
Citation: Fei, Y.; Liao, J.; Zhang, Z.

Consistency and Discrepancy

between Visibility and PM2.5

Measurements: Potential Application

of Visibility Observation to Air

Quality Study. Sensors 2023, 23, 898.

https://doi.org/10.3390/s23020898

Academic Editor: Eric P. Achterberg

Received: 21 November 2022

Revised: 28 December 2022

Accepted: 31 December 2022

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Consistency and Discrepancy between Visibility and PM2.5
Measurements: Potential Application of Visibility Observation
to Air Quality Study
Ye Fei, Jie Liao * and Zhisen Zhang

National Meteorological Information Center (NMIC), China Meteorological Administration (CMA),
Beijing 100081, China
* Correspondence: liaoj@cma.gov.cn; Tel.: +86-10-68408812

Abstract: High-quality measurements of air quality are the highest priority for understanding
widespread air pollution. Visibility has been widely suggested to be a good alternative to PM2.5

concentration as a measure. In this study, the similarities and differences between visibility and
PM2.5 measurements in China are checked and the results reveal the potential application of visibility
observation to the study of air quality. Based on the quality-controlled PM2.5 and visibility data from
2016 to 2018, the nonparametric Spearman correlation coefficient (ρ) values between stations for PM2.5

and visibility-derived surface extinction coefficient (bext) decrease as the station distance (R) increases.
Some relatively low ρ values (<0.4) occur in regions characterized by the lowest (background) levels
of PM2.5 and bext values, for example, the Tibetan and Yungui Plateau. The relatively lower ρ

for bext compared to PM2.5 is probably caused by the predefined maximum threshold of visibility
measurements (generally 30 km). A significant correlation between PM2.5 and bext is derived in most
stations and relatively larger ρ values are evident in eastern China (Northeast China excluded) and in
winter (the national median ρ is 0.67). The abrupt changes in specific mass extinction efficiency (αext)
imply a potentially large influence of alternation of visibility sensors or recalibrations on visibility
measurements. The bext data are thereafter corrected by comparison to the reference measurements
at the adjacent stations, which leads to a three-year quality assured of visibility and bext datasets.

Keywords: PM2.5; visibility; surface extinction coefficient; abrupt changes; dataset

1. Introduction

As a byproduct of rapid and energy-intensive economic development, a huge amount
of precursors and particles are emitted into the atmosphere. Anthropogenic emissions,
working with natural emissions such as dust and biomass burning, lead to a thick layer of
extensive haze covering thousands or tens of thousands of acres. Large areas of haze occur
all over the world but are more often observed in developing countries. For example, a
dense blanket of polluted air often occurs in eastern China, especially over the North China
Plain in winter and in central eastern China in the crop harvest season [1–5]. Similarly,
a thick brownish-gray haze often covers much of the Ganges Plain in the pre-monsoon
season [6].

Measurements are the highest priority for understanding the formation and mainte-
nance of widespread haze events and their extensive impacts. Ground measurement is the
usual approach to obtaining accurate measurements of air quality indexes, among which
PM2.5 concentration (particulate matter with aerodynamic diameter < 2.5 µm) is the key
component. PM2.5 fine particles are critical because of their extensive impacts. PM2.5 is the
major factor leading to a reduction in visibility in the absence of precipitation. Visibility
has reduced in the past half-century in many regions of the world owing to the increase in
aerosol emissions into the atmosphere [7–9]. An increase in PM2.5 also lead to the reduction
in solar energy reaching the ground across the world from 1960 to the 1980s that was known
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as global dimming [10–12]. As cloud condensation nuclei, cloud formation and lifetime are
intimately linked to fine particles in the atmosphere, which is the hottest debated issue in
the study of climate change [13,14]. Moreover, PM2.5 can penetrate deeply into the lungs of
human beings and thereby lead to disastrous impacts on human health [15,16].

Real-time hourly PM2.5 concentration measurements are available in many countries,
which has greatly contributed to the study of air quality and related topics. The data
are widely used in the following ways. (1) to study how and why air quality varies
spatiotemporally [17,18]; (2) to validate model and satellite remote sensing products [19,20];
(3) to establish aerosol hygroscopic growth parameterization [21,22]; and (4) to study effects
of air quality on human health [23].

Because air quality stations in mainland China are mainly located in urban areas and
the spatial variability of air quality is substantial, we need extra measures to enhance the
spatial coverage of national air quality networks. Local governments have established
provincial air quality networks, which can, to some extent, fill the gap, but the stations are
still mostly located in urban areas. Satellite imaging is widely suggested to be a potential
alternative for monitoring large-scale air quality. Much effort has been paid and great
progress has been made in this approach [24–26]. However, ground measurements are
required by satellite remote sensing algorithms to improve their performance. Moreover,
the temporal coverage of satellite retrieval is highly sensitive to the occurrence of clouds,
snow, and even heavy aerosol events, all of which make image retrieval impossible [20].

