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Abstract: Human pose prediction is vital for robot applications such as human–robot interaction and
autonomous control of robots. Recent prediction methods often use deep learning and are based on
a 3D human skeleton sequence to predict future poses. Even if the starting motions of 3D human
skeleton sequences are very similar, their future poses will have variety. It makes it difficult to predict
future poses only from a given human skeleton sequence. Meanwhile, when carefully observing
human motions, we can find that human motions are often affected by objects or other people around
the target person. We consider that the presence of surrounding objects is an important clue for the
prediction. This paper proposes a method for predicting the future skeleton sequence by incorporating
the surrounding situation into the prediction model. The proposed method uses a feature of an
image around the target person as the surrounding information. We confirmed the performance
improvement of the proposed method through evaluations on publicly available datasets. As a result,
the prediction accuracy was improved for object-related and human-related motions.

Keywords: pose prediction; 3D skeleton sequence; surrounding information

1. Introduction

Prediction of future human poses and locations from past information is crucial for
many tasks, such as autonomous running [1] and risk prediction [2] for a robot. It is
also very significant for human tracking [3] and human–robot interaction [4,5]. Even for
predicting a short period such as one second or less, it is useful for the assistive robot. In
this paper, our goal is to accurately predict the 1-second future poses of a target person
from a short-term observation.

Since a time series of sets of body-joint locations in 3D coordinates, namely 3D human
skeleton sequences, are robust to environmental factors such as clothing and background,
they are often used for modeling human poses. Machine learning approaches, such as
the hidden Markov model [6] and restricted Boltzmann machine [7], are effective for
simple motion prediction. However, pose prediction including complex motions is po-
tentially difficult; in recent years, the prediction methods based on deep learning mod-
els, such as recurrent neural networks (RNNs) [8–12] and graph convolutional networks
(GCNs) [12–16], have been used for accurate prediction.

Most existing studies on human pose prediction use only a short-term 3D human
skeleton sequence or a set of 3D human skeleton sequences as an input [8–16]. However,
it is difficult to predict future poses only from a short-term 3D human skeleton sequence,
especially for similar starting motions but different future poses. Figure 1 shows an
example of the cases in which the starting motions are very similar while the future poses
are different; squatting down and sitting down motions. Additionally, jumping up and
picking up are also very similar to the squatting down and sitting down motions. In such
cases, problems may arise in that deep learning models cannot be trained well or the results
of the prediction will be wrong.
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Here, when carefully observing human motions, we can find that human motions are
often affected by objects or humans in the surroundings, such as carrying an object and
following another person. Based on this fact, we consider that it is important not only to
use the 3D human skeleton sequences but also to capture the surrounding information of
the target person. In this paper, we propose a prediction method for the future human
skeleton sequence from a 3D human skeleton sequence with surrounding information.
The method uses an image of human surroundings corresponding to the last frame of the
input 3D human skeleton as additional information. Additionally, to effectively utilize the
surrounding information, we propose a novel skeleton feature weighting method named
the image-assisted attention (IAA) module for future skeleton prediction. It can be inserted
into any existing GCN-based prediction method.

Our contributions are summarized as follows:

• We propose a future pose prediction method that captures the surrounding situation
of the target person by utilizing an image around the target person at the last frame of
the input sequence as additional information.

• We also propose a novel skeleton feature weighting method named image-assisted
attention for future skeleton prediction (IAA). It can be applied to any existing GCN-
based prediction method to effectively utilize the surrounding information.

The rest of this paper is organized as follows. In Section 2, related work on human pose
prediction is summarized. In Section 3, the details of the proposed human pose prediction
method and the new feature weighting method are described. In Section 4, experimental
results and discussion are presented. Finally, we conclude the paper in Section 5. This
paper is a further improvement of our presentation at T-CAP 2022 (ICPR Workshop) [17].

≈ ≠
Squat down

Sit down

Figure 1. Example of motions that show that starting motions are very similar, but the future motions
are different. In such cases, the predictions may be difficult, or the deep learning model may not train
well. It is not enough to use only the 3D human skeleton sequence of starting motion.

2. Related Work

Early studies on the prediction of a 3D human skeleton sequence used machine
learning such as the hidden Markov model [6], restricted Boltzmann machine [7], and
Gaussian process latent variable models [18]. These traditional machine-learning meth-
ods still have difficulty, especially in capturing complex human motions; thus, in recent
years, deep-learning-based methods, such as recurrent neural networks (RNNs) and graph
convolutional networks (GCNs), have been widely used for future skeleton prediction.

RNNs have several recursive structures inside that allow for processing variable-
length input, and they enable the prediction of 3D human skeleton sequences as time-series
data [8–12]. Meanwhile, since RNNs are generally difficult to train, and a human body
skeleton can be considered as a graph structure, recent studies use GCNs, which can con-
volve any graph structure, to predict 3D skeleton sequences [12–16]. GCNs are also useful
in a wide range of fields such as action recognition [19,20], pose estimation [21,22], and
object detection [23,24] using a graphical representation of spatial and temporal informa-



Sensors 2023, 23, 876 3 of 17

tion. Furthermore, recently, there has been a prediction method with a manifold-aware
generative adversarial network (GAN) to avoid predicting implausible poses and predict
smooth motions and plausible poses [25]. Additionally, there is a prediction method using
a new GCN architecture called depth-wise graph convolution for reduced parameters and
faster prediction [26].

However, the studies of human pose prediction mentioned above use only the short-
term human skeleton sequence of the starting motion. These studies do not take into
account the situation surrounding the human; thus, if the starting motions of the target
person are very similar among different motions, the prediction will be difficult.

