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Abstract: The rehabilitation of aphasics is fundamentally based on the assessment of speech impair-
ment. Developing methods for assessing speech impairment automatically is important due to the
growing number of stroke cases each year. Traditionally, aphasia is assessed manually using one
of the well-known assessment batteries, such as the Western Aphasia Battery (WAB), the Chinese
Rehabilitation Research Center Aphasia Examination (CRRCAE), and the Boston Diagnostic Aphasia
Examination (BDAE). In aphasia testing, a speech-language pathologist (SLP) administers multiple
subtests to assess people with aphasia (PWA). The traditional assessment is a resource-intensive
process that requires the presence of an SLP. Thus, automating the assessment of aphasia is essential.
This paper evaluated and compared custom machine learning (ML) speech recognition algorithms
against off-the-shelf platforms using healthy and aphasic speech datasets on the naming and repeti-
tion subtests of the aphasia battery. Convolutional neural networks (CNN) and linear discriminant
analysis (LDA) are the customized ML algorithms, while Microsoft Azure and Google speech recog-
nition are off-the-shelf platforms. The results of this study demonstrated that CNN-based speech
recognition algorithms outperform LDA and off-the-shelf platforms. The ResNet-50 architecture of
CNN yielded an accuracy of 99.64 ± 0.26% on the healthy dataset. Even though Microsoft Azure was
not trained on the same healthy dataset, it still generated comparable results to the LDA and superior
results to Google’s speech recognition platform.

Keywords: aphasia; deep learning; speech impairment assessment

1. Introduction

Over the past several decades, strokes have become the leading cause of long-term
disability and the second leading cause of death worldwide [1]. There are varieties of
functional impairments associated with stroke survivors, such as cognitive, motor, and
speech impairments. One recent report stated that over 80 million people suffer strokes
worldwide, and one-third of them have aphasia [2].

Patients with aphasia (PWA) are likely to experience impairments in listening, read-
ing, writing, and speaking. In addition, PWAs face communication difficulties, such
as difficulty with speech, which may cause experiences of frustration, social isolation,
and difficulty performing activities of daily living (ADL). Previous studies have indi-
cated that the early commencement of supervised rehabilitation of PWA leads to a faster
recovery [3]. Aphasia is commonly assessed manually with one of the well-known as-
sessment tools, such as the Chinese Rehabilitation Research Center Aphasia Examination
(CRRCAE [4]), for Chinese-dialect-speaking patients), the Aachen Aphasia Test (AAT [5]),
for German-speaking patients, the Boston Diagnostic Aphasia Examination (BDAE [6]),
for English-speaking patients, and the Arabic Diagnostic Aphasia Battery (A-DAB [7]), for
Lebanese-Arabic speaking patients. Typically, these tests (referred to as batteries) assess the
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language function, content, fluency, auditory comprehension, repetition, naming, writing,
and calculation. Aphasia rehabilitation depends on assessing people with speech impair-
ments using these subtests, which are used by speech-language pathologists (SLPs). It is,
however, labor-intensive to assess aphasic speech manually, which requires the presence of
an SLP. Furthermore, SLPs are increasingly having difficulty assessing individual patients
with PWA as stroke incidents increase yearly [1]. The development of an automatic method
for assessing speech impairments for PWA is, therefore, crucial.

There have been several studies investigating automatic speech assessment for people
with aphasia. Using gated recurrent units and CNN algorithms, Qin et al. [8] presented an
end-to-end approach to assess Cantonese-speaking PWAs. Using support vector machines
(SVMs) and a modified density-based clustering algorithm, in [9], normal from pathological
voices were distinguished. The authors in [10] presented a method for detecting aphasia
speech using dynamic time-warping algorithms and Mel-frequency cepstral coefficients
(MFCCs). CNN and time frequency were used in our previous study [11] to assess impaired
speech automatically for Mandarin-speaking aphasic patients. An accurate assessment
of the speech severity level was found to correlate with the CNN-based model in twelve
aphasic patients [11].

However, there is no published research on the automation of aphasia battery subtests
using existing, cloud-based, automatic speech recognition platforms, such as Microsoft
Azure and Google speech-to-text. These platforms are widely used in daily activities with
outstanding performance on healthy speech; therefore, it is worthwhile to investigate their
suitability for aphasia assessment.

In this paper, we compared the performance of the aforementioned off-the-shelf speech
recognition platforms to previously investigated custom CNN and linear discriminant
analysis (LDA) algorithms within the restricted scope of the aphasia batteries’ naming
and repetition subtests involving no spontaneous speech but only isolated, pre-defined
words. Both healthy and aphasic speech datasets were used. The comparison is not meant
to be absolute in any sense since the custom systems were trained on a small set of isolated
words, whereas the off-the-shelf platforms were trained on a very large dataset comprising
isolated and continuous speech.

This comparative study will assist the development of aphasia assessment tools as
part of aphasia batteries.

