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Abstract: Image processing on smartphones, which are resource-limited devices, is challenging.
Panorama generation on modern mobile phones is a requirement of most mobile phone users. This
paper presents an automatic sequential image stitching algorithm with high-resolution panorama
generation and addresses the issue of stitching failure on smartphone devices. A robust method is
used to automatically control the events involved in panorama generation from image capture to
image stitching on Android operating systems. The image frames are taken in a firm spatial interval
using the orientation sensor included in smartphone devices. The features-based stitching algorithm
is used for panorama generation, with a novel modification to address the issue of stitching failure
(inability to find local features causes this issue) when performing sequential stitching over mobile
devices. We also address the issue of distortion in sequential stitching. Ultimately, in this study, we
built an Android application that can construct a high-resolution panorama sequentially with auto-
matic frame capture based on an orientation sensor and device rotation. We present a novel research
methodology (called “Sense-Panorama”) for panorama construction along with a development guide
for smartphone developers. Based on our experiments, performed by Samsung Galaxy SM-N960N,
which carries system on chip (SoC) as Qualcomm Snapdragon 845 and a CPU of 4 × 2.8 GHz Kyro
385, our method can generate a high-resolution panorama. Compared to the existing methods, the
results show improvement in visual quality for both subjective and objective evaluation.

Keywords: mobile panorama; computer vision; sequential image stitching; smartphone’s gyroscope
sensors; automatic panorama generation

1. Introduction

Smartphone devices have a limited field of view (FoV) of 77◦ [1]. To provide a more
immersive experience of the scene, panoramic images are generated from a sequence of
images with a sufficient area of overlap between consecutive image frames. The panoramic
application allows users to capture 360◦ views of the surrounding area from a single
viewpoint and seamlessly combine multiple images.

Due to the recent developments in mobile phone hardware, mobile camera resolution
and computing power have greatly increased. Hence, users are now seeking instant
panorama construction with high resolution [1].

A simple concatenation of images with overlapping areas to form panoramic image
results in visible seams due to variations in the angle viewpoint of the camera and scene
illumination, along with the spatial position errors of the images. Image stitching algo-
rithms can be used to find optimal seems in overlapping areas between two consecutive
images and generate a final panorama by merging these images along the seams with
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minimal margining artifacts [2]. Since the panorama generation process requires a sub-
stantial amount of computational power, and smartphone devices are computationally less
powerful than desktop PCs for image processing, an efficient algorithm is needed to enable
high-resolution panorama generation for mobile devices. The developer may also want to
embed privacy and security data such as watermarks and signatures into their panoramic
images. Based on user requirements and functionality, developers need to build customized
panorama applications. Although some smartphones are equipped with built-in panorama
applications, their implementation details are not accessible to programmers. To build
a customized automatic panoramic application with high resolution, several challenges
remain in the development process. Issues that can be faced by a developer in developing
an automatic stitching program include (a) stitching failure; (b) event synchronization
with the orientation sensor (to avoid deadlocks); (c) performance challenges (to avoid
memory overflow) and the synchronization of several modules relative to each other; and
(d) the distortion of interim panoramas. In sequential stitching, distortion is inevitable,
and we address this issue in our Sense-Panorama method (see Section 3). For the reader’s
convenience, we will refer to our proposed method as “Sense-Panorama”, as this method is
able to fully automate the panorama-capturing process using the orientation sensor and
precapture feature detection module.

Similarly, triggering and controlling events with the orientation sensor of the device is
a challenging task. Stitching involves computationally complex algorithms such as feature
matching and homography estimation. Hence, efficient techniques are presented in this
study to address the challenges discussed. The issue of stitching failure and distortion
in sequential stitching is solved using “Sense-Panorama”. In sequential stitching, two
consecutive frames are taken by the camera, and the images are stitched together while
exploiting control from the orientation sensor. The resulting interim panorama is immedi-
ately displayed to the user. This interim panorama is then extended with the next image
frame to obtain the second interim panorama. This process continues until the capture
session is completed. If the number of features in the overlapping area between the two
consecutive image frames is not sufficient, stitching failure will occur. The goal of this paper
is to automatically generate a high-resolution panorama on mobile devices by addressing
the issues of stitching failure and distortion removal.