For this problem, several studies have proposed skeleton prediction methods that con-
sider the surrounding information. Corona et al. have proposed a prediction method that
considers multiple human skeletons and the locations and classes of the other objects [27].
Adeli et al. have proposed a prediction method that utilizes multiple human skeletons and
frame images to consider the scene contexts [28]. However, the study by Corona et al. [27]
requires somehow selecting an object related to human motions. Additionally, Adeli et
al. [28] use only 13 body joints, resulting in a coarse prediction compared to other methods
that predict more than 20 joints, calculation costs are high, and the prediction speed is
also limited.

Besides the above, Chao et al. [29] used only a static image to predict a 3D skeleton
sequence considering future skeleton prediction as a generalization of pose estimation.
While the method of Chao et al. [29] takes a single image and requires separate future poses
for every time step, Zhang et al. [30] used multiple images from a video for the prediction
to recurrently predict a longer range future by taking advantage of a sequence of past
images. Compared with these studies, in our study, we propose a prediction method for a
3D human skeleton sequence that uses both an image and a 3D human skeleton sequence
and dynamically captures the surrounding situation by using an image feature extracted
from a single image around a target person as surrounding information for weighting
the skeleton feature. Our method differs in that it uses an image as a supplement, taking
advantage of the fact that skeleton-based prediction models are robust to environmental
factors and have high prediction accuracy.

3. Future Skeleton Prediction That Captures Surrounding Situation
3.1. Overview

Existing studies on human skeleton prediction that use only a short-term 3D human
skeleton sequence to predict future skeletons cannot accurately predict situations where
the starting motions are similar, but the future ones are different. To enable differentiated
predictions in such cases, we propose a future skeleton prediction method that captures the
surrounding situation by utilizing an image around a target person, named surroundings-
aware future skeleton prediction. The proposed method can extend any existing GCN-based
future skeleton prediction method that uses a short-term 3D human skeleton sequence by
introducing information from the surrounding situation into the GCN.

Here, we assume that the input is a 3D human skeleton sequenceX in = (XT1 , . . . , XTin)
and the future skeleton sequence X out = (XTin+1, . . . , XTout) is to be predicted. For cap-
turing the surrounding situation, the proposed method additionally uses ITin , named the
human surrounding image, which is a cropped image around the target person at the time
Tin so that more recent surrounding information can be used. Since the view is limited
to around the person, the image is expected to contain objects or humans that affect the
motion of the target person. To effectively utilize the human surrounding image, we
also propose a new feature weighting method named image-assisted attention for future
skeleton prediction (IAA), which is a module to modify the skeleton feature extracted
from a 3D human skeleton sequence depending on the feature extracted from the human
surrounding image.

The framework of the proposed method from input to output is visualized in Figure 2.
First, a skeleton feature S is extracted from an input 3D human skeleton sequence X in
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via the first layers of a GCN-based model. In parallel, a surrounding image feature i is
extracted from the human surrounding image IT1 . Then, the IAA module modifies the
skeleton feature S by weighting it using the surrounding image feature i. Finally, the
modified skeleton feature is fed into the rest part of the GCN-based prediction model to
predict the future skeletons X out. The following sections explain the proposed method
in detail.

Skeleton feature extractor:

Surrounding image 

Rest part of the existing model: 

Any existing
GCN-based model

…

3D pose sequence from

…

3D pose sequence from 

Image feature extractor: 

Image-Assisted Attention (IAA)

Figure 2. The proposed surrounding-aware future skeleton prediction framework. The skele-
ton feature S is modified using the surrounding image feature i extracted from the human
surrounding image.

3.2. Surrounding Image Feature Extraction

This section explains how to extract the surrounding image feature from the input
image. First, given an original RGB image observing the target person, the human sur-
rounding image ITin corresponding to the human skeleton sequence X in is cropped. Here,
the size of the original image is 1920× 1080, and the size of a target person is assumed to
be less than about 400× 900 pixels in the image. The human surrounding image is cropped
via the following steps:

1. The center of the target person in the image coordinate is calculated from the corre-
sponding human skeleton.

2. A 900× 900 image centered on the center of the target person is cropped from the
1920× 1080 original RGB image.

3. If a part of the cropped image is outside of the original image, the part is filled with 0.

Then, the surrounding image feature is extracted from the cropped image. Here, the ex-
tracted feature should capture the existence of objects and humans in the image. Therefore,
in this study, we used a pre-trained image feature extractor; specifically, the convolutional
layers of EfficientNet [31] pre-trained with the ImageNet. We select the EfficientNet-B3
model empirically, considering the trade-off between accuracy and calculation costs.

Since the size of a human surrounding image is 900× 900, it is scaled down to fit the
EfficientNet-B3 input size of 300× 300 using bilinear interpolation. Then, the surrounding
image feature is extracted from the resized human surrounding image by using the pre-
trained image feature extractor. Note that the parameters of the feature extractor are not
updated during the training of the proposed model in terms of calculation costs to avoid
loss of pre-trained parameters.
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3.3. Image-Assisted Attention (IAA)

This section explains the details of the proposed skeleton feature modification module,
named image-assisted attention (IAA), for future skeleton prediction. The structure of the
proposed IAA module is shown in Figure 3.

⊕
⊗

Skeleton feature extractor:

A 3D human skeleton sequence: 

Flatten

Sigmoid

A human surrounding image: 

FC layers: FC layers: 

Attention

⊕

Reshape to a graph

Image feature extractor: 

⊗: Hadamard product

Figure 3. The structure of the IAA module. The skeleton feature extractor is a graph convolution
layer of any existing GCN-based prediction model. A surrounding image feature i is used to calculate
the attention matrix A for modifying the original skeleton feature S.