Meteorological visibility is one of the operational meteorological observation pa-
rameters that reflect the abundance of solid and liquid particles in the atmosphere. The
reduction in visibility is likely due to fogs or enhancements of natural and/or anthro-
pogenic aerosols [27,28]. It is widely used as a good proxy for aerosols in the absence of
rain and fog [7,29,30]. Traditionally, visibility (with units of km) is measured manually
every 1–8 h, following the general rules outlined by the World Meteorological Organization.
Human observation is subjective in nature, and may, therefore, eventually produce notable
uncertainties. More importantly, in order to reduce cost, human observation has been
gradually replaced by instrumental observation. For example, the China Meteorological
Administration (CMA) established a national visibility network using a forward-scatter
visibility sensor that provides hourly visibility measurements at more than 2000 automatic
stations across the country [31]. This not only plays an important role in meteorological
and air traffic services but is also a potential complementary network for the study of air
quality. One would expect much more from this automatic observation because of the
following reasons. First, automatic observation is objective in nature, which lends it good
reproducibility and comparability. Second, it can provide hourly or even once-a-minute
measurements. Third, automatic visibility observation can be made under harsh environ-
ments and therefore has larger spatial coverage. At the same time, these advantages are
overwhelmingly dependent on good maintenance and the regular calibration of sensors.

Both measurements (PM2.5 and visibility) are not free of measurement uncertainties
and in some cases, the uncertainties may exceed the specified expectation. Many methods
are thereby developed to check the data quality of meteorological and environmental
data [32]. These methods mainly rely on the spatiotemporal variability of a simple variable,
but one should keep in mind that it is not easy to detect true outliers from spurious data
with large measurement uncertainties. Because aerosol measurements are often associated
with notable uncertainties, it is strongly recommended to compare as many measurements
of the same quantities as possible by different measurement techniques. This is a robust
tool to assess measurement uncertainties and detect outliers. PM2.5 measurements by
the Tapered Element Oscillating Microbalance (TEOM) or the beta absorption method
(BAM) represent dry particulate matter mass (RH < 40%). The visibility measured by
the visibility sensor represents the ambient extinction in the atmosphere, which is related
to PM2.5 concentrations when aerosol hygroscopic growth is carefully considered. A
good linear relation between PM2.5 and the visibility-derived extinction coefficient (bext) is
observed based on short-term measurements [33,34]. However, analysis of the consistency
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and discrepancy between PM2.5 and visibility measurements may show a few important
issues which have not been revealed by previous univariate analyses of measurement
uncertainties. This tells us that caution should be taken in applying visibility measurements
in the study of air quality. The rest of this paper is structured as follows. Section 2 introduces
the data and method. Section 3 presents major results; and the discussion and conclusions
are summarized in Section 4.

2. Data and Method

Hourly PM2.5 and PM10 concentrations (µg m−3) are available at ~1600 stations that
cover at least one-year worth of measurements for the period from 2016 to 2018. The spatial
distribution of the stations is shown in Figure 1, which clearly shows that the stations are
clustered in urban regions, for example, 12 national stations are mainly located in urban and
suburban areas of Beijing. Conversely, the visibility stations are much more evenly distributed,
especially in eastern China (Figure 1). Hourly visibility data (km) are available from the
National Meteorological Information Center (NMIC) of CMA at 2395 stations for the period
from 2016 to 2018. Visibility is divided by 2.996 to derive the extinction coefficient (bext: Mm−1)
according to the instrument manual [35]. Hourly relative humidity (RH) measurements are
also available from the NMIC to allow a humidity correction of bext.
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The data quality assurance procedure of Wu et al. [36] is adopted in this paper to
provide quality control for the PM2.5 and bext data. In general, measurements that are
greatly deviated from the observations at the adjacent time or in neighboring areas or have a
very low temporal variance are classified as outliers. Regular calibration of instruments and
consistency between PM2.5 and PM10 are checked for assurance of PM2.5 data. For bext data,
the consistency between 10 min and 1 min measurements is checked for assurance [31].

In order to check the relationship between PM2.5 and bext, PM2.5 measurements at
stations no further than 25 km from a visibility station are averaged to match bext data.
This collocation procedure trades off two requirements. One is to match PM2.5 and bext
at stations that are adjacent to each other as close as possible in order to minimize the
potential effect of spatial variation; the other is to collocate substantially more bext and
PM2.5 stations for statistical analysis. Simultaneous measurements of PM2.5 and bext are
available at 502 stations (Figure 1b) that are used for the following analysis.

Spatial Spearman correlation coefficients (ρ) of PM2.5 concentration and ambient bext
between stations are calculated separately. The variation of ρ with the distance between
stations (R) is studied. A few abnormally lower ρ values are found, especially for bext data
in some provinces, which implies potentially larger random errors of visibility and then
bext measurements than that of PM2.5.

The linear regression between hourly PM2.5 and bext for RH < 40% are performed to
check their consistency, the slope of which represents the specific mass extinction efficiency
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(αext). αext can also be calculated directly by dividing bext by PM2.5. In some stations, αext
shows a few abrupt changes that are detected by a simple but effective approach developed
by Killick et al. [37]. This implies a potentially large influence of alternation of visibility
sensors or re-calibrations. The visibility or bext data of the collocated 502 stations are
detected and corrected by comparison to the reference PM2.5 measurements, and thereby
the visibility in these stations is set as the benchmark. The detection and correction of
the remaining 1893 visibility stations should compare to the visibility measures in nearby
stations. When there is a benchmark station nearby (<30 km), the visibility measurement of
the benchmark station is set as the baseline. Otherwise, the regional average visibility of all
meteorological stations within 100 km is set as the reference series. After all corrections
are completed, a dataset consisting of three years worth of visibility and bext data is
finally produced.

