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Abstract: Digitization of most of the services that people use in their everyday life has, among others,
led to increased needs for cybersecurity. As digital tools increase day by day and new software and
hardware launch out-of-the box, detection of known existing vulnerabilities, or zero-day as they are
commonly known, becomes one of the most challenging situations for cybersecurity experts. Zero-day
vulnerabilities, which can be found in almost every new launched software and/or hardware, can be
exploited instantly by malicious actors with different motives, posing threats for end-users. In this
context, this study proposes and describes a holistic methodology starting from the generation of zero-
day-type, yet realistic, data in tabular format and concluding to the evaluation of a Neural Network
zero-day attacks’ detector which is trained with and without synthetic data. This methodology
involves the design and employment of Generative Adversarial Networks (GANs) for synthetically
generating a new and larger dataset of zero-day attacks data. The newly generated, by the Zero-Day
GAN (ZDGAN), dataset is then used to train and evaluate a Neural Network classifier for zero-day
attacks. The results show that the generation of zero-day attacks data in tabular format reaches an
equilibrium after about 5000 iterations and produces data that are almost identical to the original
data samples. Last but not least, it should be mentioned that the Neural Network model that was
trained with the dataset containing the ZDGAN generated samples outperformed the same model
when the later was trained with only the original dataset and achieved results of high validation
accuracy and minimal validation loss.

Keywords: zero-day attacks; malware detection; Generative Adversarial Networks (GANs);
cybersecurity; deep learning; information security

1. Introduction

The digitization of everyday activities has led to a wide variety of computer and
smartphone applications and systems that rely on Internet connectivity. Moreover, the
rapid evolution of the Internet of Things (IoT) paradigm in almost every domain, ranging
from agriculture to industry and health services alongside the advantages it offers, also
leads to numerous vulnerabilities. In this light, a major concern of cybersecurity experts
are the zero-day (0-day) vulnerabilities, attacks, and exploits. As defined by Kaspersky [1],
zero-day vulnerabilities are software weak spots that are detected by attackers before the
vendor of the software detects and patches them. An exploit is the method an attacker
follows to take advantage of the unpatched vulnerability, and lastly, an attack is defined as
the utilization of the exploit by a malevolent party with the purpose of causing damage to
the software vendor or the software users [1].

Zero-days vulnerabilities reside in almost every software and hardware and in most
cases are patched after their detection. For example, zero-day hacks can take place in
operating systems, open-source libraries and tools, hardware and firmware of certain
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devices, web browsers and plugins as well as widespread applications such as office and
photo/video editing applications. The attackers exploiting zero-day vulnerabilities can
be cybercriminals who want to damage an organization or a country, individuals aiming
for personal gain, or hacktivists mainly acting on social and political motives or even
employees involved in corporate antagonism. The motives of the attackers as well as the
nature of the attacked infrastructure define the victims of each of these attacks. Thus, there
is a wide range of potential affected users. More specifically, when a zero-day attack is
performed to a common piece of software, such as browsers, operating systems, or office
applications, then the affected users are individuals who use the software. However, when
there are political or social motives as well as corporate espionage reasons, the victims may
include entire countries, social networks, government agencies and large organizations.
Based on the nature and the motives of an attack, zero-day attacks can be characterized as
targeted and non-targeted ones. Targeted attacks focus on specific users of organizations
whilst non-targeted ones aim to attack whoever uses a compromised component, thus
affecting as many users as possible. Either way, exploited zero-day vulnerabilities can lead
to financial damage of millions of dollars or euros.

Google’s Project Zero team reported, in the first half of 2022, that 18 different zero-day
attacks were detected, nine of which were variants of previously patched vulnerabilities [2].
Additionally, according to the Mandiant report of 2021 [3], zero-day exploits over-doubled
compared to previous years. One can assume that zero-day vulnerabilities increased as
there are more and more tools and applications that are exposed to malicious enablers. A
well-known indicative example of zero-day attack is the Microsoft CVE-2016-0167 vulnera-
bility [4], which enabled threat actors to gain SYSTEM privileges on Microsoft Windows
machines causing significant problems to users. Another infamous zero-day attack is the
Aurora operation, which targeted several different organizations such as Yahoo, Symantec,
Google, Microsoft, Morgan Stanley and more and affected millions of users [5]. Other
recent known zero-day attacks include the Zoom vulnerability [6], which enabled malicious
actors to execute code remotely via the Zoom application, the iOS zero-day vulnerability
discovered in the roll-out of iOS version 16.0 [7] as well as the Chrome bug in 2021, which
forced Google to immediately roll-out a security patch [8].

The aim of this study is to examine software zero-day exploits data in order to generate
new synthetic instances of such data using a Generative Adversarial Network (GAN)
architecture. These new data will be used as input to a Deep Learning (DL) based detector
of zero-day exploits, the performance of which will be evaluated both with and without
transfer learning features. In this way, the added value of this study lies on two main
aspects: Firstly, to create and enhance data generation capabilities concerning software zero-
day exploits and secondly to assess the capabilities of DL systems to detect and prevent
zero-day attacks. Thus, in the context of this study, a new approach for tackling zero-day
vulnerabilities is proposed both in terms of data generation as well as detection by means of
deep learning. The purpose of the study is to lift the limitations caused by the lack of data
in the field of cybersecurity, especially regarding zero-day attacks. Thus, by studying and
confirming the efficiency of GANs for data generation, ML and DL algorithms and tools
can be trained more efficiently since the synthetic data generated by GANs can improve the
performance and credibility of such systems. This will lead to better cybersecurity solutions
which will ensure the safety of interconnected infrastructure and minimize damage costs.