The IAA module uses a skeleton feature S extracted using the first layers of a GCN-
based prediction model, namely the skeleton feature extractor fp, and a surrounding image
feature i extracted using the image feature extractor fe explained in Section 3.2 as input.
The feature extraction process is as follows:

S = fp(X in; Θp). (1)

i = fe(ITin), (2)

where Θp denotes a set of parameters updated during training.
Since the skeleton feature S is an output of the first graph convolution layers in a GCN,

it is a set of features corresponding to each joint with a graph structure; therefore, first,
S ∈ Rm×n is flattened to a one-dimensional vector s ∈ Rmn. Next, s and i are converted
by fully connected layers fs and fi, respectively, to be the same dimension, n-dimensional
vectors. Then, these vectors fs(s; Θs) and fi(i; Θi) are added and fed to sigmoid function
σ(x) = 1

1+exp(−x) to calculate the attention vector a ∈ Rn as

a = σ( fs(s; Θs) + fi(i; Θi)). (3)

The attention vector a is repeated m times to form an attention matrix A ∈ Rm×n. The
original skeleton feature S is modified by the following equation:

Ŝ = S ◦ A + S, (4)

where the operator ◦ represents the Hadamard product.
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As a result, the skeleton feature S with n-dimensional features of m body joints are
weighted by the attention matrix A, and the weighted skeleton feature Ŝ is obtained.
These series of calculations make the feature values modified based on the surrounding
information extracted from the human surrounding image. This method is different from
the well-known cross-attention mechanism, such as using softmax and dot product, but
we call it “attention” in this paper because this method enhances the effective features
for prediction.

In this study, we used the same vector a as the attention for each body joint, that is,
all rows of the attention matrix A are the same. This is because we consider calculation
costs and the fact that the features of graph convolution involve information about adjacent
nodes to each other.

3.4. Future Skeleton Prediction Using the Modified Skeleton Feature

Finally, this section explains the future skeleton prediction. The weighted skeleton
feature Ŝ is input to the rest part of the GCN-based model fr, and the future skeleton
sequence X pred is predicted as

X pred = fr(Ŝ; Θr), (5)

where Θr denotes a set of parameters updated during training.

3.5. Model Structure and Training

In the implementation, there is room to discuss how to divide a GCN-based model
into the two fp and fr, that is, there are several possibilities to insert IAA into a GCN-based
model. In this paper, we considered the three locations for IAA to be inserted: P1: just after
the first graph convolution layer of the model, P2: at the middle graph convolution layer of
the model, and P3: just before the last graph convolution layer of the model, to investigate
and study how the accuracy changes. Here, in the case of encoder–decoder models such as
MSR-GCN, we can consider P1 as the initial stage of the feature extraction, P2 as the end of
the feature extraction, and P3 as the final stage of the generating prediction. Figure 4 shows
the three locations where the IAA module is inserted into any existing GCN-based model.

Any existing GCN-based prediction model

Image-Assisted Attention

P1: just after 
the first GC layer

P2: at the middle
GC layer

P3: just before 
the last GC layer

Figure 4. The three locations where the IAA module is inserted into any existing GCN-based model.
P1 is the initial stage of the feature extraction, P2 is the end of the feature extraction, and P3 is the
final stage of the generating prediction.

In Section 4, we will compare the performance by experimentally changing the location
of the insertion.

The model training was done in an end-to-end manner. We did not change the loss
function from the original GCN-based model we used in the proposed method. The sets of
parameters Θp, Θr, Θs, and Θi were updated during training.
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4. Evaluation and Results
4.1. Outline of Experiments

To confirm the performance of the proposed method, we performed experiments on
publicly available datasets. Here, in the experiments, we used PyTorch 1.12.1 (PyTorch
is an open-source software released under the modified BSD license), cuda11 (CUDA
is developed by NVIDIA, based in Santa Clara, CA, USA), Python 3.8 (Python is main-
tained by Python Software Foundation, which is an American nonprofit organization), and
NVIDIA Tesla V100 GPUs (Tesla V100 GPUs is developed by NVIDIA, based in Santa Clara,
CA, USA).

Since any GCN-based model can be used for the proposed method, we compared
several methods. As the GCN-based models, we used the latest prediction method, MSR-
GCN [16], and its original method, Traj-GCN [13]. In the evaluation, the proposed method
with each GCN-based model is named with the suffix “with IAA”. We used the two GCN-
based models with/without IAA; thus, we compared the 2× 2 models: MSR-GCN and
Traj-GCN, which are existing methods, and MSR-GCN with IAA and Traj-GCN with IAA,
which are the proposed methods.

4.2. Datasets

To evaluate the future pose prediction models, datasets consisting of 3D human
skeleton sequences and corresponding images are required. We used a large-scale dataset,
the NTU RGB+D 120 dataset [32], and the PKU-MMD dataset [33].

4.2.1. NTU RGB+D 120 Dataset

The NTU RGB+D 120 dataset [32] is basically used to evaluate skeleton-based action
recognition since it contains 114,480 videos in 120 action classes. In our experiment, we
used 3D and 2D skeleton sequences consisting of 25 joint points for each person and the
corresponding 1920× 1080 RGB images from the dataset. This dataset is captured using
Kinect v2 sensors (Kinect v2 is developed by Microsoft, based in Redmond, WA, USA) at
30 fps. Figure 5 shows some examples of 3D skeletons and RGB images in the NTU RGB+D
120 dataset.We used this for a future pose prediction task. We excluded 535 samples because
of incomplete or missing skeleton data.

From this dataset, we generated training and testing data by the following process.