2. Related Works

Machine learning algorithms are increasingly being used in automatic aphasia assess-
ment. Common tasks include discriminating between normal and aphasic speech, assessing
the degree of speech impairment for aphasic patients, and discriminating between various
aphasia syndromes. Table 1 summarizes some of these works, listing the type of machine
learning used, the main contributions, and performance accuracy when applicable.

Aphasia batteries such as CRRCAE, Boston Diagnostic Aphasia Examination, and
Western Aphasia Battery (WAB) comprise several subtests. Examples of such subtests are
spontaneous speech, auditory verbal comprehension, repetition, naming, word-finding,
reading, writing, and apraxia. Table 2 shows the key subtests and the potential and
possibility of automation for each subtest.

The naming, repetition, and auditory verbal comprehension subtests can be automated
using customized machine learning [8,11,12]. These subtests can be automated using
customized speech recognition algorithms thanks to the small dataset size the subtests
include. However, subtests such as spontaneous speech require an algorithm to detect
words automatically, as well as being trained on a large vocabulary. For example, one of the
spontaneous speech questions could be “How are you?”. Patients could respond in many
ways, such as “Fine”, “Good”, or “Not bad”. In a sentence completion task, a question such
as “Sugar is . . . ?” could be answered appropriately by “sweet” or “white”.
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Table 1. Review of works proposing the use of machine learning for aphasia assessment.

Authors
Type of Machine Learning:

Classical Machine Learning (CML),
Deep Neural Network (DNN)

Major Contributions, Performance

Järvelin and Juhola,
2011 [13]

CML:
k-means, SOM, PNN, k-NN, MLP,
Bayes, Disc, Tree

• Two aphasia assessment tasks were carried out using
speech utterances: (1) to discriminate between
healthy and disordered speech and (2) to recognize
the patients’ aphasic syndromes. Aphasia datasets
from PatLight were used in the first task and naming
datasets in the second.

• In all datasets, none of the ML classifiers appeared to
perform exceptionally well. In addition, the selection
of a particular classifier should be task dependent

Kristinsson et al., 2021 [14] CML:
Support Vector Regression (SVR)

• The aim was to predict aphasia severity and advise
for specific language measures using a multimodal
neuroimaging dataset, including task-based
functional magnetic resonance imaging (fMRI),
diffusion-based fractional anisotropy (FA)-values,
cerebral blood flow (CBF), and lesion-load data.

• According to the authors, different neuroimaging
modalities can be integrated to provide a description
of how damage to brain tissues and their remaining
functionality can affect language function in aphasia.

Qin et al., 2018 [15]

DNN:
Time Delay Neural Network
Bidirectional Long-Short Term
Memory Recurrent Neural Network
(TDNN-BLSTM-RNN)

• The aim was to predict aphasia severity using speech
utterances under the constraint of a lack of training
speech data in the intended application domain and
the degradation of automatic speech recognition
performance for aphasic speech.

• In our experiment, the predicted severity level and
the subjective Aphasia quotient score were highly
correlated at 0.842.

Le, 2017 [16]

DNN:
i-vectors and multi-task deep
Bidirectional Long-Short Term
Memory Recurrent Neural Network
(BLSTM-RNN)

• This Ph.D. dissertation investigated the automatic
intelligibility assessment of constrained speech data,
specifically the estimation of speech fluidity and
prosody. It also investigated aphasic unconstrained
speech recognition and then paraphasia detection
using BLSTM-RNN.

• It appeared that there exists a moderate correlation
between recognition errors and aphasia severity,
which means that automatic speech recognition
technology is more suited for non-conversational
aphasic speech.

Tsanas et al., 2012 [17]
CML:
Support Vector Machines (SVM),
random forests

• This work investigated how accurately speech signal
processing algorithms (dysphonia measures) can
predict Parkinson’s disease (PD) symptom severity
using speech signals.

• Experimental results showed that some of the
proposed dysphonia measures could complement
existing algorithms by maximizing the ability of the
classifiers to discriminate healthy controls from PD
subjects.
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Table 1. Cont.

Authors
Type of Machine Learning:

Classical Machine Learning (CML),
Deep Neural Network (DNN)

Major Contributions, Performance

Shahin et al., 2014 [18]

CML:
Gaussian Mixture Model-Hidden
Markov Model (GMM-HMM)
DNN:
Deep Neural Network- Hidden
Markov Model (DNN-HMM)

• The aim was to investigate a pronunciation
verification method for use in an automatic
assessment therapy tool for child disordered speech.

• All experiments on normal and disordered speech
showed that the hybrid DNN-HMM outperformed
the conventional GMM-HMM. A total accuracy rate
of 85% was achieved when the system was used with
a disordered speech at the phoneme level.

Amami and Smiti, 2017 [9]

CML:
Support Vector Machines (SVM)
classifier with a Radial Basis Function
(RBF) kernel

• The aim was to distinguish between normal and
pathological voices. The authors used a
density-based clustering algorithm named DBSCAN
with incremental learning in order to detect noisy
samples. They also used MFCC features. The output
model was submitted to an SVM classifier to
discriminate between normal and pathological
voices.