1.1. Contributions

List of contribution

1. Develop an Android-based application
2. Address the issue of stitching failure
3. Address the issue of distortion
4. Control events with an orientation sensor for automation

1.2. Organization

The remainder of this paper is organized as follows. In Section 2, we succinctly discuss
feature-based image stitching. Section 3 describes the proposed method “Sense-Panorama”
which includes the operation of the orientation sensor and the precapture feature detection
technique, Section 4 presents the experimental results, and Section 5 concludes our work.

2. Background

Image stitching involves computationally complex algorithms such as feature de-
tection, feature matching, outlier removal, and homography estimation, which causes
performance issues when running such algorithms on mobile devices [1,2]. Several re-
quirements and challenges must be kept in mind while building an automatic, sequential
panorama generative application for mobile devices. In automatic panorama generation,
the user slowly moves their device in front of the scene and covers a rotation angle covering
a 0◦ to 360◦ range around a fixed standing position. In this process, the orientation sensor
is used to detect motion and take pictures. These pictures are sequentially stitched together
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and displayed to the user instantly. Several issues can be faced by developers when devel-
oping a panorama application. Such issues include sequential stitching failure (unable to
proceed with the stitching process when two consecutive frames could not be stitched due
to less number of local feature points, we present a novel method called “Sense-Panorama”
to address this issue, deadlock ( several modules of the application need to be responsive
to each other on time as some modules are implemented in Java and some are in C++ when
they failed to respond in time, the application goes to a deadlock state), a memory overflow
(we also need to clear memory from the data that is not used in the remaining session of
the program such as images frames and preview frames from the camera), and distortion
in the panorama. Our Android-based application consists of several modules (C++ and
Java based), if they are not categorized into synchronous and asynchronous tasks, issues
of deadlock and memory overflow are inevitable. This issue is due to the fact that image
processing tasks need to be executed using C++. The front-end modules are implemented in
Java. Executing these modules without synchronizing, will lead to deadlocks and memory
overflow as we have experienced during our experiments. The process would not proceed
further and was abandoned by the Android OS.

Distortion is inevitable in sequential stitching when each previously created interim
panorama is stitched together with the next frame. All these issues have been addressed.
The performance issue is very critical when the device does not respond in real-time and
causes failure, as several submodules, such as the user interface, camera device for live
preview, gyroscope for device orientation, and panorama stitching, need to be executed
synchronously. In this work, we address all the above-mentioned issues and present Sense-
Panorama to solve stitching failure and remove distortion. In the first subsection, we briefly
study how image stitching works, and in the second subsection, we discuss how data can
be processed from a gyroscope to control our proposed image stitching application.

2.1. Image Stitching

Image stitching can be broadly classified into three main categories, region-based,
phase correlation-based, and feature-based stitching. In our application, we selected
feature-based stitching because it is comparatively less time-consuming and much better for
ordering an unordered sequence of images [3]. We implement the feature-based automatic
stitching with an additional preprocessing algorithm (the precapture feature detection
which is part of Sense-Panorama) for high-resolution and robust performance with limited
mobile resources. The first step in image stitching is feature extraction and matching,
followed by random sample consensus (RANSAC) for inlier and outlier detection. For
each pair of matching images, we obtain a set of features that are geometrically consistent
called RANSAC inliers, as well as a set of features called outliers that are not geometrically
consistent but remain within the overlapping area [4].

2.1.1. Feature Extraction

In feature-based stitching, feature selection is challenging and significant. For the
feature points in both images to be matched and similar, the feature points must have
enough information and must provide different perspectives, viewpoints, and illumination
conditions [5,6].

SIFT
Scale-invariant feature transform (SIFT), which is the most well-known feature detec-

tion–description algorithm was introduced by D. G. Lowe in 2004 [4]. Feature points are
detected by searching local maxima using difference-of-Gaussians (DoG) at various scales
of the subject images. For the SIFT detector, the DoG operator is computed, which is equiv-
alent to the Laplacian-of-Gaussian (LoG). The method extracts a 16 × 16 neighborhood
around each detected feature and further segments the region into sub-blocks, manifesting
a vector of 128 bin values. SIFT is computationally expensive but strongly invariant to
image scaling, rotations, and limited affine variations [4,7].