1. Since a sample may contain multiple persons or false detections of other objects, first,
we select a person where the variance of the skeleton locations is the maximum.

2. We use 12 frames for 0.4 s as input and 30 frames for 1 s as future prediction by using
a sliding window of 42 frames. Multiple subsequences were generated using a sliding
window with a stride of 1.

3. The number of joints was reduced to fit the input shape of the prediction models
(25 joints→ 22 joints). For MSR-GCN, we prepared multi-scale skeletons with 12, 7,
and 4 joints by taking the average of the neighboring body joints, according to the
preprocessing of the multi-scale joints in MSR-GCN [16].

4. Since the generated subsequences may include switching of persons or other objects,
we excluded them by the criterion where the sum of the distance from “head” to
“spine base” and from “spine base” to “left foot” is smaller than 60 cm as noise data.
Similarly, we also excluded subsequences with skeletons of the distance between any
joint and spine base exceeding 140 cm as noise.

5. To make the prediction system robust to the location of the target person, all skele-
ton sequences are aligned using the locations of “spine base” in the last frame of
each input.

6. Images corresponding to the input skeletons were preprocessed by the method de-
scribed in Section 3.2. Here, the locations of missing body joint values of the 2D
skeleton were ignored, and the center points were calculated.

7. We divided the set of subsequences and the cropped images into the training set
(50%), validation set (25%), and test set (25%) referring to the cross-subject evaluation
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method proposed in the NTURGB+D 120 dataset (dividing such that data of the same
person is not included in different sets).

Sit down

Squat down

Figure 5. Examples of 3D skeletons and RGB images in the NTU RGB+D 120 dataset. The upper one
shows “sit down” and the lower one shows “squat down”. The 3D human skeletons are on the left
and the RGB image are on the right.

4.2.2. PKU-MMD Dataset

The PKU-MMD dataset [33] is a dataset for continuous multi-modality 3D human
action understanding. The PKU-MMD dataset contains two phases: Phase 1, which is a
large-margin action detection task, and Phase 2, which is a small-margin action detection
task. We used the Phase 2 data in our experiment. Phase 2 contains 2000 short video
sequences in 49 action classes, performed by 13 subjects in 3 camera views. In our exper-
iment, we used 3D skeleton sequences consisting of 25 joint points and corresponding
1920× 1080 RGB images. Figure 6 shows some examples of 3D skeletons and RGB images
in the PKU-MMD dataset.

Sit down

Pick up

Figure 6. Examples of 3D skeletons and RGB images in the PKU-MMD dataset. The upper one shows
“sit down” and the lower one shows “pick up”. The 3D human skeletons are on the left and the RGB
image are on the right.
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The procedure of generating training and evaluation data is almost the same as that of
NTU RGB+D 120, but the PKU-MMD dataset does not contain 2D skeletons. Hence, we
used the object detection model YOLOv5 [34] to detect persons from the RGB images and
calculated center points from the bounding boxes. If two or more persons or other objects
were detected, the bounding box with the highest confidence level was selected in each
frame. Furthermore, if no person was detected in a frame, the bounding box detected in
the previous frame was used for the frame. Therefore, these cropped images contain some
uncertainty.

4.3. Configuration and Parameters

The number of weight parameters for fully connected (FC) layers in the IAA module
is shown in Table 1. As shown in Table 1, the number of FC layers in the IAA varied from
one to three layers in the experiments.

Table 1. The number of parameters for fully connected (FC) layers in our proposed IAA module.

1 layer Input of fs
(1st)

Input of fi
(1st) Output of FC layers

MSR-GCN with IAA 4224 (= 66× 64) 1536 64
Traj-GCN with IAA 16,896 (= 66× 256) 1536 256

2 layers Input of fs
(1st / 2nd)

Input of fi
(1st / 2nd) Output of FC layers

MSR-GCN with IAA 4224 / 2112 1536 / 768 64
Traj-GCN with IAA 16,896 / 8848 1536 / 768 256

3 layers Input of fs
(1st / 2nd / 3rd)

Input of fi
(1st / 2nd / 3rd) Output of FC layers

MSR-GCN with IAA 4224 / 2112 / 1056 1536 / 768 / 384 64
Traj-GCN with IAA 16,896 / 8848 / 4424 1536 / 768 / 384 256

The other model parameters were set by following the existing studies. Leaky ReLU
with a slope of 0.2 was used as the activation function for FC layers fs and fi, while the
activation function was not applied to the final output of FC layers. All learnable parameters
Θp, Θr, Θs, and Θi except EffcientNet-B3 were updated by stochastic gradient descent
using the Adam optimizer [35], with the learning rate of 0.001 and other hyperparameters
set to the PyTorch default settings. The dropout ratio and the maximum number of epochs
were set to 0.2 and 200, respectively. In the case of the NTU RGB+D 120 dataset, the batch
size was set to 2048. In the case of the PKU-MMD dataset, the batch size was set to 256.
When the loss did not decrease for five epochs, the learning rate was multiplied by 0.1.
Then, when the validation loss did not decrease for 11 epochs, the training was terminated.

4.4. Evaluation Metric

We used mean per-joint position error (MPJPE), which is the mean of all Euclidean
distances for each joint in the predicted and ground-truth skeletons, as the loss function
and the evaluation metric to evaluate how close the predicted 3D future skeleton sequence
is to the ground-truth skeleton sequence. The evaluation metric was proposed in [36] and
is widely used in 3D pose prediction and estimation research [13–16,37–39]. The MPJPE (L)
for a skeleton sequence is defined by the following equation:

L =
1

TJ

T

∑
t=1

J

∑
j=1
‖ p̂j,t − pj,t‖2, (6)

where J is the number of body joints in 3D coordinates, T is the number of time step,
p̂j,t ∈ R3 represents the prediction of j-th joint location at time step t, and pj,t ∈ R3

represents the ground truth of j-th joint location at time step t.
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The training was performed in five trials by changing initial weights for each method,
and the performances of each method were evaluated by the average MPJPE of the
five trials.