• Experimental results showed that the method could
handle incremental and dynamic voices database,
which evolved over time.

Ding et al., 1995 [10] DNN:
Neural Network

• The aim was to develop a computer-aided speech
therapy system to treat aphasia and articulation
disorders in Chinese patients. The authors used
MFCCs as features and dynamic time-warping
(DTW) algorithms.

• Real-time speaker-independent non-isolated word
recognition was realized successfully. The average
recognition rate of 10 numerical numbers was 78%,
and that of four words was 77.5%.

Li, 2010 [19] DNN:
Neural Network

• The aim was to investigate a computer-assisted
speech recognition system for patients with aphasia
and dysarthria to help rehabilitate aphasic patients.

• It used a variety of techniques, including Mel
frequency cepstral coefficients (MFCCs) extraction,
discrete wavelet transform (DWT), and an artificial
neural network.

• Statistically significant improvements in
pronunciation levels were noted after treatment in
clinical trials (p < 0.025).

Day et al., 2021 [20]

CML:
k-means, random forest

DNN

• This study aimed to investigate how impairment is
assessed in aphasic patients and provides clinicians
with tools to plan and monitor treatment.

• The study combined natural language processing
(NLP) and regression models to predict severity
scores and NLP and classification models to predict
severity levels into mild, moderate, severe, and very
severe).

• Their best classification model resulted in an overall
accuracy of 73%, with the highest accuracy of 87.5%
for mild severity.
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Table 1. Cont.

Authors
Type of Machine Learning:

Classical Machine Learning (CML),
Deep Neural Network (DNN)

Major Contributions, Performance

Mahmoud et al., 2020 [11]
DNN:
Convolutional Neural Network
(CNN)

• The aim was to assess the severity of impairment in
Mandarin-speaking aphasic patients.

• In their study, the authors found a significant
correlation between articulation, fluency, and tone of
speech in aphasic patients with different levels of
severity.

• The method used a high-resolution time-frequency
distribution (TFD) coupled with a convolutional
neural network (CNN).

• The ML method results and predicted speech
impairment levels were found to be significantly
correlated in 12 aphasic patients.

Table 2. Batteries’ key subtests and suitability of classification algorithms.

Subtest Task Description Classification Models

Sp
on

ta
ne

ou
s

Sp
ee

ch

Conversational question Patient verbally responds to personal
questions

Off-the-shelf speech recognition platforms
(i.e., Microsoft Azure, Google)

Personal description Patient describes a picture in the stimulus
book

Off-the-shelf speech recognition platforms
(i.e., Microsoft Azure, Google)

A
ud

it
or

y
Ve

rb
al

C
om

pr
eh

en
si

on

Yes/No questions

Patient must answer personal, environmental,
and general questions with a Yes or No. SLP
also marks whether the response was verbal,

gestural, or through an eye blink

Customized machine learning models
(i.e., CNN, LDA)

Off-the-shelf speech recognition platforms
(i.e., Microsoft Azure, Google)

Auditory word
recognition

Patient is shown real objects, as well as cards
of pictured objects, forms, letters, numbers,

and colors. The patient must point to what the
SLP says

Simple computer programming such as
multiple-choice selection

Sequential commands Patient must execute commands that increase
in difficulty and length Computer vision recognition

R
ep

et
it

io
n

Words, sentences, and
phrases repetition

Patient must repeat words, phrases, and
sentences of increasing difficulty

Customized machine learning algorithms
require word detection for sentences and

phrases

Off-the-shelf speech recognition platforms
(i.e., Microsoft Azure, Google)

N
am

in
g

an
d

W
or

d
Fi

nd
in

g

Object naming Patient must name objects one at a time
Customized machine learning models

(i.e., CNN, LDA)
Off-the-shelf speech recognition platforms

(i.e., Microsoft Azure, Google)

Word fluency Patient must name as many animals as he/she
can in one minute

Off-the-shelf speech recognition platforms
(i.e., Microsoft Azure, Google)

Sentence completion Patient must complete sentences read to them Off-the-shelf speech recognition platforms
(i.e., Microsoft Azure, Google)

Responsive speech Patient must answer sentences read to them Off-the-shelf speech recognition platforms
(i.e., Microsoft Azure, Google)

Off-the-shelf, cloud-based speech recognition platforms are notoriously trained on a
large vocabulary and can deal easily with spontaneous speech. It is rational to investigate
their suitability for the aphasia assessment task. Since we used Mandarin datasets in
this study, we considered two speech recognition platforms under two extreme usage
scenarios in China: Microsoft Azure speech-to-text (commonly used) and Google speech-
to-text (hardly used). In this paper, we compare the performance of the convolutional
neural network (CNN), the linear discriminant analysis (LDA), the Microsoft Azure speech
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recognition platform, and the Google speech recognition platform over the naming and
repetition subtests using healthy and aphasic speech datasets.