The remainder of the paper is organized as follows: Section 2 presents related works,
focusing on the domain of zero-day vulnerabilities, exploits and attacks. Section 3 describes
the methodology designed and developed, whilst Section 4 elaborates on the evaluation
of the usefulness of the generated dataset in the relevant Deep Learning (DL) classifier.
Finally, Section 5 draws interesting conclusions.d

2. Related Works

The continuous increase of system damages due to malware and zero-day attacks led
to the need for studying, in greater depth, zero-day detection methods. Thus, several such
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studies have been conducted and can be found in the relevant literature. Considering the
two main pillars of the present study, as described above, related works presented in this
section are mainly focused on zero-day attacks’ data generation and classification.

Jin-Young Kim et al. [9] propose a malware detection system architecture that uses
input real and fake malware data with modified features (compared to the real ones),
generated from a deep-convolutional generative adversarial network (tDCGAN) based
on a deep autoencoder (DAE) that achieves higher accuracy and learning stability in
comparison to similar models. In their study, the authors evaluate the performance of the
tDCGAN for generating zero-day malware attacks data by adding noise using GANs [9].
The performance evaluation on zero-day attacks only focuses on the initial training of
each model and the models are not retrained with newly generated samples in order to
compare the training process as described later in the present paper. In the scope of zero-
day attacks data generation, Dong-Ok Won et al. [10] suggest a framework (PlausMal-GAN
with representative GAN models) developed and trained in order to produce analogous
zero-day malware images with high quality and diversity. These generated images are used
as training input to the discriminator of the GAN model in order to increase the detection
ability of several types of analogous zero-day malware attacks. The main difference of
this approach compared to the present study is that the effect of the augmented dataset
compared to the original one was not evaluated. Furthermore, Tram Truong-Huu et al. [11]
studied the application of GANs in the domain of network anomaly detection. Multiple
datasets are adopted during the experimental stage in order to evaluate the performance
of GANs compared to other methods used for network anomaly detection. The set of
experiments performed during this study demonstrates important improvements compared
to existing DL techniques for network anomaly detection, in terms of various metrics of
accuracy and performance. This approach could be considered an effective step in detecting
unknown anomalous behaviors or zero-day attacks. Rodolfo Valentim et al. [12] propose a
GAN architecture in order to study and tackle the problem of phishing squatting detection,
which, in the future, could also serve as the starting point for solving the issue of zero-
day phishing attacks. However, despite the very interesting concept, their approach was
not adequately explored so as to reason on the use of GANs for the intended purpose.
Moreover, a multistage multi-class classifier based on semi-supervised GANs is developed
by Santosh Kumar Nukavarapu and Tamer Nadeem [13,14]. Automatic feature extraction
is performed using minimal labeled data while achieving high predictions results in terms
of accuracy. For example, the classifier developed in that study can infer the device type
(IoT, Non-IoT, and anomaly) of any new device with 90% accuracy. In the same study,
the ability of the trained model to support novelty feature detection, such as zero-day
malware attacks, is also demonstrated. The main difference of this approach compared
to the current study is that focus is given to the classification of hardware anomalies that
may occur in an IoT network and not software vulnerabilities. Santos et al. [15] study
and propose a sequence of opcodes in order to add flexibility that enables capturing zero-
day attacks. Additionally, Huda et al. [16] propose a semi-supervised learning model
that receives unlabeled data as input and results in the integration of knowledge about
unknown malware data in an automatic way. This is accomplished through the use of the
unlabeled data in combination with the integration of the k-means clustering algorithm and
the Support Vector Machine (SVM) classifier based on Term Frequency–Inverse Document
Frequency (TF-IDF) features. Their solution, a predecessor to other approaches presented
above, did not, however, engage GANs. Pandey et al. [17] present a similar approach
to the present study by engaging a GAN to generate attack data in order to evaluate the
performance of a Decision Tree (DT) classifier. Through their study, Pandey et al. highlight
the effectiveness of the GAN to generate attack samples that are very similar to real ones
and then examine the way the performance of the DT classifier is affected when those
samples are ingested into the testing dataset. Comparing the study by Pandey et al. with
the methodology presented in this study, the main differences lies on the type of classifiers
used in each study (DT in case of [17] and NN in our study) as well as on the different use
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and evaluation of the synthetically generated data by GANs. In [17] the authors claim that
the already trained DT classifier performs worse when the augmented data are ingested in
the training whilst in the present paper, as shown in Section 4, the behaviour of the NN
classifier is evaluated when the augmented data are ingested both in the training and the
testing dataset. Additionally, Shu et al. [18] designed and developed a GAN model using
a Variational Autoencoder (VAE) that proved very efficient for bypassing an Intrusion
Detection System (IDS). Further, in [18], the authors focus on the efficiency of a properly
trained GAN to bypass IDS.