3. Results

Figure 2 shows the scatterplot of ρ versus R. The ρ values between two stations for
PM2.5 and bext are calculated because both quantities are not normally distributed. Not
surprisingly, ρ decreases as R increases. The decay of ρ with R may be represented by an
exponential equation [38].

ρ = ρ0 exp
(
− R

R0

)γ

(1)

where the coefficient R0 indicates the distance at which ρ decreases by a factor of e, repre-
senting the horizontal scale of the correlation. ρ0, the zero intercept, represents ρ where
the station distance is zero. The appropriate value for γ, the parameter determining how
ρ decays with R, is not obvious. A range of possible values is considered that leads to
substantially large variations of R0, but not ρ0. As suggested by Liu et al. [39], ρ0 provides
information on the uncertainty of the measurements (σ2(e)), i.e.,

σ2(e) = (1 − ρ0)σ
2(M) (2)

where σ2(M) represents the variance of the measurements. The relative uncertainty of
PM2.5 is 15% and bext is 20%, which are close to the expected measurement uncertainties.
An interesting feature of Figure 2 is that some relatively lower ρ values (<0.4) are observed
for R < 50 km, not only for PM2.5 but also for bext. A further check of these low ρ values
shows that they occur in regions characterized by the lowest (background) levels of PM2.5
and bext values, for example, in the Tibetan and Yungui Plateau. This can be clearly shown
by Figure 3 in which mean ρ values of PM2.5 and bext between stations with R < 50 km are
shown. Relative smaller ρ values are also found in Northeast China where PM2.5 and bext
exceed that in the Tibetan and Yungui Plateau.

ρ for visibility and, therefore, bext, between stations are smaller than that of PM2.5,
which can be evident from Figure 2 and their fitting equations. The most likely explanation
is that the maximum visibility is generally set to be 30 km (about 100 M m−1 for bext). Given
the fact that αext is about 5 m2 g−1 in eastern [33] and southwest China [34], the threshold
of visibility prevents visibility measurements from resolving PM2.5 variation from a few
to 20–30 µg m−3. In other words, visibility data cannot reflect a subtle variation in the
background level of PM2.5 and bext as a result of their predefined maximum threshold.
Therefore, it is recommended that raw bext data and visibility data be provided, which
would be critical for the application of visibility data to the study of air quality study, or,
more specifically, in the estimation of PM2.5 from visibility data.



Sensors 2023, 23, 898 5 of 12Sensors 2023, 22, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 2. The scatterplot of correlation coefficient (ρ) versus station distance (R) for PM2.5 (a) and bext 

(b). An exponential equation is derived to describe the relationship between ρ and R, which is also 

shown. 

 

Figure 3. Spearman correlation coefficient (ρ) between stations with a distance of less than 50 km 

for PM2.5 (b) and bext (a). 

ρ for visibility and, therefore, bext, between stations are smaller than that of PM2.5, 

which can be evident from Figure 2 and their fitting equations. The most likely explana-

tion is that the maximum visibility is generally set to be 30 km (about 100 M m−1 for bext). 

Given the fact that αext is about 5 m2 g−1 in eastern [33] and southwest China [34], the 

threshold of visibility prevents visibility measurements from resolving PM2.5 variation 

from a few to 20–30 μg m−3. In other words, visibility data cannot reflect a subtle variation 

in the background level of PM2.5 and bext as a result of their predefined maximum thresh-

old. Therefore, it is recommended that raw bext data and visibility data be provided, which 

would be critical for the application of visibility data to the study of air quality study, or, 

more specifically, in the estimation of PM2.5 from visibility data. 

Figure 4 presents the seasonal spatial distribution of ρ between PM2.5 and bext under 

conditions with RH < 40%, under which temporal variation of PM2.5 should be expected 

to resemble that of bext because the hygroscopic growth is marginal. As summer (rainy 

season) match points between PM2.5 and bext are very limited if an RH of 40% is used in 

eastern China, we used an RH of 60% to produce sufficient match points to perform a 

robust statistical analysis. In order to minimize the potential effect of hygroscopic growth, 

the ambient light scattering enhancement (fRH) of PM2.5 is considered by using an empirical 

equation below. 

Figure 2. The scatterplot of correlation coefficient (ρ) versus station distance (R) for PM2.5 (a) and bext (b).
An exponential equation is derived to describe the relationship between ρ and R, which is also shown.

Sensors 2023, 22, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 2. The scatterplot of correlation coefficient (ρ) versus station distance (R) for PM2.5 (a) and bext 

(b). An exponential equation is derived to describe the relationship between ρ and R, which is also 

shown. 

 

Figure 3. Spearman correlation coefficient (ρ) between stations with a distance of less than 50 km 

for PM2.5 (b) and bext (a). 