4.5. Results

Table 2 shows the average MPJPE of five trials and its standard deviation for each
method on the NTU RGB+D 120 dataset. Additionally, Table 3 shows the average MPJPE
of five trials and its standard deviation on the PKU-MMD dataset. Here, the MPJPE values
are rounded off to the fourth decimal place.

Table 2. Avarage MPJPE of 5 trials and its standard deviation on the NTU RGB+D 120 dataset. P1, P2,
and P3 are the position where IAA is inserted in the GCN-based model, as described in Section 4.1.
↓ indicates that the smaller the value, the better. The bold indicates the best scores.

Model Average MPJPE (mm)↓
MSR-GCN 104.373± 0.398
Traj-GCN 105.464± 0.193

P1 model 1 FC layer 2 FC layers 3 FC layers

MSR-GCN with IAA 102.466± 0.248 101.817± 0.181 102.039± 0.130
Traj-GCN with IAA 103.799± 0.295 103.213± 0.154 103.338± 0.146

P2 model 1 FC layer 2 FC layers 3 FC layers

MSR-GCN with IAA 103.498± 0.107 102.825± 0.199 102.544± 0.197
Traj-GCN with IAA 105.132± 0.246 104.286± 0.545 103.905± 0.152

P3 model 1 FC layer 2 FC layers 3 FC layers

MSR-GCN with IAA 103.105± 0.155 102.859± 0.207 103.797± 0.461
Traj-GCN with IAA 105.172± 0.272 104.790± 0.265 104.719± 0.192

Table 3. Avarage MPJPE of 5 trials and its standard deviation on the PKU-MMD dataset. ↓ indicates
that the smaller the value, the better. The bold indicates the best scores.

Model Average MPJPE (mm)↓
MSR-GCN 137.454± 1.696
Traj-GCN 136.630± 0.617

P1 model 1 FC layer 2 FC layers 3 FC layers

MSR-GCN with IAA 135.241± 2.604 133.924± 1.452 135.686± 2.915
Traj-GCN with IAA 135.130± 0.507 135.551± 0.791 135.843± 0.781

P2 model 1 FC layer 2 FC layers 3 FC layers

MSR-GCN with IAA 132.972± 2.243 137.299± 7.038 138.553± 4.499
Traj-GCN with IAA 136.330± 0.521 136.284± 0.956 136.412± 0.878

P3 model 1 FC layer 2 FC layers 3 FC layers

MSR-GCN with IAA 136.274± 5.689 137.465± 3.642 137.193± 1.766
Traj-GCN with IAA 136.736± 0.806 136.735± 0.602 136.224± 0.445

As a result, from Tables 2 and 3, the proposed methods “with IAA” improved the
average MPJPE scores. Here, please recall that P1 is the IAA insertion position just before
the first GC layer, P2 is the middle GC layer, and P3 is just before the last GC layer. Hereafter,
the models with IAA inserted at P1, P2, and P3 positions are represented by “with IAA
P1”, “with IAA P2”, and “with IAA P3”, respectively. From Table 2, we can confirm that
both MSR-GCN with IAA P1 and Traj-GCN with IAA P1 with two FC layers have the best
average MPJPE among their respective models in the experiment on the NTU RGB+D 120
dataset. Additionally, from Table 3 in the experiment on the PKU-MMD dataset, we can
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confirm that Traj-GCN with IAA P1 with one FC layer has the highest scores among these
Traj-CGN models, while MSR-GCN with IAA P2 with one FC layer has the highest scores
among these MSR-CGN models.

Figure 7 shows the difference in the average class-wise MPJPE between MSR-GCN
and the models of MSR-GCN with IAA. The classes are 120 action classes labeled in the
NTURGB+D 120 dataset. The figure shows the values of the class-wise average MPJPE of
each model minus that of MSR-GCN with IAA P1 (two FC layers), which has the highest
accuracy. Here, we also compared MSR-GCN with IAA P1 (two FC layers), MSR-GCN
with IAA P2 (three FC layers), and MSR-GCN with IAA P3 (two FC layers).

From Figure 7a, we can see that the MSR-GCN with IAA P1 improves the prediction
accuracy in many action classes, as the difference of the class-wise average MPJPE is
positive in many of the action classes. Looking at each action class, we can see that the
prediction accuracy was especially improved for actions involving other persons, such
as “walking apart from each other” in action class 60 and “follow other person” in action
class 116. In addition, we can also see the improvement of the prediction accuracy for
actions “sit down” in action class 8 and “squat down” in action class 80, which can be easily
predicted by using the existence of a chair, and actions that are related to other objects
such as “pick up” in action class 6 and “move heavy object” in action class 92. In the
comparison between the proposed methods, Figure 7b shows that IAA P1 has generally
higher accuracy than IAA P2 in each action class, although the difference is small as an
overall trend. Furthermore, Figure 7c shows that IAA P1 has generally higher accuracy
than IAA P3 in many action classes as the overall trend. The two graphs in Figure 7b,c
show that the accuracy of IAA P3 is relatively lower than the other two IAA methods and
that the improvement of prediction accuracy is small.