Moving further from zero-day data generation and exploration using GANs as pre-
sented in the previous paragraphs, other studies can be found that place their main effort
on the detection and classification of zero-day attacks. In this light, Zhou and Pezaros [19]
examine and evaluate six different machine learning models for zero-day intrusion detec-
tion. Their study indicates that the Decision Tree (DT) algorithm achieves the best result
in terms of accuracy (96%) and false positive rate (5%). The six different classifiers were
evaluated using a modified version of the CIC-AWS-2018 intrusion dataset that consists of
eight different types of zero-day attacks. Their approach focuses solely on the evaluation of
different ML classifiers by training them with the CIC-AWS-2018 dataset and not on ex-
ploring the role of GANs for data augmentation. Moreover, the models were not evaluated
in completely unknown threats such as those produced by a GAN, mimicking the author-
ship of zero-day threat. Bilge and Dumitras [20] propose addressing zero-day attacks by
examining and identifying their characteristics before and after an attack takes place. Their
study indicates that, once a vulnerability is revealed, the chance of its exploitation to occur
increases five times. Additionally, the authors report that a zero-day attack can last approxi-
mately for 312 days and at most 30 months. Last but not least, the team suggests a heuristic
approach for zero-day attacks identification [20]. For detection and classification purposes
of zero-day attacks, Alazab et al. [21] propose and develop a machine learning framework
in order to detect a zero-day vulnerability. In their study, eight different ML classifiers
are trained and evaluated based on API call sequences and frequencies. More specifically,
the proposed framework first retrieves the API call sequences from the executable files,
then updates the signature database based on these API calls and finally reports the sim-
ilarity value. The classification task is performed using a supervised learning algorithm
with eight classifiers, namely: Naïve Bayes (NB) Algorithm, k—Nearest Neighbor (kNN)
Algorithm, Sequential Minimal Optimization (SMO) Algorithm with 4 different kernels
(SMO—Normalized PolyKernel, SMO—PolyKernel, SMO—Puk, and SMO—Radial Basis
Function (RBF)), Backpropagation Neural Networks Algorithm, and J48 decision tree. The
SMO—Normalized PolyKernel algorithm achieves the best results in terms of true positive
and false positive rates, 98.6% and 2.5% respectively using Support Vector Machine (SVM)
for the detection of unknown malware samples with obfuscated code [21]. Comar et al. [22]
present a framework for zero-day malware detection that leverages the accuracy of super-
vised classification methods in detecting known classes, combined with the adaptability
of unsupervised learning for the same purpose. Their framework consists of six different
modules, namely: (1) A data capture module, (2) an intrusion detection/prevention system
(IDS/IPS), (3) an information storage module, (4) a feature extraction and transformation
module, (5) a supervised classifier, and (6) a user interface. This framework engages a
class-based profiling technique which enables distinction of unknown and known malware
and is then able, using network traffic features for the SVM classifier, of detecting zero-day
malware [22]. Sharma et al. [23] also propose a zero-day attack prevention strategy, called
Distributed Diagnosis System (DDS), based on context graph strategy. Their solution
consists of three parts, namely: (1) The Central Diagnosis System (CDS), (2) the Local
Diagnosis System (LDS), and (3) the Semi Diagnosis System (SDS). The purpose of the DDS
system is to guarantee the safety of IoT devices against possible zero-day vulnerabilities.
Sharma et al., based on their findings, suggest that it is important to immediately remove a
compromised IoT device in order to mitigate the cascading effects and avoid infection of the
other IoT devices on the network [23]. An interesting PhD thesis with a different aim was
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performed by Michael Glen Miller [24]. Miller forms and examines research questions con-
cerning the adoption of efficient machine learning solutions for zero-day attacks detection.
Additionally, Miller explores the application of feature selection techniques for zero-day
malware data and suggests that the combination of a reduced number of features can lead
to better results based on the classifier. Moreover, the ensemble of different classifiers both
for classification and clustering applications can lead to improved results regarding of
zero-day malware attacks. Studies [19–24] mainly focus on ways to detect different forms of
zero-day vulnerabilities and attacks such as malware, API calls sequence, IoT compromised
devices, etc. The results of these studies are encouraging and promising and pave the way
for further exploration in this domain. Building on these approaches, this study aims to
expand current solutions in a way that adds value both in the direction of data generation
of zero-day attacks as well as in the detection of them. The first part of the present study i.e.,
data generation is of utmost importance as most solutions and approaches underline the
lack of data availability. Additionally, data availability is directly affecting the performance
of detection methods that are based on ML and DL techniques.

3. Data Feature Selection and Generation Using GANs
3.1. Initial Dataset and Features

The original dataset that was used for the purposes of this study was obtained from
the Kaggle Website [25], a well-known repository of open datasets. Based on Kaggle’s
information on this dataset, the raw data have been obtained from the malware security
partner of Meraz’18, the annual techno-cultural festival of IIT Bhiali. The dataset contains
two parts: namely the training data and the evaluation data. More specifically, the training
data include 216,352 records from which 140,849 records are labelled with “0”—malware-
whilst the remaining 75,503 are labelled with “1”—legitimate. The evaluation data consists
of 88,258 records without label. The training data contain 57 (including the ID of each
sample) features which are, as described in paragraph 3.2, reduced for the purposes of this
study. Some statistic details of the dataset can be found in Figure 1.
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The considered dataset is a dataset widely-used for evaluation purposes, thus covering
the needs of this very study. The preprocessing and feature selection procedures are
presented in detail in the next paragraphs of the current section. Additionally, Table A1 in
Appendix A presents the data type of each of the 58 features of the initial dataset.