ρ for visibility and, therefore, bext, between stations are smaller than that of PM2.5, 

which can be evident from Figure 2 and their fitting equations. The most likely explana-

tion is that the maximum visibility is generally set to be 30 km (about 100 M m−1 for bext). 

Given the fact that αext is about 5 m2 g−1 in eastern [33] and southwest China [34], the 

threshold of visibility prevents visibility measurements from resolving PM2.5 variation 

from a few to 20–30 μg m−3. In other words, visibility data cannot reflect a subtle variation 

in the background level of PM2.5 and bext as a result of their predefined maximum thresh-

old. Therefore, it is recommended that raw bext data and visibility data be provided, which 

would be critical for the application of visibility data to the study of air quality study, or, 

more specifically, in the estimation of PM2.5 from visibility data. 

Figure 4 presents the seasonal spatial distribution of ρ between PM2.5 and bext under 

conditions with RH < 40%, under which temporal variation of PM2.5 should be expected 

to resemble that of bext because the hygroscopic growth is marginal. As summer (rainy 

season) match points between PM2.5 and bext are very limited if an RH of 40% is used in 

eastern China, we used an RH of 60% to produce sufficient match points to perform a 

robust statistical analysis. In order to minimize the potential effect of hygroscopic growth, 

the ambient light scattering enhancement (fRH) of PM2.5 is considered by using an empirical 

equation below. 
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PM2.5 (b) and bext (a).

Figure 4 presents the seasonal spatial distribution of ρ between PM2.5 and bext under
conditions with RH < 40%, under which temporal variation of PM2.5 should be expected
to resemble that of bext because the hygroscopic growth is marginal. As summer (rainy
season) match points between PM2.5 and bext are very limited if an RH of 40% is used in
eastern China, we used an RH of 60% to produce sufficient match points to perform a
robust statistical analysis. In order to minimize the potential effect of hygroscopic growth,
the ambient light scattering enhancement (fRH) of PM2.5 is considered by using an empirical
equation below.

fRH = 1 + κ· RH
(100 − RH)

(3)

where κ is set to 0.096 according to the reference [29].
Consistent with our expectation, a significant correlation between PM2.5 and bext

is derived in most stations. The percentages with significant correlation are 91%, 89%,
88%, and 93% from spring to winter. Relatively larger ρ values are evident in eastern
China (Northeast China excluded), for example, in the Beijing-Tianjin-Hebei (BTH), the
Yangtze Delta Region (YDR), and Pearl Delta Region (PDR). This is partly because of a
wider range of PM2.5 and bext variation, which leads to a larger difference in ranks of the
individual element and thereby ρ. In regions with low aerosol loading, for example, in the
Tibetan autonomous region, Qinghai, and Yunnan Province, relatively smaller ρ values are
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observed. This is likely because the measurement uncertainties prevent the very subtle
variation in both quantities from detection. Poor correlations are also evident at most
stations in northeastern China, which seems not to be explained by the latter cause since
PM2.5 and bext in this region generally exceed those in the Tibetan Plateau. Given the fact
that visibility sensors are much more accurate for smaller visibility (<10–15 km) relative to
larger visibility, this should be kept in mind when the visibility data are used to estimate
PM2.5, especially in those regions dominated by PM2.5 concentration with tens of µg m−3.

Sensors 2023, 22, x FOR PEER REVIEW 6 of 13 
 

 

fRH = 1 + 𝜅 ∙
RH

(100 − RH)
 (3) 

where 𝜅 is set to 0.096 according to the reference [29]. 

 

Figure 4. Spatial distribution of the Spearman correlation coefficient between PM2.5 and visibility-

derived extinction coefficient (bext). The solid (open) circle represents a significant correlation (at 

99% of significance level) or not, respectively. 

Consistent with our expectation, a significant correlation between PM2.5 and bext is 

derived in most stations. The percentages with significant correlation are 91%, 89%, 88%, 

and 93% from spring to winter. Relatively larger ρ values are evident in eastern China 

(Northeast China excluded), for example, in the Beijing-Tianjin-Hebei (BTH), the Yangtze 

Delta Region (YDR), and Pearl Delta Region (PDR). This is partly because of a wider range 

of PM2.5 and bext variation, which leads to a larger difference in ranks of the individual 

element and thereby ρ. In regions with low aerosol loading, for example, in the Tibetan 

autonomous region, Qinghai, and Yunnan Province, relatively smaller ρ values are ob-

served. This is likely because the measurement uncertainties prevent the very subtle var-

iation in both quantities from detection. Poor correlations are also evident at most stations 

in northeastern China, which seems not to be explained by the latter cause since PM2.5 and 

bext in this region generally exceed those in the Tibetan Plateau. Given the fact that visibil-

ity sensors are much more accurate for smaller visibility (<10–15 km) relative to larger 

visibility, this should be kept in mind when the visibility data are used to estimate PM2.5, 

especially in those regions dominated by PM2.5 concentration with tens of μg m−3. 