3. Materials and Methods
3.1. Dataset

For this investigation, we used the same dataset as our previous study [11]. However,
crucial details about the experiment are mentioned here for coherence. In this study, twelve
aphasic patients (including five females) with a mean age of 61.8 ± 14.4 and thirty-four
healthy subjects (including 11 females) with a mean age of 21.5± 3.1 years participated. The
twelve patients were recruited from the Jiaxing Second Hospital in Zhejiang, China, and
Shantou University’s First Affiliated Hospital (STU), China. Thirty-four healthy participants
were recruited from the STU. A summary of the recruited patients is shown in Table 3.
The study was approved by the Ethics Committees of both hospitals. The declaration of
Helsinki was followed throughout all experiments.

Table 3. Aphasic patients’ details.

Number of
Patients

Gender
Male/Female

Age, Yrs.
(Mean ± SD) Cardinal Symptom (#) Native Dialect (#)

12 7/5 61.8 ± 14.4

Broca (6)
Dysarthria (3)

Anomic (1)
Combined (1)

Transcortical motor (1)

Mandarin (6)
Teochew (2)
Jiaxing (4)

A Lenovo B613 recording pen with a sampling rate of 48,000 samples/s, each en-
coded over 16 bits, was used to capture the speech data of healthy subjects and PWAs
volunteers. The speech data were recorded in a stereo mode in the WAV format without
any compression and at 1536 kbps. A total of twenty Mandarin words and six Mandarin
vowels were uttered by participants in this study. The list of the 20 Mandarin words that
related to daily items and activities was taken from the CRRCAE standard [5,11]. Each
patient with aphasia repeated vowels and words three times on average, and each healthy
participant repeated them five times. A preprocessing step was performed on speech
samples to eliminate the silent parts at the beginning and end of each sample. Our analysis
also excluded non-quantified samples and samples that were noisy, totaling 4% of the
samples. To identify the datasets, separate notations were used; in order to distinguish data
pertaining to the vowels and words (26 classes) of healthy participants or aphasic patients,
the dataset is designated as ‘vowels + words’ in the following sections. In this paper, we
will consider the ‘only words’ dataset, which contains only the speech data (20 classes) of
healthy participants or aphasic patients.

3.2. Microsoft Azure Speech-to-Text API

Cloud computing is a fairly recent technology that provides access via the internet
to a vast array of computing resources, such as storage, database technology, security,
virtual machines, analytics, computing, internet-of-things (IoT), and computer vision,
among others. They can be grouped into software as a service (SaaS), platform as a service
(PaaS), and infrastructure as a service (IaaS). An individual or business only needs a low-
specification computer or mobile device to connect to a cloud service and obtain access
to these resources via a pay-as-you-go model. While traditionally, a business would be
burdened by the purchase or rental of IT infrastructure components (servers, software) and
dedicated maintenance staff; cloud computing offsets everything to cloud service providers,
who run massive data centers to offer these resources. The pay-as-you-go business model
has proven to be well worth the immense investments in cloud infrastructure. The platforms
that currently dominate the cloud computing industry are Amazon Web Services (AWS),
Microsoft Azure, and Google [21].
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Microsoft Azure provides a total of more than 200 services, divided into about
20+ categories. One of them is ‘Artificial Intelligence and Machine Learning’, contain-
ing both general and specialized machine learning tools [22]. General tools tailored for data
scientists make it possible to choose an algorithm and train on very specific data. In con-
trast, specialized tools gathered in the ‘Cognitive Service’ sub-category are for developers
without machine-learning experience, requiring only general knowledge about the data.
These services always provide a trained model (using the service’s data, not made available
to users) and allow the provision of custom data to refine the training of the model. In some
cases, services can be combined to provide a chain solution, such as converting speech to
text, translating the text into many languages, and then using those translated languages to
obtain answers.

These services provide both (REST) application programming interfaces (APIs) and
language-based software development kits (SDKs) requiring knowledge of language pro-
gramming (such as C#, C++, Java, Python, etc). REST APIs access web services in a simple
and flexible way without any processing via HTTP requests (responses come back from
the server in the form of a resource which can be anything that is similar to HTML, XML,
Image, or JSON) [23].

In the speech sub-category, the speech-to-text API is relevant to this work. Additionally,
known as speech recognition, it enables the real-time or offline transcription of audio
streams into text [24]. It currently supports 139 locales to cater to variations in dialects
and phonetics, including fifteen for English, two for Chinese Cantonese, three for Chinese
Mandarin, and one for Chinese Wu [25]. In addition to providing feedback on pronunciation
accuracy and fluency, it also enables real-time pronunciation assessments [26]. A speech-to-
text converter that is ‘out of the box’ in each language uses a universal language model (for
this language) as a base model, which is trained on Microsoft-owned data and represents
commonly spoken languages. The base model is pre-trained with dialects and phonetics
that cover a wide range of domains. By adding additional data to the base model, the
user can augment its capability when the audio contains ambient noise or involves a lot of
industry and domain-specific jargon. However, this approach has not been followed in this
study since the aphasia batteries contain only common words.