3.2. Feature Selection

One of the most important stages, before the training and evaluation procedures of
a deep neural network take place, is the feature engineering (pre)processing (or feature
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selection). Feature engineering is the task of selecting the required independent features of
the (initial) dataset in order to improve the overall performance of the predictive model [26].
This kind of processes require high computational costs in terms of hardware resources.
The different approaches used to automate this process rely on feature selection based on
the explicit expansion of the provided datasets following the feature transformation as
well as on their characteristics’ exploration through their evaluation-guided search [27].
Selecting the most relevant features is an important step during the preprocessing stage of
a large dataset that will be later used for training pursposes. It assists in eliminating less
important parts of the data, thus reducing the cost of resources and training time. Some of
the most popular techniques for feature selection are presented below [27]:

• Univariate Feature Selection. This method applies statistical tests to the provided
dataset in order to extract the strongest correlation between the independent features
and the selected output feature. One of the most commonly used methods, which
involves a variety of statistical methods, is the SelectKBest method [28].

• Extra Trees classifier Methods. In the context of this method, an importance score of
each independent feature to the one defined as dependent is extracted. The higher the
score, the more relevant the feature towards the target/depedent variable.

• Correlation Matrix with heatmap, where a 2D (two dimensional) data representation
is acquired. This kind of diagram depicts the relationship between the dependent and
the independent features of the-under study-dataset, where a correlation scale is also
provided (and visualized) through the integrated heatmap.

During the current study, the first steps of the feature engineering process included
the identification and the removal of the n/a (non-available) values in the provided dataset
as well as the recognition and the transformation of the categorical features after the
application of the label encoder [29] to the corresponding values of the initial dataset. The
next steps included the application of the three previously mentioned (feature selection)
methods separately, in order to identify the most relevant features to the independent one
(‘legitimate’ feature column).

Subsequently, the first feature selection method that was applied on the dataset was the
Univariate Feature Selection, and specifically, the SelectKBest method. The feature selection
model was then defined after using the SelectKBest class. For classification purposes,
the ‘f_classif’ method [30] was selected as the scoring function and the target number of
the top extracted features were defined after setting the k parameter equal to thirty (30).
Table 1 depicts the top 30 features of the initial dataset based on their importance score
following the analysis of the UVA feature selection (SelectKBest). It is clear that the most
relevant feature to the independent one seems—for the specific method—to be the so-called
‘SectionsMaxEntropy’.

Table 1. Top 30 features based on their importance score.

Feature Score

SectionsMaxEntropy 9.11329 × 1013

Subsystem 6.35191 × 1014

DllCharacteristics 4.89078 × 1014

MajorSubsystemVersion 4.449 × 1014

ResourcesMinEntropy 2.06557 × 1014

VersionInformationSize 1.80669 × 1014

ResourcesMaxEntropy 1.63419 × 1014

Characteristics 1.18211 × 1014

CheckSum 6.87253 × 1013

SectionsNb 5.43979 × 1014
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Table 1. Cont.

Feature Score

MinorLinkerVersion 3.33103 × 1014

md5 2.65074 × 1014

ExportNb 2.10984 × 1014

SectionsMeanEntropy 1.95062 × 1014

SectionsMinEntropy 1.92938 × 1014

ImportsNbOrdinal 1.688 × 1014

ResourcesMeanEntropy 1.55226 × 1014

ResourcesNb 1.05029 × 1014

MajorImageVersion 9.87539 × 1014

MinorImageVersion 8.74982 × 1014

SectionsMinRawsize 6.96936 × 1013

ImportsNb 6.2723 × 1014

SectionsMinVirtualsize 6.13542 × 1014

SizeOfImage 8.43647 × 1014

FileAlignment 6.20204 × 1014

LoadConfigurationSize 5.33371 × 1014

SizeOfHeaders 4.91498 × 1014

SizeOfUninitializedData 3.80247 × 1014

MajorLinkerVersion 1.85671 × 1014

SectionMaxVirtualsize 1.68149 × 1014

Then, and in order to select a set of the most relevant features to maintain in the final
dataset, the Extra Tree Classifier method was applied [30] so as to compare the results to
the ones produced by the SelectKBest method. Figure 2 visualizes the extracted results
of the feature importance for the top thirty features of the dataset in correlation with the
output target of the ‘legitimate’ feature. It becomes clear that the most important data
feature—using the Extra Tree Classifier method—is the ‘DllCharacteristics’, whereas the least
important one is the ‘SectionsMinVirtualsize’. Additionally, it was observed that the top eight
features depicted in Figure 2 were also the top eight most relevant features in Table 1.

Consequently, following and combining the results of each method presented and
applied separately on the initial dataset, the eight features that were selected for the creation
of the smaller dataset, aimed to be provided as input to the GAN network, so as to generate
similar-looking tabular data, are namely:

1. DllCharacteristics
2. Characteristics
3. SectionsMaxEntropy
4. MajorSubsystemVersion
5. Subsystem
6. ResourcesMinEntropy
7. ResourcesMaxEntropy
8. VersioninformationSize

The aforementioned eight features that were selected are those with the higher impor-
tance based on both feature selection methods applied independently.
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Figure 3 depicts the correlation matrix with the integrated heatmap, a table that
displays the correlation coefficients for the selected eight variables of the final dataset. As
discussed, the correlation matrix depicts the correlation between all possible pairs of values.
By examining the extracted results, it is clear that the most relevant feature (between the
selected ones) is the ‘Subsystem’, while the ‘SectionMaxEntropy’ seems to be the most
irrelevant to the ‘legitimate’ feature. Thus, Figure 3 is a Multivariate Analysis visualization
of the eight most important features, as those were selected by the SelectKBest and the
Extra Trees Classifier methods applied.