Seasonally, relatively larger ρ values occur in winter (the national median ρ is 0.67) 

and smaller ρ values are observed in summer (the national median ρ is 0.54). This is likely 

because the variability in PM2.5 and bext in summer is smaller than that in winter. Further-

more, the temporal variation of aerosol chemical components, size distribution, and, 

therefore, the aerosol hygroscopic growth, may partly contribute to the smaller ρ values 

in summer, although the hygroscopic growth is considered in the analysis. 

A temporal variation in the relationship between PM2.5 and bext is evident in some 

stations after a closer look at the scatter plot of PM2.5 and bext at each station. Figure 5 

presents an example at Yangzhou, Jiangsu province, which shows a dramatically different 

relationship between PM2.5 and bext in 2016 relative to that in 2017 and 2018. This results 

in a poor correlation between the two quantities. The substantial change in the PM2.5-bext 

relationship may not be due to the temporal changes in aerosol compositions that mainly 

Figure 4. Spatial distribution of the Spearman correlation coefficient between PM2.5 and visibility-
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of significance level) or not, respectively.

Seasonally, relatively larger ρ values occur in winter (the national median ρ is 0.67)
and smaller ρ values are observed in summer (the national median ρ is 0.54). This is
likely because the variability in PM2.5 and bext in summer is smaller than that in winter.
Furthermore, the temporal variation of aerosol chemical components, size distribution, and,
therefore, the aerosol hygroscopic growth, may partly contribute to the smaller ρ values in
summer, although the hygroscopic growth is considered in the analysis.

A temporal variation in the relationship between PM2.5 and bext is evident in some
stations after a closer look at the scatter plot of PM2.5 and bext at each station. Figure 5
presents an example at Yangzhou, Jiangsu province, which shows a dramatically different
relationship between PM2.5 and bext in 2016 relative to that in 2017 and 2018. This results
in a poor correlation between the two quantities. The substantial change in the PM2.5-bext
relationship may not be due to the temporal changes in aerosol compositions that mainly
affects the slope of the regression analysis (i.e., αext). We can see that a dramatic change
in the intercept (from ~ −47 to ~265 M m−1 in winter) is observed, which implies some
unusual changes in the observations in one quantity but not in the other.

It is interesting to note that PM2.5 observations at three adjacent stations (within 5 km)
are close to each other and show a similar pattern in the three years of the study. Conversely,
bext shows a striking phenomenon, that is, in 2016, it is extremely different from 2017 and
2018 (Figure 6). The relatively larger bext cannot be supported by contemporaneous PM2.5
observations. PM2.5 in these three years at these three stations shows a consistent and
stable variation. The abnormally high bext in 2016 is very likely owing to the calibration or
replacement of the visibility sensor, although this needs to be checked against the metadata.
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adjacent stations.

Abrupt changes in visibility and thereby bext are also evident from another perspective.
Figure 7 presents the time series of the ratio of station bext to the regional mean bext in
Tianjin, a municipal city near Beijing. A sudden drop in bext values occurred at stations 04,
07, 10, and 12 at the beginning of 2018, which cannot be reflected by PM2.5 measurements
(Figure 8). Since the stations are located in a very small region, this abrupt and inconsistent
change of bext is very likely associated with the recalibration or alternation of the sensors.
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Figure 8. As Figure 7 but for PM2.5 data at 18 stations in Tianjin.

Given the fact that PM2.5 is stable but visibility, and hence bext, drifts with time, the
time series of αext should show abrupt change points. Therefore, a simple but effective
method developed by Killick et al. [37] is used to detect those change points. This method
can detect abrupt changes in the mean, variance, and trend of the time series; we only detect
the change points of the mean values of αext here. Figure 9 presents an example of this
analysis. The value of αext, i.e., the ratio of bext to PM2.5 under RH < 40%, shows two change
points (Figure 9d), which can be also clearly shown by the scatter plot of PM2.5 and bext
(Figure 9a). Since αext values during the first two periods are abnormally higher than the
expectation, indicating the abnormal measurement of bext (Figure 9b), bext measurements
are then corrected by taking the measurements during the third period as the benchmark.
Linear regression between bext and PM2.5 during the three periods is performed, leading to
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three linear equations. The questionable bext values during the first two periods are then
corrected by using the following equations.

bi
ext = bi

ext·
Ar + Br·PMi

2.5

Ai + Bi·PMi
2.5

(4)

where i is the first or second period, and Ai and Bi represent the intercept and slope of the
linear equation for the first or second period. The intercept and slope of the linear equation
for the third period, the reference period, are represented by Ar and Br, respectively. The
corrected result is shown in Figure 9b, which shows a much better correlation between bext
and PM2.5 (0.87) than before (0.57) (Figure 9a). As shown in Figure 10, the time series of
the ratio of corrected bext at an individual station to the regional mean in Tianjin are much
more homogeneous compared to the series in Figure 7.
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The method above is also suitable for the correction of visibility. Based on the method
developed above, the visibility or bext data of the selected 502 stations are detected and
corrected by comparison to the reference PM2.5 measurements, and, therefore, the visibility
in these stations is set as the benchmark. In addition to the 502 collocated stations, the
corrections of the 1893 remaining visibility stations should be related to nearby visibility
measurements. If there is a benchmark station nearby (<30 km), the visibility adjustment in
the target station refers to the benchmark station. Otherwise, the regional average visibility
of all meteorological stations within 100 km in diameter is set to the reference series. After
all corrections are completed, a dataset consisting of three years worth of visibility and bext
data is finally produced.