The processing time and frames per second (FPS) required to predict 30 frames from
12 frames of input between MSR-GCN and MSR-GCN with IAA P1 are shown in Table 4.
An RTX3090 (RTX3090 GPU is developed by NVIDIA, based in Santa Clara, CA, USA.) was
used as the GPU, and CUDA11 and CUDNN libraries (CUDNN is developed by NVIDIA,
based in Santa Clara, CA, USA) were used for this speed test. Each processing time
includes the time required for preprocessing of the skeleton sequence and the surrounding
image. Additionally, the processing time is shown as an average of 1000 times, with three
significant digits. In Table 4, the time required for the prediction was less than 0.04 s,
although it took four times longer than when only MSR-CGN was used.

Table 4. Processing time and frames per second (FPS) required to predict 30 frames from 12 frames
of input.

Model Processing Time (s) Frames per Second (FPS)

MSR-GCN 7.83× 10−3 127
MSR-GCN with IAA P1 3.07× 10−2 32

Figure 8 shows an example of the predicted results and the ground truth in the “sit
down” class of the NTU RGB+D 120 dataset. Figure 9 also shows the predicted future
skeleton at the 30th frame in the output. As another example, Figure 10 shows the result
that is the predicted skeleton at the 30th frame in an example of the “squat down” class of
the NTU RGB+D 120 dataset.
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Figure 7. Differences in the class-wise average MPJPE between MSR-GCN and the models of MSR-
GCN with IAA calculated. In this figure, (a) is the difference of MSR-GCN minus MSR-GCN with
IAA P1, (b) is the difference of MSR-GCN with IAA P2 minus MSR-GCN with IAA P1, and (c) is
the difference of MSR-GCN with IAA P3 minus MSR-GCN with IAA P1. Also, MSR-GCN with IAA
P1 (2 FC layers), MSR-GCN with IAA P2 (3 FC layers), and MSR-GCN with IAA P3 (2 FC layers)
are compared.
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… … … … …

Input pose sequence Ground truth

MSR-GCN

MSR-GCN with IAA (our proposed)

Input image

𝒕

12 frames

30 frames

… …

… … … … …

… … … … …

Figure 8. An example of predicted result (blue) and ground truth (red) in the “sit down” action. We
can see that the predicted skeletons of MSR-GCN with IAA (with 2 FC layers) are closer to the ground
truths when using the image of the surroundings.

MSR-GCN MSR-GCN with IAA

The image corresponding to the predicted skeleton

Figure 9. A prediction example of the 30th frame of prediction (blue) and ground truth (red) in “sit
down”. In this example, the existing method made the misprediction as “jump up”, but our proposed
method predicted it correctly. In object-related motions, the future skeleton is well predicted by our
proposed IAA.

From Figures 8 and 9, we can also see that our proposed method improves prediction
accuracy over existing methods in the “sit down” class, confirming the effectiveness of
using the surrounding situation as additional information in object-related motions. It is
the same in non-object-related motions, as shown in Figure 10.
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MSR-GCN MSR-GCN with IAA

The image corresponding to the predicted skeleton

Figure 10. A prediction example of the 30th frame of prediction (blue) and ground truth (red)
in “squat down”. In non-object-related motions, the future skeleton is also well predicted by our
proposed IAA.

4.6. Discussion

In Table 2 and Figure 7, IAA P1 achieved the highest accuracy. We assume it is because
MSR-GCN and Traj-GCN structures have shortcut connections between each layer; the
effect of feature modification worked effectively for all GC layers by weighting in the early
stage of feature extraction. However, in Table 3, the prediction was more accurate when
IAA is applied to the P2 position for MSR-GCN than when IAA is applied to the P1 position.
The MPJPE difference between IAA P1 and IAA P2 is also small in Figure 7, indicating that
it is possible for some cases to be more accurate when applied to the P2 position. Therefore,
as for the optimal IAA location, since many recent deep learning models have shortcut
connections or similar structures, we consider that IAA is basically best applied to the first
graph convolution layer of many prediction models; however, in some cases, it may be
necessary to consider applying it to the middle of the model.

The IAA improved the prediction accuracy for many motions. However, looking at
the results in detail, even though the actions are the same, actors in some videos pretended
to perform an action without objects. In such cases, the prediction accuracy was decreased.
Additionally, in some actions such as “hands up (both hands)” in action class 95 in Figure 7a,
the prediction accuracy was decreased. We guess it is because the actors in the dataset
are performing the action while there are many objects on the floor and desks that are not
related to the action. In the future, it will be necessary to improve the method in some way,
for example, by using distance information between humans and objects to prevent the
prediction accuracy from decreasing even in environments where there are many objects
unrelated to the actions.

5. Conclusions

In this study, we proposed the method to predict future human skeleton sequences
from short-term 3D human skeleton sequences with surrounding information as an addi-
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tional clue, under the assumption that the surrounding information helps the prediction
of human motions. The human surrounding information was extracted from an image of
the target person. In the experiment using the NTU RGB+D 120 dataset and PKU-MMD
dataset, we confirmed that the prediction accuracy of the future skeleton sequence is im-
proved for the motion involving other objects and humans. Additionally, we proposed
a novel skeleton feature weighting method, the image-assisted attention (IAA) module,
and investigated the effect of the position where the proposed IAA is inserted into the
GCN-based methods. As a result, we confirmed that it is basically best to insert the IAA
module just after the first graph convolutional layer of a GCN-based prediction model,
although it is better when inserted in the middle layer of the model in some cases. In
the proposed method, we used EfficientNet for image feature extraction; but there is a
possibility that the accuracy will be improved by replacing it with another backbone. We
will tackle the remaining issues and further improve the prediction accuracy in the future.