It is worth noting that it is also possible to use the speech service without writing any
code, using a real-time speech-to-text tool that is accessible from any browser [27].

Since the Microsoft Azure speech-to-text API is proprietary technology, there is no
public information available about the type of deep learning that supports it, such as the
type of architecture, number of layers, number of neurons, etc. It is very likely that the
underlying architecture is constantly evolving as a result of ongoing research efforts carried
out by the company. It can also be assumed safely that Microsoft has been able to collect
extremely large datasets to train its speech models, including Mandarin since Azure has
been in use in China for a long time.

3.3. Google Speech-to-Text API

The Google speech-to-text API currently supports 384 speech models and caters to
variations in dialects and phonetics, including forty-eight for English, two for Chinese
Cantonese, and four for Chinese Mandarin [28].

A wide variety of use cases can be supported by the API, from dictation to captioning
to subtitles and captions. The Google Cloud Console provides developers with complete
API functionality, allowing them to perform every API function from within the console,
making it easier to integrate the API into their applications. Additionally, this enables
developers to customize the speech-to-text model and iterate [29].

There are three main modes for performing speech recognition in the API, namely
synchronous (for up to one-minute-long audio data), asynchronous (for up to 8 h long
recordings), and stream-based (for real-time recognition tasks such as live audio from
a microphone [30]). As an alternative, Google’s speech-to-text service can also be used
directly from your browser without having to code [31].
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As far as the architecture underpinning the API is concerned, it has tremendously
evolved over the last ten years thanks to an intensive research effort. Although the exact
details are proprietary technology, Google researchers have regularly reported advances
and results in the literature. A fascinating account can be found in [32], showing that, each
year, new architectures were developed that further increased quality, from deep neural
networks (DNNs) to recurrent neural networks (RNNs), long short-term memory networks
(LSTMs), convolutional neural networks (CNNs), recurrent neural networks-transducers
(RNN-T), and more. The latest research is advanced enough to have produced a prototype
(soon to be deployed commercially) of a neural model that is compact enough to fit on a
single smartphone and is able to carry out speech-to-text independently from the cloud [32].

In terms of datasets, Google products have not been in much use in China. Therefore,
it is expected that Google has not been able to collect Mandarin speech datasets as large as
its rivals.

3.4. Deep Neural Network Framework

Convolutional neural networks (CNN) with high-resolution TF image inputs were
compared to the Microsoft Azure and Google speech recognition platforms. The CNN mod-
els are widely used across various applications and domains, including aphasia assessment
tasks [9]. In this study, the hyperbolic T-distribution (HTD) [33–35] was used as a TF-based
image input to the CNN model within each model. The HTD has been found to produce a
high-resolution TF image of Mandarin speech signals; hence, it can improve speech signal
classification when used with the CNN model [11,36,37].

In HTD, the continuous TFD of the analytic signal z(t) associated with the original
real signal s(t) can be given as follows [23,33]:

ρ(t, f ) = Fτ→ f

[
G(t, τ) ∗(t) Kz(t, τ)

]
(1)

where Kz(t, τ) = z(t + τ/2)z∗(t− τ/2) is the instantaneous autocorrelation product, F is
the Fourier transform, G(t, τ) is the time-lag kernel, and ∗(t) denotes time convolution.
The kernel for the HTD is given by [21,35]

G(t, τ) = Rσ(t) =
kσ

cosh2σ(t)
(2)

where σ is a real positive number and kσ is a normalization factor given by:

kσ =
∫ ∞

−∞

1
cosh2σ(t)

dt =
Γ(2σ)

22σ−1Γ2(σ)
(3)

in which Γ represents the gamma function.
The performance of a speech recognition algorithm relies on the accuracy of the

chosen machine learning method. Therefore, in this section, a comparison between six
state-of-the-art CNN architectures over healthy vowels + words and the healthy-only
words datasets was introduced to assist in the selection of a suitable CNN architecture. The
pre-trained CNN architectures are AlexNet, ResNet-18, ResNet-34, ResNet-50, VGG16, and
VGG19 CNN.

Because of the lack of large speech datasets, transfer learning (TL) was utilized in this
study to train the CNN models. Considering the characteristics of the ImageNet dataset [38],
all TFD RGB color images were resized to 224 × 224 × 3 pixels before feeding them to
the pre-trained CNN models. A cyclical learning rate of 0.003 was used for fine-tuning
the pre-trained models using the TFD image datasets [39]. For training, a cross-entropy
loss function was used along with the ADAM optimizer with default parameters β1 = 0.9
and β2 = 0.999 [40]. The weight decay was incorporated with a multiplying factor of 0.01,
which was empirically chosen to prevent overfitting [41]. The models were trained using a
batch size of 128, with a total of 15 epochs for each model. Using five-fold cross-validation,
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the classifiers were evaluated for their ability to classify speech data (see Figure 1). The
performance metrics used were accuracy and F1-score. Model training was performed using
an NVIDIA Tesla P40 GPU, and development was performed using Fastai: a PyTorch-based
deep neural network library [42]. For statistical significance evaluations, the Wilcoxon
signed-rank test (Exact method) was used. IBM SPSS Statistics 26 was used for all statistical
analyses.
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Figure 1. Performance evaluation of the CNN model which utilizes hyperbolic T-distribution RGB
color time-frequency images.