ORB
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The ORB algorithm is a combination of the normalized Binary Robust Independent
Elementary Feature (BRIEF) and modified Feature from Accelerated Segment Test (FAST)
description methods [7] . FAST corners are computed and detected in each layer of the
scale pyramid. Harris corner score evaluates the cornerness of the detected points to filter
out the top points. The drawback of the BRIEF description method is that such descriptions
are highly unstable with rotation. To overcome this drawback,

AKAZE
The authors in [8] introduced the Accelerated-KAZE (AKAZE) algorithm, which is

also based on nonlinear distribution filters such as KAZE, but its nonlinear scale-spaces
are built using an efficient computer framework called Fast Explicit Diffusion (FED). The
AKAZE detector is based on the Hessian Matrix. Scharr filters are used to improve the
matrix rotation invariance quality, and the maxima of the detector responses in spatial
areas are considered feature points. The AKAZE definition is based on the Modified Local
Difference Binary (MLDB) algorithm, which also works very well. AKAZE features do not
change on the scale, rotation, and limited affine transforms and have additional variations
at various scales due to nonlinear scale-spaces [7].

2.1.2. Feature Matching

The feature matching scheme adopted in the study is based on the Nearest Neighbor
Distance Ratio (NNDR) used by D.G. Lowe to match SIFT features in “Distinctive image
features from scale-invariant keypoints” [4] and by K. Mikolajczyk in “A performance
evaluation of local descriptors” [9].

In this feature matching procedure, the nearest neighbor and second nearest neighbor
of each element (from the first element set) are searched in the second element set. Even-
tually, the ratio of the nearest neighbor to the second nearest neighbor is calculated for
every feature descriptor, and a certain threshold is set to find good matches. The value
for the threshold is kept between 0.7 and 0.5 for the best matches. The Sum of Absolute
Deviation (L1-norm) is used for matching descriptors of SIFT, while the Hamming dis-
tance is used for matching descriptors of AKAZE and ORB. For feature matching, several
different algorithms can be used, such as Nearest Neighbor, Nearest Neighbor Distance
Ratio, and threshold matching [9]. Incorrect matches (or outliers) are inevitable in the
feature-matching phase. Therefore, the outlier rejection phase is mandatory for the accurate
fitting of the transformation model. Some robust probabilistic models such as Random
Sample Consensus (RANSAC) [10], Progressive Sample Consensus (PROSAC) [11], and
M-estimator Sample Consensus (MSAC) [8] can be used for outlier rejection in matched
features and for fitting the transformation model.

Figure 1 shows how features are matched in the two consecutive frames. Good
matches in both frames are represented by parallel lines, and bad matches are represented
by nonparallel lines.

(a) Feature mapping (b) Overlap detection

Figure 1. Feature matching. Parallel lines indicate good matches while nonparallel lines indicate bad
matches; (a) feature matching between two consecutive frames; (b) overlap detection between two
consecutive frames.

2.1.3. Homography Estimation

The homography (denoted by H) in computer vision can be defined as a transformation
matrix that moves from one plane to another plane through a point of projection. Any
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two images of the same planer surface in space can be related by homography based on a
pinhole camera model, as shown in Figure 2.

In image stitching, homography estimation is required for creating a panorama. Re-
ferring to Figure 2, suppose that we want to take pictures of a given scene in a three-
dimensional world via a pinhole camera, where all the projections pass through a common
point. Let us suppose that we have captured three image frames via a pinhole camera and
that all three images are represented in Figure 2 by their names only as Image 1, Image
2, and Image 3. We can see that the first image (Image 1) lies on P1 (plane 1), the second
image (Image 2) lies on P2 (plane 2), and likewise for Image 3. All corresponding images
that lie on different planes can be related via a homography matrix (Hmatrix) if they share
the same center of projection. For the case of a final panorama, all the images must lie on a
common plane P [4,10] (as shown in Figure 2).

Figure 2. A diagram showing how images that are located on different planes can be related via
homography to a common plane, assuming that all the images have a common projection point (a
pinhole camera model).

Hence, we can map our first image that lies on P1 to P using homography and write
it symbolically as HP1. Then, we can take a second image that lies on P2, which can be
related through H and from P2 to P1 as H12. Then, multiplying that result with HP1 will
transform our second image into P(HP1H12). Similarly, the third image that lies on P3
(plan 3) can be transformed into P by multiplying HP1 with H13, which will give HP1H13.
All these transformation relations account for matrix equations that can be solved for nine
unknowns from h11 to h33 (see Equation (1)). The result is a 3 × 3 matrix representing a
set of equations that satisfy the transformation function from the first image plane to the
second image plane, as discussed above. For a detailed discussion on homography matrix,
see previous studies [12–14].
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Hmatrix =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (1)

2.1.4. Warping and Blending

After successful registration of all images related to each other, warping all the images
to a final coordinate space is required. The final coordinate space can be chosen as planar,
cylindrical, or spherical depending on the requirements. When all the registered input
images are warped in the final coordinate space, the next step is to remove visible seams
using blending algorithms [15,16].