Author Contributions: Conceptualization , T.F. and Y.K.; methodology, T.F. and Y.K.; software, T.F.;
validation, T.F. and Y.K.; formal analysis, T.F.; investigation, T.F.; resources, Y.K.; data curation,
Y.K.; writing—original draft preparation, T.F.; writing—review and editing, Y.K.; visualization, T.F.;
supervision, Y.K.; project administration, T.F. and Y.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The NTU RGB+D 120 dataset can be downloaded from: https://
github.com/shahroudy/NTURGB-D (accessed on 21 November 2022). The PKU-MMD dataset can
be downloaded from: https://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html (accessed on
21 November 2022).

Acknowledgments: The computation was carried out using the General Projects on the supercom-
puter “Flow” at the Information Technology Center, Nagoya University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Foka, A.; Trahanias, P. Probabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction.

Int. J. Soc. Robot. 2010, 2, 79–94. [CrossRef]
2. Koppula, H.S.; Saxena, A. Anticipating human activities for reactive robotic response. In Proceedings of the 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; p. 2071. [CrossRef]
3. Gong, H.; Sim, J.; Likhachev, M.; Shi, J. Multi-hypothesis motion planning for visual object tracking. In Proceedings of the 2011

International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 619–626. [CrossRef]
4. Liu, H.; Wang, L. Human motion prediction for human-robot collaboration. J. Manuf. Syst. 2017, 44, 287–294. [CrossRef]
5. Gui, L.Y.; Zhang, K.; Wang, Y.X.; Liang, X.; Moura, J.M.F.; Veloso, M. Teaching Robots to Predict Human Motion. In Proceedings

of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 562–567. [CrossRef]

6. Brand, M.; Hertzmann, A. Style Machines. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 183–192. [CrossRef]

7. Taylor, G.W.; Hinton, G.E.; Roweis, S.T. Modeling Human Motion Using Binary Latent Variables. In Proceedings of the Advances
in Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; Volume 19, pp. 1345–1352.

8. Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent network models for human dynamics. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4346–4354. . ICCV.2015.494. [CrossRef]

9. Martinez, J.; Black, M.J.; Romero, J. On human motion prediction using recurrent neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4674–4683. [CrossRef]

10. Tang, Y.; Ma, L.; Liu, W.; Zheng, W.S. Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion
Dynamics. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, Stockholm,
Sweden, 13–19 July 2018; pp. 935–941. [CrossRef]

11. Wang, B.; Adeli, E.; Chiu, H.K.; Huang, D.A.; Niebles, J.C. Imitation Learning for Human Pose Prediction. In Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 7123–7132.
[CrossRef]

https://github.com/shahroudy/NTURGB-D
https://github.com/shahroudy/NTURGB-D
https://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
http://doi.org/10.1007/s12369-009-0037-z
http://dx.doi.org/10.1109/IROS.2013.6696634
http://dx.doi.org/10.1109/ICCV.2011.6126296
http://dx.doi.org/10.1016/j.jmsy.2017.04.009
http://dx.doi.org/10.1109/IROS.2018.8594452
http://dx.doi.org/10.1145/344779.344865
http://dx.doi.org/10.1109/ ICCV.2015.494
http://dx.doi.org/10.1109/CVPR.2017.497
http://dx.doi.org/10.24963/ijcai.2018/130
http://dx.doi.org/10.1109/ICCV.2019.00722


Sensors 2023, 23, 876 16 of 17

12. Li, M.; Chen, S.; Zhao, Y.; Zhang, Y.; Wang, Y.; Tian, Q. Dynamic Multiscale Graph Neural Networks for 3D Skeleton Based
Human Motion Prediction. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 14–19 June 2020; pp. 211–220. [CrossRef]

13. Mao, W.; Liu, M.; Salzmann, M.; Li, H. Learning Trajectory Dependencies for Human Motion Prediction. In Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9488–9496.
[CrossRef]

14. Cui, Q.; Sun, H.; Yang, F. Learning Dynamic Relationships for 3D Human Motion Prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6519–6527. [CrossRef]

15. Sofianos, T.; Sampieri, A.; Franco, L.; Galasso, F. Space-Time-Separable Graph Convolutional Network for Pose Forecasting. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp.
11189–11198. [CrossRef]

16. Dang, L.; Nie, Y.; Long, C.; Zhang, Q.; Li, G. MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion
Prediction. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17
October 2021; pp. 11447–11456. [CrossRef]

17. Fujita, T.; Kawanishi, Y. Toward Surroundings-aware Temporal Prediction of 3D Human Skeleton Sequence. In Proceedings of
the Towards a Complete Analysis of People: From Face and Body to Clothes (T-CAP), Montreal, QC, Canada, 21–25 August 2022.

18. Wang, J.; Hertzmann, A.; Fleet, D.J. Gaussian Process Dynamical Models. In Proceedings of the Advances in Neural Information
Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; Volume 18.

19. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of
the Thirty-Second AAAI conference on artificial intelligence, New Orleans, LA, USA, 2–7 February 2018. [CrossRef]

20. Chan, W.; Tian, Z.; Wu, Y. Gas-gcn: Gated action-specific graph convolutional networks for skeleton-based action recognition.
Sensors 2020, 20, 3499. [CrossRef] [PubMed]

21. Wang, R.; Huang, C.; Wang, X. Global Relation Reasoning Graph Convolutional Networks for Human Pose Estimation. IEEE
Access 2020, 8, 38472–38480. [CrossRef]

22. Azizi, N.; Possegger, H.; Rodolà, E.; Bischof, H. 3D Human Pose Estimation Using Möbius Graph Convolutional Networks.
In Proceedings of the 17th European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 160–178. ._10.
[CrossRef]

23. Liu, Z.; Jiang, Z.; Feng, W.; Feng, H. OD-GCN: Object Detection Boosted by Knowledge GCN. In Proceedings of the 2020 IEEE
International Conference on Multimedia & Expo Workshops, London, UK, 6–10 July 2020; pp. 1–6. [CrossRef]

24. Li, Z.; Du, X.; Cao, Y. GAR: Graph Assisted Reasoning for Object Detection. In Proceedings of the 2020 IEEE Winter Conference
on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1284–1293. [CrossRef]

25. Chopin, B.; Otberdout, N.; Daoudi, M.; Bartolo, A. 3D Skeleton-based Human Motion Prediction with Manifold-Aware GAN.
IEEE Trans. Biom. Behav. Identity Sci. 2022.