Table 4 shows the healthy participants’ performance comparison results for the six CNN
architectures. All model results shown in Table 4 are averages of the five-fold cross-validation.
The VGG16 model showed the highest accuracy and F1-score, i.e., 99.75 ± 0.1%, for the
healthy participants’ only words dataset. For the healthy participants’ vowels + words,
ResNet-50 showed the highest accuracy and F1-score, i.e., 98.18 ± 0.57%. For the vowels
+ words healthy participants’ dataset, ResNet-50 was observed to have a statistically
significantly (p < 0.05) higher accuracy and F1-score than that of VGG16. Hence, the CNN
ResNet-50 architecture was used to compare against Microsoft Azure and Google speech
recognition platforms.
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Table 4. Performance evaluation of six state-of-the-art CNN architectures for the classification of only
words (20 classes) and vowels + words (26 classes) healthy datasets in terms of accuracy and F1-score
using five-fold cross-validation.

Model

HTD
(Only Words)

HTD
(Vowels + Words)

Accuracy F1-Score Accuracy F1-Score

AlexNet 98.76 ± 0.29 98.76 ± 0.29 95.33 ± 0.47 95.35 ± 0.46
ResNet-18 99.59 ± 0.19 99.59 ± 0.19 97.55 ± 0.31 97.53 ± 0.32
ResNet-34 99.70 ± 0.20 99.70 ± 0.20 97.97 ± 0.27 97.97 ± 0.26
ResNet-50 99.64 ± 0.26 99.64 ± 0.26 98.18 ± 0.57 98.19 ± 0.57

VGG16 99.75 ± 0.10 99.75 ± 0.10 97.70 ± 0.23 97.70 ± 0.23
VGG19 99.70 ± 0.28 99.70 ± 0.28 97.91 ± 0.15 97.91 ± 0.15
Average 99.52 ± 0.41 99.52 ± 0.41 97.44 ± 1.03 97.44 ± 1.02

4. Results

In this section, an evaluation of two customized machine learning algorithms (CNN
and LDA) and two off-the-shelf speech recognition platforms (Microsoft Azure and Google)
was provided for three scenarios.

For the first scenario, the four speech recognizers were trained and tested on a healthy
dataset. For the second scenario, they were trained on healthy data but tested on aphasic
data. For the last scenario, an aphasic speech dataset was used both for training and testing.
This scenario did not apply to Microsoft Azure and Google speech-to-text platforms since
they were pre-trained using healthy speech data.

Standard and well-known performance evaluation metrics were used, namely, accu-
racy, precision, recall, and F1-score [11].

4.1. Machine Learning Algorithms Performance on Healthy Dataset

This section presents the comparative performance of the four speech recognizers
using the healthy subjects’ dataset. A total of 20 Mandarin words (yielding 20 classes)
embodying everyday objects and activities were used in the training and testing of these
algorithms. The words were taken from the CRRCAE battery and belonged to the naming
and repetition subtests.

Figure 2 compares the performance of the four speech recognizers. Whatever the
performance indicator (PI), the ResNet-50 CNN algorithm using HTD time-frequency (TF)
images as the input scored higher than the three other algorithms. In terms of accuracy, the
CNN algorithm hit 99.64 ± 0.26%, whereas the LDA scored a lower 95.28 ± 0.79%. The
Microsoft Azure speech recognition platform performed quite well with an accuracy of
slightly over 88%, far above its Google rival, scoring disappointingly below 75%.
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4.2. Machine Learning Algorithms Performance on the Joint Healthy-Aphasic Dataset

The comparative performance of the four speech recognizers is presented in this
section based on the joint healthy-aphasic dataset. A set of 20 common Mandarin words
were used to train these algorithms on healthy speech and test them on aphasic speech.

Figure 3 compares the performance of the four speech recognizers. The ResNet-50
CNN speech recognition algorithm achieved the highest accuracy, precision, and F1 score.
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aphasic dataset.

The accuracy performance was 59.17 ± 0.003% for CNN versus 54.34 ± 0.79% for the
LDA. Both off-the-shelf speech recognition platforms performed poorly, scoring below 31%.

4.3. Machine Learning Algorithms Performance on Aphasic Dataset

The performance of the CNN and LDA algorithms on the aphasic dataset is compared
in this section. A set of 20 common Mandarin words were used both to train and test these
algorithms. The Microsoft Azure and Google speech-to-text platforms had been re-trained
using healthy speech data and, as such, were not included in this scenario.