3.3. GANs Architecture

Nowadays, the situation of lacking enough data for training neural network models
is often encountered. Ian Goodfellow et al. introduced, in 2014 [31], a deep learning
architecture, namely Generative Adversarial Networks (GANs) destined to address this
issue. The application of these advanced deep learning techniques is intended to generate
multivariate types of synthetic datasets, including images, tabular data, texts, videos, and
music composition, featuring a high similarity degree to the original ones.

Generative Adversarial Networks (GANs) modelling is defined as an architectural
approach that provides and extends the ability of generating new, synthetic datasets, based
on the specified input data as well as on random noise. This study focuses on such a
GAN architecture, which consists of two deep neural network components that behave
in an adversarial manner to each other, namely the generator and the discriminator. The
generator is a deep neural network that receives as input a vector of random numbers,
indicated as random noise, and its main task is the generation of high quality, realistic
data, similar to the provided content. The generated data samples are fed as input to
the discriminator, alongside with a random sample from the initial dataset. On the other
hand, the discriminator is implemented as a sequential deep neural network composed of
dense and dropout layers, that classifies the input samples of data, as real (original) or fake
(generated). The effectiveness of the discriminator (to classify real from fake data samples)
is finally used to update and optimize the overall performance of the GAN (in other words
the performance of both the generator and the discriminator).
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In the current study, the Zero -Day GAN (ZDGAN) model architecture, that was
developed in order to generate 1D (one dimensional) synthetic data from the previously
described dataset (Sections 3.1 and 3.2), was implemented on Tensorflow 2.0 [32] and made
use of the high-level Keras API [33]. Table 2 depicts the output of the generator model
architecture:
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Table 2. Generator model output.

Generator

Layer (Type) Output Shape Number of Parameters

dense (Dense) (None, 1536) 13,824

dense_1 (Dense) (None, 1278) 1,964,286

dense_2 (Dense) (None, 1024) 1,309,696

dense_3 (Dense) (None, 512) 524,800

dense_4 (Dense) (None, 384) 196,992

dense_5 (Dense) (None, 256) 98,560

dense_6 (Dense) (None, 128) 32,896

dense_7 (Dense) (None, 64) 8256

dense_8 (Dense) (None, 32) 2080

dense_9 (Dense) (None, 16) 528

dense_10 (Dense) (None, 9) 153

Total parameters 4,152,071

Trainable parameters 4,152,071

Non-trainable parameters 0

The sequential API was used to create a sequence object in which the different layers
of the proposed deep neural network were stacked. The generator part of the proposed
ZDGAN architecture consists of (i) the input layer that accepts the random generated noise
scaled to the desired size, (ii) nine hidden layers activated with the ‘ReLU’ function and
(iii) the output layer that is activated by the ‘linear’ function and whose dimension is the
same as the dimension of the preprocessed dataset, i.e., equal to nine feature columns, as
described in Section 3.2.

Following the description of the generator model, Table 3 defines the output of the
discriminator model. The discriminator is also a simple, straightforward sequential model
including four dense layers. The first three layers are activated by the ‘ReLU’ function
whilst the output layer is activated by the ‘sigmoid’ function since it distinguishes the input
samples to real (True) or fake (False). Additionally, a dropout rate of 20% was applied to
both the visible (or input) and the two (2) hidden layers of the discriminator model.

Table 3. Discriminator model output.

Discriminator

Layer (Type) Output Shape Number of Parameters

dense_11 (Dense) (None, 128) 1280

dropout (Dropout) (None, 128) 0

dense_12 (Dense) (None, 64) 8256

dropout_1 (Dropout) (None, 64) 0

dense_13 (Dense) (None, 32) 2080

dropout_2 (Dropout) (None, 32) 0

dense_14 (Dense) (None, 1) 33

Total parameters 11,649

Trainable parameters 11,649

Non-trainable parameters 0
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After the description of the generator and the discriminator models, the proposed
ZDGAN model is defined. This could be also characterized as a sequential model that com-
bines the generator with the discriminator functionalities in an adversarial way. Figure 4
depicts the generation process of the preprocessed zero-day data, using the proposed
ZDGAN for synthetic, tabular datasets.
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3.4. GAN Implementation and Data Generation Results

In the previous paragraph, both the generator and the discriminator models were
defined, so as to compose the overall proposed ZDGAN model. Afterwards, the training
procedure was performed in order to proceed with the generation of datasets similar to the
original ones. The training process was configured for 5000 epochs in total. For each epoch,
a batch training of predefined size is performed on both the generator and the discriminator
network. The discriminator accepts as input a predefined batch of data samples from the
dataset as described in Section 3.2 along with the generated output data sample from the
generator and computes the discriminator loss for both the real and the generated images.
The loss values are, first, calculated separately and then are combined to form a min-max
equation [31]. Equation (1) describes this min-max game where G is the Generator, D is the
discriminator and V(D, G) is the value function of the min-max game.

