time series into an image. Next, we summarized the math behind this transformation,
however, the reader is urged to consult Ref. [29] for all the details. The input is a time
series, X = {x1, x2, · · · , xn} with n observations of real values. First, we rescale the series
into the interval [−1, 1]:

x̃i =
(xi −max(X) + (xi −min(X))

max(X)−min(X)
(1)

https://physionet.org/content/nsrdb/1.0.0/
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Second, we transform the scaled time series into polar coordinates. The timestamp repre-
sents the radius and the angular cosine of the time series value as the angle. Mathematically,{

φ = arccos(x̃i)

r = ti
N

(2)

where N is a regulation parameter for the polar system.
The above transformation is bijective and preserves the temporal dependency through

the r coordinate. Finally, we can use the trigonometric sum to represent the temporal
correlation between two intervals. This results in the following matrix, which is a quasi-
Gramian matrix: 

cos(φ1 + φ1) cos(φ1 + φ2) · · · cos(φ1 + φn)
cos(φ2 + φ1) cos(φ2 + φ2) · · · cos(φ2 + φn)

...
...

. . .
...

cos(φn + φ1) cos(φn + φ2) · · · cos(φn + φn)

 (3)

Remarkably, we can restore the time series from the values of the main diagonal. The
transformation preserves the temporal dependency, and the main drawback is that the
resulting matrix is n× n while the input series is 1× n. In Ref. [29], the authors propose to
use the Piecewise Aggregation Approximation (PAP) to reduce the size of the matrix. In
Figure 2, we outline the transformation process.

Figure 2. Encoding process of GAF.

2.3. Transfer Learning Network

In Figure 3 we sketch the network used for user identification via the Gramian Angular
Field (The source code of the network is available at https://lightweightcryptography.
com/ECGnetwork.zip (last accessed on 1 January 2023)). The model is inspired by the
VGG19 network and uses its first seven layers (see Ref. [30] for details). This first layer of
the network aims to extract the relevant features from the input images. For that purpose,
apart from the input layer, a block formed by two convolution layers and a max-pooling is
repeated two times.

https://lightweightcryptography.com/ECGnetwork.zip
https://lightweightcryptography.com/ECGnetwork.zip
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The second layer of the network, which represents its core, consists of five convolution
layers (3× 3 kernel sizes, ReLU activation, and 512 filters) necessary to complete the features
extraction procedure. The number of convolution layers has been tuned to maximize the
accuracy and minimize the errors in the final output. After the features extraction, the size
of the samples is reduced with two pooling layers: max pooling and global average pooling.
Finally, a dropout regularization (25%) to prevent over-fitting ends this layer.
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Figure 3. Tuned VGG19 network.
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The third network layer is a classification layer (i.e., Fully Connected Layer). It consists
of two dense layers to accommodate the output finally to the number (N) of existing users
(N = 10 in our experiments) and a dropout regularization (10%) placed in between.
Concerning the dense layers, for the first time, the ReLU is employed as the activation
function, and for the second time we opt for the Softmax function to get the probability
that a GAF image pertains to a class.

3. Results

This section presents our proof-of-concept results when using GAF images extracted
from ECG records for identification purposes. To the best of our knowledge, it is the first
time the GAF approach has been tested for that particular purpose and analyzed with
individuals under resting and activity states. We highlight that our aim is not to provide
the best results compared to state-of-the-art (although our results are competitive), but to
bring this new and promoting approach to the table.

In Figure 4, we summarize the architecture of the proposed identification systems.
We have explained each of one the components in the previous section. The classifier is
based on the VGG19 network and tests whether an inputted template belongs to one of
the legitimate users registered in the system. This approach represents a “one-to-many
comparison” system, which, for example, is often used in the access control system of a facility.

Raw ECG
Data

Pre-processing
GAF - Image
Transforma-

tion

Classifier
(tuned

VGG19)

ECG-User
Identification

Reference
Model

Figure 4. An ECG GAF-based identification system: general structure.

We have randomly chosen 10 users from the Physionet-NSRDB dataset in our experi-
ments. For each user, we have selected a sample of 250 min, preprocessed, and divided it
into segments (W = 5 seconds) as explained in Section 2.1. Then, a GAF image is generated
for each segment, producing a set of images for each user (i.e., N = 250×60

5 = 3000 images).
Finally, we divide the total samples (i.e., 3000× 10) into training, validation, and test, using
a percentage of 80%, 10%, and 10% for each, respectively.

The proposed network (see Figure 3) has around 106 trainable parameters that were
initialized using the “ImageNet” weights. Besides, we employ the Adam optimizer with
a learning rate of 10−5. We can observe the progression of the accuracy and losses for a
different number of epochs in Figure 5. To avoid overfitting, we adopted an early stopping
strategy. The validation accuracy is slightly below the training accuracy, but it evolves
upwards similarly to the training curve. Concerning losses, we can observe small ups and
downs in the validation set, suggesting that it is not necessary to use more epochs.