4. Discussion and Conclusions

An analysis of the similarities and differences between visibility and PM2.5 measure-
ments shows implications for the potential application of visibility observation to the study
of air quality. Based on the quality-controlled PM2.5 and visibility data from 2016 to 2018,
the nonparametric Spearman ρ value between two stations for PM2.5 and bext decreases as
the distance between the stations, R, increases. The decay of ρ with R could be represented
by an exponential equation. The relative uncertainty in PM2.5 measurements is 15% and
20% for bext. Some relatively lower ρ values (< 0.4) observed for R < 50 km occur in regions
characterized by the lowest (background) levels of PM2.5 and bext values, for example, the
Tibetan and Yungui Plateau. The relatively smaller ρ for bext between stations than that of
PM2.5 is probably caused by the predefined maximum threshold of visibility measurements
(generally 30 km) and may be an obstacle to the application of visibility measurements in
the study of air quality.

A significant correlation between PM2.5 and bext is derived in most stations. The
percentages with significant correlation are 91%, 89%, 88%, and 93% from spring to winter.
Relatively larger ρ values are evident in eastern China (Northeast China excluded) and in
winter (the national median ρ is 0.67). A temporal variation in the relationship between
PM2.5 and bext is evident in some stations, mainly caused by the abrupt changes in bext
that are detected by an efficient approach developed by Killick et al. [37]. This implies a
potentially large influence of alternation of visibility sensor instruments or re-calibrations.
Therefore, the bext data are corrected by comparison to the reference measurements at the
adjacent stations. A dataset of three years worth of visibility and bext data, which would be
a complementary network to the study of air quality study, is finally produced.

To the best of our knowledge, this is the first time that a thorough check of the quality
of automatic measurements of visibility in China has been made. Human observations of
visibility in China are used by researchers to retrieve PM2.5 concentration, which shows
the great potential of visibility measurements in the study of air quality. A great develop-
ment in visibility measurements in China has been the use of visibility sensors to replace
human observation. Instrument-based measurements of visibility is an objective rather
than subjective measure and can provide measurements with high temporal resolution.
However, we should keep in mind that instrumental measurements suffer a lot of issues
that require a thorough evaluation of the obtained visibility data. Data quality is of high
priority for the further application of these valuable data in air quality studies. We carefully
evaluate the visibility measurements by collocating them with PM2.5 measurements in this
study. It is clearly shown that visibility measurements are indeed associated with notable
uncertainty. We develop a simple but effective to correct the visibility measurements. In
particular, the systematic differences discussed above have been corrected at some stations.
The quality of visibility data is greatly improved, which paves the way to use visibility data
in air quality studies.

Author Contributions: J.L. designed the research. Y.F. and Z.Z. carried out the data processing and
analysis. Y.F. wrote the first draft of the manuscript and J.L. revised the manuscript. All authors have
read and agreed to the published version of the manuscript.



Sensors 2023, 23, 898 11 of 12

Funding: This research was supported by the Major Project (grant no. 42090033) and Young Scholars
Project (grant no. 41905053) from the National Science Foundation of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the datasets have been made available through the national meteoro-
logical services website (http://10.1.64.154/portal/web-home.index/, accessed on 1 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zha, S.; Zhang, S.; Cheng, T.; Chen, J.; Huang, G.; Li, X.; Wang, Q. Agricultural Fires and Their Potential Impacts on Regional Air

Quality over China. Aerosol Air Qual. Res. 2013, 13, 992–1001. [CrossRef]
2. Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, B.; Goloub, P.; Estelles, V.; Cuevas-Agulló, E.; Blarel, L.; et al. Column

aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on
ground-based sunphotometer measurements. Atmos. Chem. Phys. 2013, 14, 2125–2138. [CrossRef]

3. Xia, X.; Zong, X.; Sun, L. Exceptionally active agricultural fire season in mid-eastern China in June 2012 and its impact on the
atmospheric environment. J. Geophys. Res. Atmos. 2013, 118, 9889–9900. [CrossRef]

4. Sun, L.; Xia, X.; Wang, P.; Zhang, R.; Che, H.; Deng, Z.; Fei, Y.; Ran, L.; Meng, X.Y. Surface and column-integrated aerosol
properties of heavy haze events in January 2013 over the North China Plain. Aerosol Air Qual. Res. 2015, 15, 1514–1524. [CrossRef]

5. Yang, Y.; Zheng, Z.; Yim, S.; Roth, M.; Ren, G.; Gao, Z.; Wang, T.; Li, Q.; Shi, C.; Ning, G.; et al. PM2.5 Pollution Modulates Winter-
time Urban-Heat-Island Intensity in the Beijing-Tianjin-Hebei Megalopolis, China. Geophys. Res. Lett. 2020, 47, e2019GL084288.
[CrossRef]