minGmaxDV(D, G) = Ex∼pg(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

Equation (1) can be applied to the ZDGAN of this study as it consists of straight-
forward multilayer perceptrons. As soon as the variables pz(z) for the input noise are
“learned”, then the generator’s distribution pg(x) over data x can be learned too. Following
this, the representation of the mapping to data space as G(z) takes place, where G is a
differentiable function represented by a multilayer perceptron with parameters θg. Af-
terwards, a second multilayer perceptron D(x) ) is defined which outputs a single scalar
as described previously. D(x) represents the probability that x originated from the data
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rather than the generator’s distribution pg. Finally, the discriminator is trained to maximize
the probability of assigning the correct label to both the original and generated images and
samples, whilst the generator is trained to minimize log(1 − D(G(z))).

To this end, the discriminator losses improve the discriminator model’s exposed
predictions and lead to the computation of the generator losses and the gradient, because
of the employment of backpropagation processes. However, the generator continues
to improve the synthetically (in tabular format) generated data samples, through the
continuous updates of the generator weights using these gradients.

As becomes apparent from Figure 5, the losses are saturating after a certain point of
the executed iterations, during the generation process of zero-day (malware-based data in
tabular format) samples, both for the generator and the discriminator. More specifically,
the generator loss started quite high, close to 1400, whilst the discriminator loss was
considerably lower, approximately 0.667. This was an expected result, as in the beginning
of the training process, the generator could not produce synthetic tabular data similar
to the real ones. Hence, the discriminator could, quite easily classify them correctly. As
the training process progressed, the generator loss started to reduce, taking values from
665 to 6.5, spanning the iterations 2 to 10, and between 0.544 and 4.897 for the iterations
from 11 to 590. At this point, it is worth mentioning that, even though the generator seems
to be stabilized after the iteration 1500, nonetheless some (loss) spikes are observed until
the end of the training process (e.g., at the 4385th iteration, where is equal to 10.761). This
phenomenon could be characterized as an isolated failure of the model, during the training
process, due to the random noise introduced to it, in order to generate random samples.
During the same iteration intervals, the discriminator loss increased since it was no longer
as easy to correctly classify the synthetic tabular datasets with high probability.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 5. (a) Generator and discriminator losses full scale. (b) Generator and discriminator losses 

zoomed in scale 0–150. 

After the completion of the ZDGAN training process, the result of this adversarial 

procedure leads to the creation of a robust generator model, whose generated synthetic 

data samples in tabular format are quite difficult to be classified as original or generated 

by the discriminator model. 

Apart from developing powerful and similar-looking synthetic data using the 

previously described cutting-edge technique, one of the most important and challenging 

parts of this study was the choice of the similarity evaluation metrics, so as to evaluate 

whether the synthetic, generated data were structurally and statistically similar to the 

original data. Firstly, the similarity between these tabular data (namely real and fake data 

in our study) was measured for each pair-columns independently. Afterwards, the 

relationships across multiple variables (columns) in each dataset were measured. Figure 

6 determines the similarity between pair variables using Distribution Metrics techniques. 

The statistical similarity between the pair variables of the real (original) and the fake 

(generated) dataset was calculated by evaluating their probability distributions. More 

specifically, following the extraction of nine histogram visualizations (one for each of the 

dataset’s features as described in Section 3.2 and one for the target data label-legitimate) 

of pair variables in the original and the generated dataset, it became clear that the depicted 

probability distributions were in the same range for both the synthetic data and the 

original dataset. 

Figure 5. (a) Generator and discriminator losses full scale. (b) Generator and discriminator losses
zoomed in scale 0–150.

After the completion of the ZDGAN training process, the result of this adversarial
procedure leads to the creation of a robust generator model, whose generated synthetic
data samples in tabular format are quite difficult to be classified as original or generated by
the discriminator model.

Apart from developing powerful and similar-looking synthetic data using the previ-
ously described cutting-edge technique, one of the most important and challenging parts
of this study was the choice of the similarity evaluation metrics, so as to evaluate whether
the synthetic, generated data were structurally and statistically similar to the original data.
Firstly, the similarity between these tabular data (namely real and fake data in our study)
was measured for each pair-columns independently. Afterwards, the relationships across
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multiple variables (columns) in each dataset were measured. Figure 6 determines the
similarity between pair variables using Distribution Metrics techniques. The statistical
similarity between the pair variables of the real (original) and the fake (generated) dataset
was calculated by evaluating their probability distributions. More specifically, following
the extraction of nine histogram visualizations (one for each of the dataset’s features as
described in Section 3.2 and one for the target data label-legitimate) of pair variables in
the original and the generated dataset, it became clear that the depicted probability dis-
tributions were in the same range for both the synthetic data and the original dataset.
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Figure 7 depicts the absolute mean and the standard deviation (STD) of numerical
data between the original and the generated dataset. Both the mean absolute deviation and
the STD are a measure of variability, providing information on how spread out considered
datasets are. Figure 7 indicates that the data values are very close to the mean and the
STD, since the distance of each data point to these two statistical points seems quite small.
Thus, the depicted mean absolute and STD distributions of the original and generated
datasets are (almost) overlapping, therefore allowing us to deduce that the spread of each
corresponding dataset was similar, while also being most likely that the two datasets are
quite close to each other form a statistics viewpoint.
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Figure 7. Absolute, log, mean and STD of original (real) and generated (fake) data.