26. Sampieri, A.; di Melendugno, G.M.D.; Avogaro, A.; Cunico, F.; Setti, F.; Skenderi, G.; Cristani, M.; Galasso, F. Pose Forecasting in
Industrial Human-Robot Collaboration. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27
October 2022; pp. 51–69. ._4. [CrossRef]

27. Corona, E.; Pumarola, A.; Alenya, G.; Moreno-Noguer, F. Context-Aware Human Motion Prediction. In Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6990–6999.
[CrossRef]

28. Adeli, V.; Adeli, E.; Reid, I.; Niebles, J.C.; Rezatofighi, H. Socially and Contextually Aware Human Motion and Pose Forecasting.
IEEE Robot. Autom. Lett. 2020, 5, 6033–6040. [CrossRef]

29. Chao, Y.W.; Yang, J.; Price, B.; Cohen, S.; Deng, J. Forecasting human dynamics from static images. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 548–556. [CrossRef]

30. Zhang, J.Y.; Felsen, P.; Kanazawa, A.; Malik, J. Predicting 3d human dynamics from video. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 7113–7122. [CrossRef]

31. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Machine Learning Research; Volume 97,
pp. 6105–6114.

32. Liu, J.; Shahroudy, A.; Perez, M.; Wang, G.; Duan, L.Y.; Kot, A.C. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human
Activity Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2684–2701. [CrossRef] [PubMed]

33. Liu, C.; Hu, Y.; Li, Y.; Song, S.; Liu, J. PKU-MMD: A large scale benchmark for skeleton-based human action understanding. In
Proceedings of the Workshop on Visual Analysis in Smart and Connected Communities, Mountain View, CA, USA, 27 October
2017; pp. 1–8. [CrossRef]

34. Ultralytics. Yolov5. Available online: https://github.com/ultralytics/yolov5 (accessed on 21 November 2022).
35. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015.
36. Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu, C. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human

Sensing in Natural Environments. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1325–1339. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/CVPR42600.2020.00029
http://dx.doi.org/10.1109/ICCV.2019.00958
http://dx.doi.org/10.1109/CVPR42600.2020.00655
http://dx.doi.org/10.1109/ICCV48922.2021.01102
http://dx.doi.org/10.1109/ICCV48922.2021.01127
http://dx.doi.org/10.1609/aaai.v32i1.12328
http://dx.doi.org/10.3390/s20123499
http://www.ncbi.nlm.nih.gov/pubmed/32575802
http://dx.doi.org/10.1109/ACCESS.2020.2973039
http://dx.doi.org/10.1007/978-3-031-19769-7_10
http://dx.doi.org/10.1109/ICMEW46912.2020.9105952
http://dx.doi.org/10.1109/WACV45572.2020.9093559
http://dx.doi.org/10.1007/978-3-031-19839-7_4
http://dx.doi.org/10.1109/CVPR42600.2020.00702
http://dx.doi.org/10.1109/LRA.2020.3010742
http://dx.doi.org/10.1109/CVPR.2017.388
http://dx.doi.org/10.1109/ICCV.2019.00721
http://dx.doi.org/10.1109/TPAMI.2019.2916873
http://www.ncbi.nlm.nih.gov/pubmed/31095476
http://dx.doi.org/10.1145/3132734.3132739
https://github.com/ultralytics/yolov5
http://dx.doi.org/10.1109/TPAMI.2013.248
http://www.ncbi.nlm.nih.gov/pubmed/26353306


Sensors 2023, 23, 876 17 of 17

37. Chen, C.H.; Ramanan, D. 3D Human Pose Estimation = 2D Pose Estimation + Matching. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5759–5767. [CrossRef]

38. Habibie, I.; Xu, W.; Mehta, D.; Pons-Moll, G.; Theobalt, C. In the Wild Human Pose Estimation Using Explicit 2D Features and
Intermediate 3D Representations. In Proceedings of the IEEE/CVF Conference on Computer VISION and Pattern Recognition,
Long Beach, CA, USA, 16–20 June 2019; pp. 10897–10906. [CrossRef]

39. Li, W.; Liu, H.; Tang, H.; Wang, P.; Van Gool, L. MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24
June 2022; pp. 13137–13146. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2017.610
http://dx.doi.org/10.1109/CVPR.2019.01116
http://dx.doi.org/10.1109/CVPR52688.2022.01280

	Introduction
	Related Work
	Future Skeleton Prediction That Captures Surrounding Situation
	Overview
	Surrounding Image Feature Extraction
	Image-Assisted Attention (IAA)
	Future Skeleton Prediction Using the Modified Skeleton Feature
	Model Structure and Training

	Evaluation and Results
	Outline of Experiments
	Datasets
	NTU RGB+D 120 Dataset
	PKU-MMD Dataset

	Configuration and Parameters
	Evaluation Metric
	Results
	Discussion

	Conclusions
	References