The performance results for CNN and LDA are shown in Figure 4.
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aphasic dataset.

Whatever the performance indicator (PI), the ResNet-50 CNN algorithm scored higher
than the LDA algorithm.

As far as accuracy was concerned, the CNN algorithm achieved 67.78 ± 0.003%,
whereas the LDA algorithm obtained 45.63 ± 0.79%.

5. Discussion

The use of speech recognition platforms, such as Microsoft Azure and Google, has
become increasingly common in language learning and speech-to-text dictation. Al-
though several studies have explored the automatic speech impairment assessment of
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patients with aphasia (PWA) [8,11,12,43], there have been limited applications of off-the-
shelf speech recognition platforms for aphasia. The paper has examined the potential of
these platforms for the assessment of PWAs in comparison to deep learning-based speech
recognition algorithms.

The results showed that the training and testing datasets have a substantial impact on
the performance of machine-learning-based speech recognition algorithms, regardless of
whether they are off-the-shelf platforms or customized algorithms such as CNN and LDA.
Furthermore, over the three scenarios of speech recognition, the CNN-based algorithm
outperformed the other three machine learning algorithms. In the following subsections,
we discuss the findings for each scenario.

5.1. The Healthy Dataset Scenario

In this scenario, the healthy subjects’ dataset consisting of 20 isolated words was
used to train and test the four machine learning algorithms. The off-the-shelf speech
recognizers were pre-trained by Microsoft and Google using healthy speech data, different
from the healthy dataset used in this study, to train the customized algorithms. As per
the automatic speech impairment assessment (ASIA) procedure described in [11], healthy
speech is considered the ideal/standard speech, and aphasic speech was compared against
healthy speech for ASIA. Thus, classifying healthy speech with maximum accuracy carries
the utmost importance for ASIA.

The ResNet-50 CNN model with the HTD TF images as input outperformed not only
the LDA but also the other two speech recognition platforms. It was expected that it
would outperform LDA since the CNN-based classifier has access to unique features from
high-resolution images. As for the outperformance of off-the-shelf speech recognizers, it
should be borne in mind that those dealing with a very large number of classes (much more
than the 20 classes the CNN classifier dealt with).

A comparison of Microsoft Azure and the Google speech recognition platform shows
that they did not fare equally. Clearly, Microsoft Azure displayed a superior performance.
This is most likely due to the fact that Microsoft Azure is commonly used in China.

The advantage of the off-the-shelf speech recognition platforms over the customized
ones is that the off-the-shelf platforms were trained on very large language vocabu-
lary/classes. As a result, unlike the CNN-based classifier, they can detect and transcript
real-time spontaneous speech consisting of complex sentences. This feature is essential
to automating spontaneous speech and word fluency subtests in aphasia assessments, as
per Table 2.

To summarize, in this scenario, the CNN-based classifier would be best for recognizing
isolated words (as per some of the aphasia battery subtests in Table 2). However, for
spontaneous speech, Microsoft Azure would be the preferred choice.

5.2. The Joint Healthy-Aphasic Dataset Scenario

In this scenario, the healthy subjects’ dataset was used to train the classification
algorithms, while they were tested using the aphasic speech dataset. Note that the off-
the-shelf speech recognition platforms were pre-trained with healthy speech data from a
different source.

All algorithms exhibited degraded performance in the form of low accuracy, precision,
recall, and F1-score: much lower than in the first scenario. This is something positive, as
this will form the basis for discriminating between healthy and aphasic speech and possibly
assess impairment severity levels.

It can be observed that the CNN-based classifier consistently outperformed the LDA
algorithm and the two off-the-shelf speech recognition platforms.

Machine learning algorithms can be trained using healthy datasets to assess an aphasic
patient’s degree of severity in terms of impairment. In this scenario, the classification
problem can be transformed into a regression problem by mapping the classifiers or
platform outputs to the severity levels’ ground truth [11]. As a result, speech samples
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from healthy subjects were effectively classified by a model with its highest accuracy of
99.64 ± 0.26. On the other hand, if aphasic speech samples are fed to a similar model, it
classifies them as low scoring based on the level of severity. There is a strong correlation
between the patients’ severity levels of speech impairment and the CNN model’s final node
activations, according to [11]. Two of the recruited patients [11] with different impairment
severity levels were able to speak the Mandarin verb chuan1 yi1. When the CNN was
activated at the true class node (called ‘normalized true-class output activation (TCOA)’
in [11]), the output activation was 0.35 for the patients with high severity levels and 0.73 for
patients with low severity levels. This CNN-based model is appropriate for discriminating
between normal and aphasic speech due to the wide range of severity levels among patients.