Figure 8 visualizes the first two components of the Principal Component Analysis
(PCA), a linear feature extraction technique for performing a linear mapping of the data
to a lower-dimensional space in such a way that the variance of the data in the low-
dimensional representation is maximized. The distributions featured in Figure 8 indicate
that the observed correlation in the depicted PCA dimensions is quite high between the
variables of the original and the generated dataset. Based on the fact that a small number of
uncorrelated variables are observed, this could lead to the extraction of similar conclusions
regarding the data properties (data features) of both the original and the generated datasets,
which feature a high degree of similarity and (feature) correlation between each other.
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Figure 9 is composed of eight sub-figures that depict the cumulative sums per feature
(one for each of the eight independent/input data features mentioned in Section 3.2). A
cumulative sum chart can be used to detect and visualize possible deviations between
the original and the generated values as well as small shifts in their mean values (of
the target/original values), collected at different time intervals. Following the results
depicted in the (sub)figures below, no high or important deviation between the process
mean (generated dataset) and the target mean (original dataset), for each of the eight (8)
features was observed. The results provide valuable information on the degree of similarity
(which is indicated as adequately high) for trends, patterns, and thresholds over time, both
on the original and the generated data features.
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generated (fake) dataset.

Finally, Figure 10 visualizes the correlation differences between all the possible pairs
of values in the original (left) and generated (middle) as well as the actual difference (right)
between them, using correlation matrixes with heatmap(s). As can be suggested by the
correlation matrix of Figure 10, correlation coefficients whose magnitude are between 0.2
and 1.3 indicate data variables which can be considered very highly correlated. However,
correlation coefficients whose magnitude is between 0.1 and 0.2 indicate variables that can
be considered highly correlated, whereas the ones whose magnitude is between 0.01 and 0.1
indicate variables that can be considered as moderately correlated. Following the analysis
results depicted in the Correlation Matrices of Figure 10, the high similarity between all
possible pairs of the compared dataset features is clear.
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4. Zero-Day Attacks Classification Using Neural Networks

The effectiveness and the overall contribution of the generated samples produced, as
described in Section 3.4, are further assessed by evaluating a Deep Learning classifier. For
these evaluation purposes, the DL Neural Network classifier was trained firstly with the
original dataset as presented in 3.2 and then with the mixed dataset which contains both
the original and the generated samples. It is worth mentioning that the DL model designed
and studied was not the optimal one (in terms of accuracy and loss), since the study focuses
more on the effectiveness of the data generated via the GANs, than on the performance
of the (presented) deep learning model. Table 4 summarizes the size of the training and
evaluation samples for the three different datasets used.

Table 4. Training, evaluation, and total samples of original, generated and combined dataset.

Training/Evaluation Dataset Original Generated Combined

Training samples 173,080 160,000 333,080

Evaluation samples 43,271 40,000 83,271

Total samples 216,351 200,000 416,351

Additionally, indicative metrics about the training process of the NN classifier are
depicted in Table 5. More specifically, the precision, recall, the F1-score and the support
metrics for each class (0 and 1) are presented. As it is obvious, the ‘Recall’ indicator, the
proportion of actual positive data instances which were correctly predicted, is equal in both
legitimate and non-legitimate label predictions for the two models. On the other hand, the
results of the ‘Precision’ indicator, the proportion of positive cases of data instances that
were successfully predicted, presented a variation. In both models, the computed precision
values were slightly higher for the non-legitimate (zero values), than for the legitimate
values (one’s values). This occurred due to the fact that it was much easier for the model
to successfully predict the non-legitimate data instances. Finally, the ‘F1-score’ indicator,
since it is computed as a combination result of the precision and recall metrics, revealed the
same type of fluctuations, as expected.

Table 5. Training metrics for both training processes of the NN classifier.

Model (Training Dataset) Label Precision Recall F1-Score Support

Original
0 0.98 0.96 0.97 28,170

1 0.93 0.96 0.94 15,101

Combined
0 0.97 0.96 0.97 49,855

1 0.96 0.96 0.96 33,416
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Furthermore, Table 6 depicts False Positives (FP), False Negatives (FN) and Misclas-
sification rates, metrics which were derived from the confusion matrix of each model
respectively. The Confusion matrix is a special kind of contingency table suitable for visual-
izing the performance of the predicted model. Each entry in a confusion matrix denotes
the number of predictions classified by the model correctly or incorrectly. False Positives
(FP) refer to the number of predictions where the trained model incorrectly predicts the
negative classes as positives, whereas False Negatives (FN) refer to the number of predic-
tions, where the positive classes are predicted as negatives incorrectly. The Misclassification
Rate is a performance metric used to evaluate the performance of the trained model. This
metric, also known as Classification Error or Error Rate (metric), provides the fraction of
predictions that are incorrectly classified by the model. It is also worth noting that the
metrics depicted in Table 6 are only used to evaluate the performance of the model and are
irrelevant to the loss function [34]. The last parameter (loss function) is used to optimize
the performance of the model, after its continuous effort to minimize the model’s losses
during the training loop procedure [35]. The loss function that was selected during the
training procedures of our models was the ‘categorical_crossentropy’.