2.1.5. Cropping

Usually, the final panorama has irregular boundaries caused by warping, projec-
tions, and unwanted camera movements. Automatic cropping is thus applied to remove
unwanted irregular boundaries from the final stitched image.

3. Proposed Method “Sense-Panorama”

In this paper, we presented all the possible solutions to address the issues discussed
in the background and proposed a method called, “Sense-Panorama” that results in high-
resolution panorama construction on mobile devices. The Sense-Panorama method consists
of two main modules, the operation of the orientation sensor and the precapture feature
detection (see the highlighted area in Figures 3 and 4). For automatic frame capturing,
we have used the orientation sensor that has been discussed in the following subsection.
To address stitching failure, we present a precapture feature detection technique in the
coming section.

The overall workflow of the panorama application is shown in Figure 3. The high-
lighted area in this Figure 3 reflects the workflow of the Sense-Panorama method. The
orientation sensor is used to detect the movement of the mobile device and automate the
frame-capturing process. The direction of the movement is detected as well. The data
obtained from the sensor is processed using Equations (2)–(4), to set the threshold for the
camera device for frame capturing.

Figure 3. The overall workflow of the Sense-Panorama application.
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Figure 4. The control flow of the Sense-Panorama method.

3.1. Orientation Sensor

Smartphones are equipped with a variety of sensors, one of which is a gyroscope
sensor (an orientation sensor). To control costs, Mobile devices are usually equipped
with low-quality inertial measurement unit (IMU) sensors. Thus, the gyroscope must be
calibrated because gyroscopic errors can magnify exponentially during the integration of
the corresponding signals with the computed rotation [17]. This calibration has already
been done by Android developers (refer to the documentation for using the orientation
sensor in Android devices [18]). Generally, either a 3 × 3 rotation matrix or a quaternion
can be used to represent the rotation of a mobile device. Here, we use a vector matrix called
a motion vector [19]. Equations (2)–(4) provide the values for angular acceleration at a
given time. The values returned by the smartphone device from the orientation sensor
indicate the instantaneous angular acceleration. The Earth’s coordinate system is also a
3-axis system (relative to the surface of the Earth), as seen in Figure 5b [20]. The y- axis
points to the magnetic north along the surface of the Earth, the x-axis is perpendicular to
y and points east, the z-axis points toward space, and the negative z-axis point inwards
toward the ground.

Figure 5. (a) Coordinate system (relative to a device) used by the Sensor API. ; (b) Earth’s coordinate
system, a 3-axis system.

A reference for the rotation values along the three-coordinate axis can be obtained
from the developer’s documentation for a particular smartphone device. The values for all
three axes can be used to calculate the amount of device rotation. Thus, using the following
equations, we can sense the orientation of the device:
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X = X + f × yrad (2)

Y = Y + f × xrad (3)

Vm =

xrad
yrad
zrad

 (4)

Equations (2) and (3) are used to sense the device rotation along the Y-axis and X-axis,
respectively, and Equation (4) provides the device’s instantaneous acceleration values along
the three axes used in Equations (2) and (3). The variable Y returns a floating value, which
is then compared to the preset threshold value by the program to capture the next image
frame. The value of f is constant and equal to 0.3, this value is used to cover the screen
width with respect to the user’s 360-degree rotation. In the case of a screen width of 1080,
the value of f is equal to 360/1080. Each degree movement of the user around the Y-axis
covers 3 pixels on the screen’s window that shows the current frame (Figure 6a). Xrad is
the acceleration along the X- axis, Yrad is the acceleration along the Y-axis and Zrad is the
acceleration along the Z-axis. These three values are returned by the motion vector Vm.
Similarly, the value of X is calculated from Equation (2). This value is used to detect and
control the unwanted motion of the device along the Y-axis (parallel to the y-axis), which
may cause misalignment or stitching failure.

Figure 6. (a) GUI’s sketch of the panorama application; (b) GUI of the panorama application with
the Sense-Panorama method, indicating successful stitching is in progress; (c) GUI of the panorama
application without the Sense-Panorama method, the highlighted red box indicates discontinuation
due to stitching failure.