In Table 1, we summarize the system’s accuracy for the three sets. As it is desirable,
the results in validation and testing are equivalents (91%).Regarding the testing dataset, we
have analyzed the results in detail (see the confusion matrix in Figure 6). The difference in
performance for the 10 subjects is insignificant, and more than half is over 92%, and the
misclassification is very low for all the tested users. Users whose accuracy is slightly lower
than 90% will have to try twice to authenticate to the system on limited occasions—this is a
realistic situation in real scenarios. From these results, we can conclude that the system’s
feasibility is guaranteed.
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Figure 5. Accuracy and loss: training and validation.

Figure 6. Confusion matrix: validation test.

Table 1. Accuracy of the system.

Acc. Training Acc. Validation Acc. Test

98% 91% 91%



Sensors 2023, 23, 937 8 of 12

Errors are critical in identification systems, and we use two metrics to assess this issue.
The False Acceptance Rate (FAR) represents the percentage of unauthorized users classified
wrongly as legitimate. On the flip side, the False Rejection Rate (FRR) is the percentage of
valid users mistakenly rejected. Besides, we can calculate the parameter K that measures
the relation between both metrics (K× FAR = FRR). Note that a value of K greater than
one means that the unauthorized access is K times more costly than locking out a legitimate
user. Therefore, a value of K greater than one is desirable. In our proof-of-concept, K is
equal to 9 (FAR = 0.01022 and FRR = 0.09254). This result is a favorable condition for the
system since accepting illegitimate users is the most dangerous condition.

Analysis with Subjects under a Set of Conditions

One of the main concerns about using biometric systems is how they perform in
different situations during our daily lives. In the case of ECG-based biometric systems, we
may wonder whether these systems are still effective when the subject’s condition may be
affected due to medication or exercise, to mention a few examples. Unfortunately, most of
the previous work uses databases acquired in a medical setting where the individuals are
only at rest.

To shed light on the behavior of our proposal under different situations, we have
analyzed its performance using the ECG-GUDB dataset (The database is available at
https://researchdata.gla.ac.uk/716/ (last accessed on 1 January 2023)). In this dataset [23],
the ECG signal of 25 users was acquired during 5 activities (sitting, a math test on a tablet,
walking on a treadmill, running on a treadmill, using a handbike) for 2 min. The recordings
were collected with Attys Bluetooth acquisition device at a sampling rate of 250 Hz and
using a standard Einthoven II and III configuration.

The main limitation of this dataset is that the number of samples per subject is not
very large—the entire recordings are employed in our experiments for all four activities.
We have selected the 10 users for whom we have more samples in our analysis. For each
user, once we cleaned the ECG recordings, we split them into segments (W = 5 seconds),
and a GAF image was obtained for each segment—on average, we got 125 GAF images per
user. Then, we split the total samples (125 × 10) into training (80%) and testing (20%).

Utilizing the VGG19 network described in Section 2.3 and with the same configuration
parameters used with the Physionet-NSRDB dataset, we have trained and evaluated the
model with the samples of the ECG-GUD dataset. The accuracy on training and testing
obtained is 95.5 % and 91.6%, respectively. Concerning errors, as is desirable, the False
Accepted Rate (FAR = 0.0093) is eight and a half times greater than the False Rejection Rate
(FRR = 0.081). These values are practically identical to those obtained with the Physionet-
NSRDB dataset. It implies that GAF images are compelling for subject identification even
when the subjects engage in different activities (simulating their day-to-day lives and
validating our proposal in real scenarios).

4. Analysis and Conclusions

Biometrics systems often demand seven properties: (1) universality; (2) uniqueness;
(3) permanence; (4) performance; (5) circumvention; (6) collectability; and (7) acceptability).
The previous section shows how our proof-of-concept system achieves high performance
while the errors (resistance to circumvention) are low. It is remarkable how the system’s
performance remains stable even when subjects are under different activities (i.e., ECG-
GUDB dataset). As summarized in Table 2, the vast majority of existing works have used
datasets with individuals only at a resting state, which is far removed from a realistic
scenario. We have evaluated our solution with two datasets, one with activities, to contend
this limitation exiting in previous works. Next, we review the remaining properties.

https://researchdata.gla.ac.uk/716/
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Table 2. A comparative analysis of ECG-based identification solutions.