Table 6. False Positives (FP), False Negatives (FN) and Misclassification Rates for the original and
combined datasets.

Training/Evaluation Dataset Original Generated Combined

FP Rate FN Rate FP Rate FN Rate FP Rate FN Rate

Original 1047 677 1858 2173 24,990 5376

Combined 3573 2767 7501 3724 1503 1507

Misclassification Rate
Original Combined Original Combined Original Combined

0.0398 0.1456 0.1008 0.2806 0.3647 0.036

After the completion of both training procedures, the two models were evaluated
by providing them the original dataset, the generated dataset and a combined dataset
which contained both original and generated samples as input. The accuracy, validation
loss results, as well as the False Positives (FP), False Negatives (FN), and Misclassification
Metrics, of these six (three and three) evaluations phases are summarized in Tables 6 and 7.

Table 7. Accuracy and loss results for different trained model of the NN classifier and three different
evaluation datasets.

Training/
Evaluation Dataset Original Generated Combined

Accuracy Loss Accuracy Loss Accuracy Loss

Original 0.9602 0.1266 0.7642 0.2935 0.6334 0.6646

Combined 0.8535 0.1184 0.7194 0.1689 0.9642 0.1184

These results indicate the effectiveness and the contribution of the generated dataset
and how this can lift data limitations in such sensitive applications such as zero-day attacks.
As it is obvious, the model that was trained with solely the original dataset was efficient
when it was evaluated only using data from the original dataset. However, its performance
in the combined dataset was quite poor, especially, in terms of loss compared to every
other scenario. On the contrary, the model trained with the combined dataset achieved
remarkable results when evaluated with a combined dataset but the results for other
evaluation datasets are, also, better in terms of the loss metric. Additionally, as far as the
misclassification rate is concerned, the model that was trained with the combined dataset
performed slightly better overall. Taking into account all of the results featured above,
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the significance of data generation using cutting edge technologies, like GANs, in order
to create and provide larger and better datasets in an era where data are considered to
be very valuable and the lack of them consists a major limitation of Artificial Intelligence
applications, is documented. Such data inadequacy is the consequence of data privacy
policies around the world which have hindered data from being shared and used efficiently
for further analytics and innovation. The goal and the added value of this study is to solve
this conflict between data privacy and data availability.

5. Conclusions

The present study aimed to describe a complete methodology for synthetic zero-
day attacks data generation using GANs as well as to highlight the significance of such
generation by comparing the same Neural Network classifier trained with and without
generated samples. The data generation process engaged a Kaggle’s dataset which contains
the raw data that had been obtained from the malware security partner of Meraz’18,
the annual techno-cultural festival of IIT Bhiali. Based on these tabular format data, the
ZDGAN architecture, that was presented in detail in Section 3, produced 200,000 new
zero-day data samples which were almost identical to the original.

In order to evaluate the added value of the proposed data generation process using
GANs, a Neural Network classifier was evaluated by using different training inputs.
Specifically, the NN classifier, presented in Section 4, was trained using three different
zero-day datasets: (i) the original dataset from Kaggle, (ii) the generated samples dataset
and (iii) a combination of the two aforementioned datasets. The accuracy and loss results
indicated that the performance of the NN classifier was better when the large dataset,
which was produced from the combination of the original and the generated datasets, was
used. This indicated that through the suggested data generation process using GANs,
currently existing datasets can be expanded in order to improve the training process of DL
algorithms. This is very important for cybersecurity experts as it is very difficult to have
large, high-quality datasets especially related to zero-day attacks. Thus, the use of GANs
for creating data samples can result to the production of new large datasets which can
then be used to efficiently train DL classifiers to achieve better results in terms of zero-day
detection and classification of eminent zero-day threats.

The future prospect of this study is to expand the categories and the generated data
domains into other domains, different data formats as well as other cyberthreats. Moreover,
the exploration of lifelong learning techniques both for the data generation as well as
for zero-day detection and classification of zero-day attacks is a future step towards this
direction. Additionally, by engaging lifelong learning techniques, newly discovered data
from real-world zero-day attacks can be fed to the ZDGAN in order for the later to learn
new patterns and adjust accordingly the generator results in an endless loop of training-
generation-evaluation. This will lead to constantly updated datasets and trained DL
algorithms which will not only be able to detect but also to predict possible zero-day
vulnerabilities or attacks for newly launched software solutions.
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Appendix A

Table A1. Initial dataset features and their data types.

Feature Data Type

ID int64

md5 object

Machine object

SizeOfOptionalHeader int64

Characteristics int64

MajorLinkerVersion float64

MinorLinkerVersion int64

SizeOfCode int64

SizeOfInitializedData int64

SizeOfUninitializedData int64

AddressOfEntryPoint int64

BaseOfCode int64

BaseOfData int64

ImageBase float64

SectionAlignment int64

FileAlignment int64

MajorOperatingSystemVersion int64

MinorOperatingSystemVersion int64

MajorImageVersion int64

MinorImageVersion int64

MajorSubsystemVersion int64

MinorSubsystemVersion int64

SizeOfImage int64

SizeOfHeaders int64

CheckSum int64

Subsystem int64

DllCharacteristics int64

SizeOfStackReserve int64

SizeOfStackCommit int64

SizeOfHeapReserve int64
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