3.2. Precapture Feature Detection

During the preview, a frame from the camera device is taken, and the number of
features in this current preview frame is detected and compared with the predefined
threshold value (see Table 1 for the minimum number of features that must be present in a
frame), such that a successful overlap area can be detected with the next frame. If too few
features are present in the current frame, the next frame is captured before reaching the
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predefined frame capture interval using the device’s orientation sensor; the interval for the
frame capture is set by the orientation sensor. This approach ensures successful overlap
area detection and, eventually, successful stitching. Pseudocode for the “Sense-Panorama”
is presented in Section 3.3. Figure 4 shows the workflow for the orientation sensor with the
precapture feature detection technique. The sensor is used to detect the device orientation
and set the interval for the image frame capture, while the camera device provides the
frame for the feature detection module. The feature detection module detects the number
of features and sets the interval for the orientation sensor. The sensor then captures the
image frame when the interval is reached.

Table 1. The minimum number of features required (threshold values) for successful image matching.

Image Resolution SIFT AKAZE ORB

Low 200 200 200
High 500 500 480

3.3. Pseudo-Code for Sense-Panorama

Algorithm 1 shows the pseudocode of the Sense-Panorama method that can be used
to capture frames at the right time to ensure that no stitching failure occurs.

Algorithm 1 Sense-Panorama Algorithm.

Require: Frames from image analysis
Ensure: Frame is captured with the aided sensor

while panorama capturing session is on do
if Sensor value == threshold value then

capture frame
if number of captured frames are greater than 2 then

generate the interim panorama
display the interim panorama

end if
else if Sensor value != threshold value then

get frame from image preview analysis
detect features
set threshold for the next frame capture

end if
end while

Another method can be used to avoid stitching failure, where a fixed and predefined
sufficient offset area (overlap) is set between the two images. However, this approach
will lead to an excess amount of overlapping area in each frame, which will increase the
computational costs.

3.4. Misalignment Correction and Triggering Events

The orientation sensor is used to detect the device movement for all three axes, as
shown in Figure 5b. During the panorama capture session, any movement in the vertical
direction (parallel to the y-axis; see Figure 5a) during the capture is undesirable, as move-
ment can cause the misalignment of frames during the capture session. Misalignment of
consecutive frames causes unwanted darker regions in the final panorama and, in the worst
cases, can cause stitching failure. Another issue is distortion in the panorama. Distortion
occurs because when two images are stitched together, during stitching in the warping
phase, the images are transformed from their destination plane into a new target plane due
to their homography relationship, as discussed in Section 2.1.3. In the sequential stitching
method, during the automatic capture session, two frames are initially stitched to form an
interim panorama. This interim panorama is then stitched with the next captured frame
to form a new interim panorama and so on. Stitching after every frame capture results



Sensors 2023, 23, 879 10 of 18

in distortion. Figure 7 visualizes the flow of sequential stitching. We implemented the
following method to address this issue:

• If the overlap area increases when using the precapture feature detection technique,
do not stitch unless four image frames are being captured.

• Otherwise, perform stitching only if two image frames are captured at the specified
normal interval by the sensor.

• Retain the current interim panorama to be stitched together with the next frame.

Figure 7. Distortion in the panorama when sequential stitching is performed.

Following this approach, no distortion appears in the sequential stitching method.
Figure 8 shows the results of our approach for distortion removal. A low-resolution
panorama is generated as a display to the user. At the same time, a high-resolution
panorama proceeds in parallel, which is then saved at the end of the panorama capturing
process. Four main modules need to be executed simultaneously on the CPU of the smart-
phone. The issue of deadlock and memory overflow has been addressed by categorizing
our program’s modules into asynchronous and synchronous tasks. These modules are
listed below (also refer to Table 2 and Section 3.3 for implementation details).

• Module 1: Camera device and sensor device on the user interface.
• Module 2: Precapture feature detection module.
• Module 3: Interim panorama stitching.
• Module 4: Full-sized panorama stitching.

Figure 8. A distortion-less panorama in sequential stitching when Sense-Panorama method is used.

The first module (module 1) executes the camera device and sensor device on the user
interface thread synchronously with each other; the camera module captures frames; and
the sensor module triggers events, controls camera capture events, and moderates the stitch-
ing process. The remaining three modules in the above list are executed asynchronously,
and their results are returned to the main thread when they are ready.
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Table 2. Implementation details of the different modules.