The speech-to-text API platforms from Microsoft Azure and Google both showed
similar behaviors for these two recruited patients [11]. Specifically, the patient with the
low severity level had a speech recognition rate of 53.33% and 21.67%, using Microsoft
Azure and Google platforms, respectively, whereas the patient with the high severity
level had a speech recognition rate of merely 1.33% and 0% using the two platforms,
respectively. It is worth noting that it is possible to configure both Microsoft Azure and
Google speech-to-text APIs to obtain a value of accuracy or confidence level for individual
words in a transcription [44,45], although this has not been conducted in the present study.
It is expected that lower confidence levels (yielded for degraded speech) would correlate
highly with the patients’ impairment severity levels. This opens the possibility of mapping
the confidence level produced by Microsoft Azure and Google speech-to-text APIs to the
patients’ impairment severity level, even for the spontaneous speech subtest of the aphasia
battery (Table 2).

It is also possible to discriminate between healthy and aphasic speech (binary classifi-
cation problem) by adding a decision logic associated with a cut-off threshold at the output
of the classifiers [9,46]. The lowest classification cut-off threshold for the two customized
classification models to discriminate between healthy and aphasic speech is 0.7. With this
classification threshold, the two customized models can achieve an accuracy of 100% to
discriminate between healthy and aphasic speech.

As for the two off-the-shelf speech recognition platforms, if they are configured so that
confidence levels are produced for each word of the transcription, it would also be possible
to set a cut-off threshold to discriminate between healthy and aphasic speech, both for the
spontaneous speech and word fluency subtests of the aphasia battery.

5.3. The Aphasic Dataset Scenario

The aphasic speech dataset was used to train and test both CNN and LDA machine
learning algorithms. The two off-the-shelf speech recognition platforms were excluded
from this scenario since they had been pre-trained with healthy speech data. Similarly
to the previous scenarios, the CNN-based algorithm with the HTD TF images as input
outperformed the LDA algorithm. Both CNN and LDA exhibited significantly poor perfor-
mance on the aphasic patients’ dataset. The degradation in performance was due to the
diversity of the aphasic dataset [11]. There were differences in the severity levels of speech
impairment among the recruited patients, as reported in [10], leading to complex and unre-
solvable common features. In addition, the datasets of aphasic patients are scarce and often
small [11] since there are multiple aphasia types and multiple severity levels. This finding
agrees with what is reported in the literature, where data scarcity [47], abnormal speech
patterns [48], and speaker variability [49] are challenges to any classification problem.

6. Conclusions and Future Work

In this paper, the performance of the convolutional neural network (CNN), the lin-
ear discriminant analysis (LDA), and off-the-shelf speech recognition platforms over the
naming and repetition aphasia’s subtest using healthy and aphasic speech datasets have
been investigated. The off-the-shelf speech recognition platforms were Microsoft Azure
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and Google. Microsoft Azure speech-to-text is commonly used in China, in sharp contrast
to Google.

Speech data recorded from twelve aphasic patients and thirty-four healthy subjects,
consisting of twenty different Mandarin words, formed the datasets for three scenarios:
training and testing on healthy speech; training on healthy speech and testing on aphasic
speech; and training and testing on aphasic speech.

The results showed that the CNN-based speech recognition algorithm outperformed
the LDA, Microsoft Azure, and Google speech recognition platforms over the three mod-
eling scenarios, that is to say, even when the testing data differed from the training data.
Turning the automatic speech recognition problem into an image classification problem
via the use of a CNN operating on high-resolution time-frequency images permitting the
automatic detection of important speech features led to better classification results than the
conventional LDA. This should not hide the fact that, from the point of view of developing
automatic methods for assessing speech impairments for PWA, CNNs have the drawback
of involving a significantly higher programming effort.

Another result is that Microsoft Azure outshone Google among the off-the-shelf plat-
forms. This was expected but also calls for the assessment of other off-the-shelf automatic
speech recognition platforms.

In the future, the following three directions of development will be pursued.
First, further aphasic speech data collection will be required to cater to the current

scarcity of data across various aphasia types (such as Global aphasia, Broca’s aphasia,
Wernicke’s aphasia, and amnesic aphasia). This will help improve the accuracy of the
CNN-based aphasia detection and discrimination of aphasia syndromes.

Secondly, tools for subtests involving spontaneous speech will be designed. Off-the-
shelf speech recognition platforms can be used to automate multiple aphasia subtests due
to their ability to detect words within complex sentences. Moreover, these platforms are
trained on very large vocabulary datasets, which enable them to transcript spontaneous
speech in real-time. Additional performance enhancements should be achieved by retrain-
ing them over aphasia datasets. Likewise, our CNN model will be retrained on a much
larger vocabulary dataset.

Thirdly, the design of an ensemble classifier will be carried out, which is an augmented
classification framework that has the potential to harness the benefits of multiple classifiers.
The CNN-based speech recognition algorithm and the Microsoft Azure speech-to-text
platform will be key parts of this hybrid system. Ensemble learning methods, including
bagging, stacking, and boosting, will be investigated.
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