6. Gustafsson, O.; Krusa, M.; Zencak, Z.; Sheesley, R.J.; Granat, L.; Engstrom, E.; Praveen, P.S.; Rao, P.S.; Leck, C.; Rodhe, H. Brown
clouds over South Asia: Biomass or fossil fuel combustion? Science 2009, 323, 495–498. [CrossRef]

7. Che, H.; Zhang, X.; Li, Y.; Zhou, Z.; Qu, J.J. Horizontal visibility trends in China 1981–2005. Geophys. Res. Lett. 2007, 34. [CrossRef]
8. Zhao, P.; Zhang, X.; Xu, X.; Zhao, X. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei,

China. Atmos. Res. 2011, 101, 711–718. [CrossRef]
9. Li, J.; Li, C.; Zhao, C.; Su, T. Changes in surface aerosol extinction trends over China during 1980-2013 inferred from quality-

controlled visibility data. Geophys. Res. Lett. 2016, 43, 8713–8719. [CrossRef]
10. Streets, D.; Wu, Y.; Chin, M. Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition.

Geophys. Res. Lett. 2006, 33. [CrossRef]
11. Xia, X.; Chen, H.; Li, Z.; Wang, P.; Wang, J. Significant reduction of surface solar irradiance induced by aerosols in a suburban

region in northeastern China. J. Geophys. Res. 2007, 112. [CrossRef]
12. Wild, M. Global dimming and brightening: A review. J. Geophys. Res. 2009, 114, D00D16. [CrossRef]
13. Rosenfeld, D.; Sherwood, S.C.; Wood, R.; Donner, L.J. Climate Effects of Aerosol-Cloud Interactions. Science 2014, 343, 379–380.

[CrossRef] [PubMed]
14. Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. J. Atmos.

Sci. 2016, 73, 4221–4252. [CrossRef]
15. Zheng, S.; Pozzer, A.; Cao, C.; Lelieveld, J. Long-term (2001–2012) concentrations of fine particulate matter (PM2.5) and the impact

on human health in Beijing, China. Atmos. Chem. Phys. 2015, 15, 5715–5725. [CrossRef]
16. Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Frohlichnowoisky, J.; Fujitani,

Y. Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [CrossRef] [PubMed]
17. Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in

China during 2013–2014. Environ. Int. 2014, 73, 413–422. [CrossRef]
18. Hu, J.; Wang, Y.; Ying, Q.; Zhang, H. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the

Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [CrossRef]
19. Han, Y.; Wu, Y.; Wang, T.; Zhuang, B.; Li, S.; Zhao, K. Impacts of elevated-aerosol-layer and aerosol type on the correlation of

AOD and particulate matter with ground-based and satellite measurements in Nanjing, southeast China. Sci. Total Environ. 2015,
532, 195–207. [CrossRef]

20. Song, Z.; Fu, D.; Zhang, X.; Han, X.; Song, J.; Zhang, J.; Wang, J.; Xia, X. MODIS AOD sampling rate and its effect on PM2.5
estimation in North China. Atmos. Environ. 2019, 209, 14–22. [CrossRef]

21. Chen, J.; Li, Z.; Lv, M.; Wang, Y.; Wang, W.; Zhang, Y.; Wang, H.; Yan, X.; Sun, Y.; Cribb, M. Aerosol hygroscopic growth,
contributing factors, and impact on haze events in a severely polluted region in northern China. Atmos. Chem. Phys. 2019,
19, 1327–1342. [CrossRef]

22. Zhao, C.; Yu, Y.; Kuang, Y.; Tao, J.; Zhao, G. Recent Progress of Aerosol Light-scattering Enhancement Factor Studies in China.
Adv. Atmos. Sci. 2019, 36, 1015–1026. [CrossRef]

http://10.1.64.154/portal/web-home.index/
http://doi.org/10.4209/aaqr.2012.10.0277
http://doi.org/10.5194/acp-14-2125-2014
http://doi.org/10.1002/jgrd.50770
http://doi.org/10.4209/aaqr.2014.10.0252
http://doi.org/10.1029/2019GL084288
http://doi.org/10.1126/science.1164857
http://doi.org/10.1029/2007GL031450
http://doi.org/10.1016/j.atmosres.2011.04.019
http://doi.org/10.1002/2016GL070201
http://doi.org/10.1029/2006GL026471
http://doi.org/10.1029/2006JD007562
http://doi.org/10.1029/2008JD011470
http://doi.org/10.1126/science.1247490
http://www.ncbi.nlm.nih.gov/pubmed/24458631
http://doi.org/10.1175/JAS-D-16-0037.1
http://doi.org/10.5194/acp-15-5715-2015
http://doi.org/10.1021/acs.est.7b04417
http://www.ncbi.nlm.nih.gov/pubmed/29111690
http://doi.org/10.1016/j.envint.2014.08.016
http://doi.org/10.1016/j.atmosenv.2014.07.019
http://doi.org/10.1016/j.scitotenv.2015.05.136
http://doi.org/10.1016/j.atmosenv.2019.04.020
http://doi.org/10.5194/acp-19-1327-2019
http://doi.org/10.1007/s00376-019-8248-1


Sensors 2023, 23, 898 12 of 12

23. Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diezroux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman,
M.A. Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American
Heart Association. Circulation 2010, 121, 2331–2378. [CrossRef] [PubMed]

24. Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor
data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [CrossRef]

25. Li, J.; Carlson, B.E.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5
concentration for the United States. Atmos. Environ. 2015, 102, 260–273. [CrossRef]

26. Fu, D.; Song, Z.; Zhang, X.; Xia, X.; Wang, J.; Che, H.; Wu, H.; Tang, X.; Zhang, J.; Duan, M. Mitigating MODIS AOD non-random
sampling error on surface PM2.5 estimates by a combined use of Bayesian Maximum Entropy method and linear mixed-effects
model. Atmos. Pollut. Res. 2020, 11, 482–490. [CrossRef]

27. Yu, X.; Ma, J.; An, J.; Yuan, L.; Zhu, B.; Liu, D.; Wang, J.; Yang, Y.; Cui, H. Impacts of meteorological condition and aerosol chemical
compositions on visibility impairment in Nanjing, China. J. Clean. Prod. 2016, 131, 112–120. [CrossRef]

28. Yang, Y.; Ge, B.; Chen, X.; Yang, W.; Wang, Z.; Chen, H.; Xu, D.; Wang, J.; Tan, Q.; Wang, Z. Impact of water vapor content on
visibility: Fog-haze conversion and its implications to pollution control. Atmos. Res. 2021, 256, 105565. [CrossRef]

29. Wang, K.; Dickinson, R.E.; Liang, S. Clear sky visibility has decreased over land globally from 1973 to 2007. Science 2009,
323, 1468–1470. [CrossRef]

30. Gui, K.; Che, H.; Zeng, Z.; Wang, Y.; Zhai, S.; Wang, Z.; Luo, M.; Zhang, L.; Liao, T.; Zhao, H.; et al. Construction of a virtual
PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient
Boosting model. Environ. Int. 2020, 141, 105801. [CrossRef]

31. Fei, Y.; Fu, D.; Song, Z.; Han, S.; Han, X.; Xia, X. Spatiotemporal variability of surface extinction coefficient based on two-year
hourly visibility data in mainland China. Atmos. Pollut. Res. 2019, 10, 1944–1952. [CrossRef]

32. Thorne, P.W. Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res. 2005, 110. [CrossRef]
33. Jing, J.; Wu, Y.; Tao, J.; Che, H.; Xia, X.; Zhang, X.; Yan, P.; Zhao, D.; Zhang, L. Observation and analysis of near-surface

atmospheric aerosol optical properties in urban Beijing. Particuology 2015, 18, 144–154. [CrossRef]
34. Ji, D.; Deng, Z.; Sun, X.; Ran, L.; Xia, X.; Fu, D.; Song, Z.; Wang, P.; Wu, Y.; Tian, P.; et al. Estimation of PM2.5 Mass Concentration

from Visibility. Adv. Atmos. Sci. 2020, 37, 671–678. [CrossRef]
35. Zhang, A. Modern Meteorological Observation, 2nd ed.; Peking University Press: Beijing, China, 2015.
36. Wu, H.; Tang, X.; Wang, Z.; Wu, L.; Lu, M.; Wei, L.; Zhu, J. Probabilistic Automatic Outlier Detection for Surface Air Quality

Measurements from the China National Environmental Monitoring Network. Adv. Atmos. Sci. 2018, 35, 1522–1532. [CrossRef]
37. Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal Detection of Changepoints With a Linear Computational Cost. J. Am. Stat. Assoc.

2012, 107, 1590–1598. [CrossRef]
38. Sioris, C.E.; Abboud, I.; Fioletov, V.E.; McLinden, C.A. AEROCAN, the Canadian sub-network of AERONET: Aerosol monitoring

and air quality applications. Atmos. Environ. 2017, 167, 444–457. [CrossRef]
39. Liu, G.; Tarasick, D.W.; Fioletov, V.E.; Sioris, C.E.; Rochon, Y.J. Ozone correlation lengths and measurement uncertainties from

analysis of historical ozonesonde data in North America and Europe. J. Geophys. Res. 2009, 114. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1161/CIR.0b013e3181dbece1
http://www.ncbi.nlm.nih.gov/pubmed/20458016
http://doi.org/10.1016/j.atmosenv.2004.01.039
http://doi.org/10.1016/j.atmosenv.2014.12.010
http://doi.org/10.1016/j.apr.2019.11.020
http://doi.org/10.1016/j.jclepro.2016.05.067
http://doi.org/10.1016/j.atmosres.2021.105565
http://doi.org/10.1126/science.1167549
http://doi.org/10.1016/j.envint.2020.105801
http://doi.org/10.1016/j.apr.2019.08.007
http://doi.org/10.1029/2004JD005753
http://doi.org/10.1016/j.partic.2014.03.013
http://doi.org/10.1007/s00376-020-0009-7
http://doi.org/10.1007/s00376-018-8067-9
http://doi.org/10.1080/01621459.2012.737745
http://doi.org/10.1016/j.atmosenv.2017.08.044
http://doi.org/10.1029/2008JD010576

	Introduction 
	Data and Method 
	Results 
	Discussion and Conclusions 
	References