Asynchronous Tasks (C++) Synchronous Tasks (Java)

Pre-capture feature detection Frame Capturing (Camera Device)
Panorama Stitching (for storage) Orientation detection (Sensor Device)

Interim panorama stitching (for display) User Interface

Figure 6a shows the graphical user interface of our Android-based panorama applica-
tion. The main rectangle in the middle of the screen is used to display the interim panorama
to the user. This rectangular box is shown by double arrows. The small window in the
middle of the rectangular box is used for displaying the current image frame to the user.
When the user starts capturing, this small window starts moving in the direction of the
motion caused by the user’s movement.

Figure 6b shows a screenshot of the panorama application during the capture session.
When Sense-Panorama is used, the process successfully proceeds with no stitching failure
and the interim panorama is displayed to the user as can be seen in the rectangular box of
Figure 6b.

Figure 6c shows another screenshot of the panorama application. When the application
is used without the Sense-Panorama, stitching failure occurs, and the interim panorama
is not updated. The rectangular box shows that there is a discontinuation of the stitching
process as highlighted by the small vertical rectangle in red. The comparison of Figure 6b
with Figure 6c shows that with the aid of the Sense-Panorama, the panorama capturing
shot proceeds without failure. Another issue that has been successfully addressed by our
Sense-Panorama is that of deadlock and memory overflow. When the submodules were
executed according to the procedure listed in Table 2, the application responded without
any deadlock and memory overflow. Without the Sense-Panorama the application could
not proceed and was abandoned by the Android OS.

4. Experimental Results

To compare the performance and computational costs of the above-mentioned feature
detection algorithms (SIFT, AKAZE, and ORB), we used a test dataset containing a total
of 20 pairs of images (each image in the image pair has been resized to a resolution of
604 × 403 during the program execution) (The dataset can be downloaded from https:
//www.kaggle.com/datasets/yaseenksk/dataset-panorama). The data generated from
this dataset are presented in Table 3. The image matching test was implemented in C++,
and we recorded the following information: (a) the number of feature detected by each
algorithm in each pair of images (each pair of images contained a left image and a right
image); (b) the total number of feature matched in each pair of images; (c) the total number
of inliers detected in each pair of images; (d) and the time taken by each algorithm to match
each pair of images. Data from only three image pairs are shown in Table 3. These three
image pairs can be seen in Figure 9, and their resulting matched images are also shown in
Figure 10 (which shows how these image pairs were matched using the SIFT, AKAZE, and
ORB algorithms). Additionally, Figure 11 visualizes the data shown in Table 3.

Figure 9 shows the three image pairs selected from the above-mentioned dataset.
All three feature detector algorithms (SIFT, AKAZE, and ORB) were tested for feature

detection and image matching. The highlighted green lines (Figure 10a–i represent the over-
lap area between the two consecutive image frames detected by the three aforementioned
algorithms. The SIFT algorithm was used for image matching as shown in Figure 10a–c; the
AKAZE algorithm was used for image matching as shown in Figures 10d–f; and, similarly,
the ORB algorithm was used for image matching as shown in Figure 10g–i. Figure 10g–i
show that the fewest feature were detected by the ORB algorithm.

Figure 11 compares the computational costs of the SIFT, AKAZE, and ORB algorithms
in the image-matching process (i.e., the time taken by each algorithm to detect and match
features in each pair of images). The results clearly show that the SIFT algorithm is

https://www.kaggle.com/datasets/yaseenksk/dataset-panorama
https://www.kaggle.com/datasets/yaseenksk/dataset-panorama
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computationally more costly, while AKAZE is slightly faster than SIFT, and ORB is the
fastest. The results generated in all the experiments that we have presented here in this
paper are executed by Samsung Galaxy SM-N960N.

Table 3. Quantitative comparison and performance costs of the given feature-detector descriptor.

Algorithms
Features Detected in the Image Pairs Features Matched Inliers Matching Time(s)Left Image Right Image

Dataset Image Pair 1

SIFT 2665 3498 719 373 0.335
AKAZE 2418 2884 382 267 0.203

ORB 489 501 191 81 0.113

Dataset Image Pair 2

SIFT 9308 5688 1012 506 1.934
AKAZE 2325 6422 689 379 1.532

ORB 506 516 327 227 0.981

Dataset Image Pair 3

SIFT 6352 5094 913 539 2.013
AKAZE 4465 4090 623 346 1.683

ORB 515 506 281 131 0.896

Mean Values for all Image Pairs

SIFT 6108.3 4760 881.3 472.6 1.427
AKAZE 3069.3 4465.3 564.6 330.6 1.139

ORB 503.3 507.6 266 146.3 0.663

Figure 9. Shows the 3 pairs of images, with each pair containing two images (left image and right
image with a sufficient overlap area).