Proposal Approach Database Accuracy FRR FAR

Choi et al. [31] MLP (handcrafted; fiducial) Proprietary † 93.8% 0.085 0.085

Liu et al. [32] RF (handcrafted; fiducial) Proprietary † 93.1% 0.046 0.010

Pinto et al. [12] MLP (handcrafted;
non-fiducial) Proprietary † 92.4% 0.033 0.033

Pathoumvanh et al. [33] ED (handcrafted; non-fiducial) Proprietary † 97.0 % — —

Labati et al. [1] CNN (handcrafted; fiducial) E-HOL-03-0202-003 ‡, PTB † 100% 0.02 0.02

Abdeldayem et al. [2] 2D-CNN (non-handcrafted;
non-fiducial)

CEBSDB †,
Physionet-NSRDB † 95.6% 0.001 0.022

FANTASIA † and others

Zhang et al. [34] 1D-CNN (non-handcrafted;
non-fiducial)

CEBSDB †,
Physionet-NSRDB † 93.5% — —

FANTASIA† and others

Hammad et al. [35] CNN VGG-Net
(non-handcrafted; non-fiducial)

MWM-HIT†, PTB † and
CYBHi † 96.8% 0.03 0.03

Our proposal Tuned VGG19-net
(non-handcrafted; non-fiducial)

Physionet-NSRDB † 91.0% 0.092 0.0102

ECG-GUDB ~ 91.6% 0.081 0.0094

† Subjects at resting state. ‡ Subjects under ambulatory recordings (no information about its activities). ~ Subjects
under four specific activities (including exercise).

Our system uses ECG records, which are widely available—we only need to place
some electrodes on a body to acquire the signal. Therefore, the used input guarantees the
universality property. Besides, the feasibility of using ECG recordings (handcrafted and
non-handcrafted approaches) for biometrics identification (uniqueness) has been widely
proven in the last years [36]. Our results confirm the feasibility of using ECG signals for
building a biometric solution by using a novel approach based on GAF images and a tuned
VGG19 classifier.

Concerning permanence, the heart signals are stable over time, although it suffers
changes moderately after long periods (i.e., more than five years as explained in Ref. [28]).
We can claim that the permanence of ECG records is sufficient and even less demanding in
updating terms than the well-known password-based solutions [37].

Other critical parameters are collectability and acceptability. We can argue that these
properties are satisfied. On the one hand, nowadays, smart devices (e.g., smartwatches
or sports bands) are widely available and accepted in the population. On the other hand,
these sorts of devices (e.g., Apple watch [19,38] or Withings Move ECG [20]) can record
clear ECG traces, which are even validated for medical purposes. Therefore, collectability
and acceptability are satisfied by using the mentioned devices.

Concerning a comparison with state-of-the-art, we emphasize again that our main
objective was not to get the best results but to bring to the table the use of GAF functions
as a useful transformation for building an ECG-based identification system. In Table 2 we
compare our proposal with few representative works; the reader, for instance, can review
Ref. [39] for extensive comparatives. Before starting the comparison, we emphasize that the
authors only analyze the solutions with subjects in a resting state in practically all existing
works. Only in some solutions, such as Ref. [1], the users are in ambulatory condition,
but unfortunately, no information is provided about the users’ activities. Regarding the
handcrafted solutions, in Ref. [31], or Ref. [32], the authors propose a system based on
fiducial points. Although these proposals outperform our solution, the main drawback
is the computational cost linked with the extraction of fiducial points. Pinto et al. [12]
proposed a non-fiducial-based approach extracting features in a transform domain (e.g.,
Haar transform), and their results are similar to the ones presented in this article. Another
example based on non-fiducial points is the work presented in Ref. [33], which, although
outperforming our results, provides no information about the errors, and the reproducibility
of the results is not guaranteed due to the use of a proprietary dataset. The last four
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proposals in the table, similarly to our proposal, are based on deep learning. In Ref. [1],
Labati et al. present perfect results in terms of accuracy, but the inputs used to the CCN
require the extraction of fiducial points and are twice the length of our input, limiting its
usability. The results in Ref. [2], although slightly higher, are comparable to our proposal
and, similarly to our work, use a short ECG trace of a few seconds. Interestingly, Zhang
et al. presented a multiresolution CNN that slightly surpasses our solution in terms of
accuracy, but no values about errors (FAR and FRR) are provided. Finally, Hammad et al.
proposed an exciting proposal with high performance and low error rates. Unlikely, the
authors obtained their results with datasets with a tiny number of samples per user (e.g.,
two samples/user in the CYBHi database).

From the above, we can conclude that using Gramian Angular Field images and
deep learning is an exciting approach to build novel ECG-based identification systems.
In a cybersecurity context and, more precisely, in a biometrics identification context, our
proposal is the first work that proposes this approach, to the best of our knowledge, and
scrutinizes the solution by using users at a resting state and under different activities
(including exercise). Apart from being effective for identification, GAF images allow the
recovery of the original ECG record. Due to that, in future work, we will study a system
in which the subjects are identified, and at the same time, cardiac ailments (e.g., atrial
fibrillation or tachycardia) are detected. Furthermore, phonocardiograms (PPG) signals
could be an alternative to ECG records. We chose electrocardiogram records since these
signals are much more fruitful in terms of information than the PPGs. The usage combined
of both vital signs can also be an interesting future research line.
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