From the dataset of 20 image pairs, we also computed the total number of matches
and misses (in the matching process for each pair of images) performed by each algorithm,
as shown in Table 4. The criterion for matching is to successfully detect an overlap area
between a given pair of images, Figure 10 shows successful overlap area detection by
SIFT, AKAZE, and ORB algorithm. Table 4, shows that ORB is the poorest performer in
feature detection and image matching, while SIFT is the most accurate among the ORB
and AKAZE algorithms, having correct matches of up to 94%. AKAZE is approximately
1/3 times less accurate than SIFT. Based on our study (Figure 11), for feature extraction and
image matching [9,21], we tested the SIFT, ORB, and AKAZE algorithms and recommend
using SIFT (Other feature detectors can also be used like BRIEF, LBP, and HOG key points.
It’s totally a developer’s choice. Our main goal is to present the Sense-Panorama method
to solve the issue of stitching failure and panorama distortion which occurs in sequential
panorama application development.) as the most suitable feature detector for image
matching if accuracy is desired [2,7]. In cases where speed is of the essence, then ORB can
be used while compromising accuracy. Hence, to avoid stitching failures on mobile devices,
SIFT and AKAZE can be used with more confidence than ORB [7].
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(a) Sample 1 (b) Sample 2 (c) Sample 3

(d) Sample 1 (e) Sample 2 (f) Sample 3

(g) Sample 1 (h) Sample 2 (i) Sample 3

Figure 10. Three different image pairs were tested for overlap area detection with SIFT, AKAZE, and
ORB: (a–c) show the overlap area detected by the SIFT algorithm in image pair 1, image pair 2, and
image pair 3, respectively; (d–f) show the overlap area detected by the AKAZE algorithm in image
pair 1, image pair 2, and image pair 3, respectively; and (g–i) show the overlap area detected by the
ORB algorithm in image pair 1, image pair 2, and image pair 3, respectively.

Figure 11. A comparison of the computational costs of SIFT, AKAZE, and ORB.
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The available datasets for panorama generation have frames captured at larger time
differences. However, our method utilizes a real-time capture mechanism. Hence the
available dataset was not suitable for evaluation. Therefore, we performed live capture of
30 test dataset frames including scenes from indoors, outdoors textured, and texture-
less (The dataset can be downloaded from https://www.kaggle.com/datasets/yaseenksk/
dataset-panorama (accessed on 10 December 2022) ). We captured the frames at 4032 × 3024
resolution. The application was installed on a Samsung Galaxy SM-N960N, which carries
SoC as Qualcomm Snapdragon 845 and a CPU of 4 × 2.8 GHz Kyro 385, the RAM size is
8 GB and is 1866 MHz. The Sense-Panorama is compared with Brown [22], Bouguet [23],
and panorama applications on a current smartphone camera. The method in [23] is imple-
mented on a high resolution (4032 × 3024) frame and is based on RANSAC outlier removal.

Table 4. The number of correct matches among the 20 pairs of images when using SIFT, AKAZE,
and ORB.

SIFT AKAZE ORB

Matches 18 11 7
Misses 2 9 13

Matches [%] 90 55 35

4.1. Performance Comparison

Figure 12c shows a high-resolution panorama generated by Sense-Panorama.
Figure 12a,b shows the comparison of Sense-Panorama with that of the existing smartphone
application. Figure 12a indicates a 4-times zoomed-in cropped region from the panorama
generated by Sense-Panorama. Figure 12b indicates a 4-times zoomed-in cropped region
from the panorama generated by the existing smartphone application. The comparison
between, Figure 12a,b clearly indicates that (a) retains its high quality compared to (b). This
comparison also holds true if we look at the results in Tables 5 and 6.

A similar comparison has been done between Figure 12d,e. Figure 12f is the panorama
generated by Sense-Panorama. It can be seen clearly that, Sense-Panorama has the ability
to generate a high-resolution panorama with high quality.

Figure 12. Cont.

https://www.kaggle.com/datasets/yaseenksk/dataset-panorama
https://www.kaggle.com/datasets/yaseenksk/dataset-panorama
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Figure 12. (a,b) show a comparison between Sense-Panorama and the existing smartphone applica-
tion, (c) is a complete panoramic image shot taken by Sense-Panorama. Similarly (d) and (e) show
a comparison between Sense-Panorama and the existing smartphone application, (f) is a complete
panoramic image shot taken by Sense-Panorama.

4.2. Subjective Evaluation

Visual quality evaluation was performed by 6 persons, to find out the registration and
stitching artifacts. An image is termed as “good” if no major artifacts are observed using a
32” monitor at 100% zoom. A quality score was calculated using Equation (5):

Quality Score =
number of good images
total number of images

(5)

Table 5 shows the quality score results of the Sense-Panorama method with the existing
smartphone application. The results clearly indicate that the Sense-Panorama outperforms
the smartphone panorama application.

Table 5. Subjective quality evaluation on captured data using a quality score.

Dataset Size Sense-Panorama Existing Mobile
Panorama App

Textured images 20 0.95 0.87
Texture-less images 10 0.91 0.74

4.3. Objective Evaluation

Quantitative analysis was performed by two matrices, Structural Similarity Index
(SSIM) [24] and Peak Signal to Noise Ratio (PSNR). The stitching error is calculated in the
overlapped area between the input image and the generated panorama. Table 6 presents the
results and depicts that the Sense-Panorama is able to generate a high-resolution panorama
with good quality.
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Table 6. Objective quality matrices comparison.

Method SSIM PSNR

Brown [22] 0.923 32.3
Bouguet [23] 0.963 44.2

Existing smartphone
application 0.972 46.3

Sense-Panorama 0.985 47.8

In this study, an automatic–sequential, high-resolution panorama stitching method
(Sense-Panorama) for mobile devices was developed, implemented, and presented. Sense-
Panorama was tested indoors, outdoors, and under different lighting conditions. Sense-
Panorama performed very well both outdoors and indoors. However, the performance
was much better when creating panoramas outdoors. The precapture feature detection
approach ensured successful feature-based high-quality stitching with limited resources on
mobile devices.

The present approach uses an automatic sequential procedure for panorama captur-
ing. Each source image acquired during the capturing session is stitched to the interim
panoramic image with the aid of a precapture feature detection module and an orientation
sensor that sets the interval for the frame capture. This procedure ensures that the next
frame has sufficient features (see Table 1) for successful stitching. Sense-Panorama also
ensures a high-resolution panorama with the minimum number of frames being captured
(Figure 13), thus reducing the burden of extra computational costs.

Figure 13. Shows the individual frames captured by Sense-Panorama and its corresponding generated
panoramic image.

Sense-Panorama has been implemented using C++ and the mobile device’s native
programming language. All the image processing tasks, such as feature detection, feature
matching, homography estimation, and stitching, were implemented using C++ (OpenCV),
and the remaining tasks, such as running the sensor device, camera device, and user inter-
face, has been implemented using native languages. In our case, we used Java for Android
devices. Furthermore, these tasks must be categorized and implemented as asynchronous
and synchronous tasks during implementation. Table 2 shows the list of synchronous and
asynchronous tasks in our program. The synchronous tasks need to be executed in the
foreground process while asynchronous tasks are executed in the background as a separate
thread, enabling smooth and successful execution of the algorithm.

5. Conclusions

Sense-Panorama method for automatic panorama generation is a sequential stitching
method. Which involves automatic frame capture using the orientation sensor and the
precapture feature detection method. The frames are sequentially stitched and the interim
panorama is displayed on the screen, the method is very efficient as this process only
requires the current interim panoramic image and the current source image(the latest frame
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captured by the camera device) to generate the next interim panorama, while the rest of
the images are discarded. This feature makes it possible to run the program on mobile
devices with little memory consumption. Future work will include further reducing the
average stitching time interval and reducing memory consumption by reusing homography
matrix values obtained from smaller-sized images only once in the stitching process for
corresponding high-resolution image frames. The SIFT algorithm is the most suitable
feature descriptor detector (Other feature detectors can also be used like BRIEF, LBP, and
HOG key points. It’s totally a developer’s choice. Our main goal is to present the Sense-
Panorama method to solve the issue of stitching failure and panorama distortion which
occurs in sequential panorama application development.) for sequential stitching-based
panorama image generation. Combining SIFT and AKAZE features for image stitching
may enable a further increase in accuracy [25].
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