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Abstract: The potential of image proximal sensing for agricultural applications has been a prolific
scientific subject in the recent literature. Its main appeal lies in the sensing of precise information
about plant status, which is either harder or impossible to extract from lower-resolution downward-
looking image sensors such as satellite or drone imagery. Yet, many theoretical and practical problems
arise when dealing with proximal sensing, especially on perennial crops such as vineyards. Indeed,
vineyards exhibit challenging physical obstacles and many degrees of variability in their layout. In
this paper, we present the design of a mobile camera suited to vineyards and harsh experimental
conditions, as well as the results and assessments of 8 years’ worth of studies using that camera.
These projects ranged from in-field yield estimation (berry counting) to disease detection, providing
new insights on typical viticulture problems that could also be generalized to orchard crops. Different
recommendations are then provided using small case studies, such as the difficulties related to
framing plots with different structures or the mounting of the sensor on a moving vehicle. While
results stress the obvious importance and strong benefits of a thorough experimental design, they also
indicate some inescapable pitfalls, illustrating the need for more robust image analysis algorithms
and better databases. We believe sharing that experience with the scientific community can only
benefit the future development of these innovative approaches.

Keywords: precision viticulture; smart farming; proximal sensing; disease detection; yield estimation;
image analysis; mobile camera; deep learning

1. Introduction

Extensive insight about the properties of a field has always been a key asset for farmers.
The appropriate management of a plot is conditioned by the historical knowledge regarding
yields, sanitary status, frost episodes or soil properties such as texture or organic matter
content. Crop protection, fertilization and other cropping calendar operations can then
benefit greatly from the precise knowledge of spatial and temporal patterns in the plots.
Human abilities are however limited, preventing the exhaustive knowledge on each plant
in the field and the adequate use of that knowledge. The sensing of the environment to
gain new knowledge, whether it is qualitative or quantitative (leading to the precision
agriculture paradigms [1]), has thus become a new challenge in modern agriculture.

As an answer to those challenges, new sensing technologies have been progressively
deployed in agriculture, using either invasive or noninvasive methods [2]. In particular,

Sensors 2023, 23, 847. https://doi.org/10.3390/s23020847 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020847
https://doi.org/10.3390/s23020847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7647-9722
https://orcid.org/0000-0001-6232-4391
https://orcid.org/0000-0003-0890-3346
https://orcid.org/0000-0003-2390-0047
https://orcid.org/0000-0002-3097-8283
https://doi.org/10.3390/s23020847
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020847?type=check_update&version=2


Sensors 2023, 23, 847 2 of 21

we are interested here in the subject of optical sensing. Optical sensing allows the capture
of an image of the plant, which can be useful to estimate one or several key parameters of
interest such as phenological properties, structure vigor or yield. Optical sensing uses a
nonspecialized type of sensor, adaptable to many different applications. The only condition
is that the phenomenon of interest must be captured by the image. It has thus gained a lot
of traction these last decades thanks to recent technological progress (picture resolution,
image quality, sensor size).

It is however important to keep in mind that many types of cameras exist, with differ-
ent purposes and underlying agricultural applications. RGB cameras are commonly used
for their high spatial resolution at a relatively low price. They are suited for tasks where a
difference in hue, shape or texture is enough to extract relevant information. Considering
the simplicity of this approach, an extensive literature is available on the subject, examples
ranging from disease classification [3] to automatic delineation of cadastral maps [4] . Other
types of more complex and expensive sensors have been used, namely multispectral [5,6]
and hyperspectral [7] cameras, stacking more than three spectral bands in the visible do-
main (ranging from four to hundreds of bands) in order to characterize plant health. Studies
using multispectral or hyperspectal cameras tend to heavily use the red-edge region or
the water absorption regions of the near-infrared spectrum [8]. In that case, correcting the
obtained spectra into standardized reflectance spectra is a significant challenge, meaning
these approaches are less suited for field experiments with natural uncontrolled lighting.

On another note, the vector on which the camera is mounted is as important as the
sensor itself. Vectors are often separated on the basis of the distance between the sensor
and the plant, often referring to satellite- and UAV-based acquisitions as remote sensing
and ground-based acquisition as proximal sensing. Depending on the flight height, drones
may be seen as an intermediary and thus may be labeled as both remote and proximal
sensing. Satellite imagery has been extensively used for its high spatial footprint, allowing
for a complete examination of the plots at various scales. The recent launch of Sentinel-2
satellites made this approach even more popular, thanks to its high temporal resolution [9]
and the free access to its data. The low spatial resolution however implies it is unsuited
for many applications, because many objects of interest cannot be properly distinguished
when the resolution is too low. Cloud coverage also means perfect temporal continuity is
not possible.

Proximal sensing can be subdivided into two types of vectors: mobile and static. The
former allows one to cover a plot at a single date [10] while the latter allows one to build
temporal series of a single point in the plot [11]. Some acquisition systems also make use of
LIDAR sensors [12] or RGB-D cameras’ [13] abilities to map the surrounding environment,
raising other methodological issues about the fusion of imagery and 3D point clouds. For
instance, the information provided by depth cameras can be used to create more accurate
yield predictions [14]. Given the wide array of existing sensors, the choice of the right
architecture for optimal proximal sensing then becomes extremely important. While remote
sensing provides the opportunity to observe plants from above, proximal sensing is about
the observation from the side at different angles. This is relevant for perennial crops grown
with a foliar hedge architecture. Indeed, the majority of the information (fruits, disease
symptoms) often resides in the trellising plan.

For more information on the various uses of optical sensing in agriculture, the reader
may refer to the review by [15] on the subject of remote sensing. To our knowledge,
however, no comprehensive review has been created on the subject of optical proximal
sensing in viticulture.

Optical proximal sensing can be seen as a two-step process: the first one is the acquisi-
tion (including the whole experimental design) and the second one is the image processing
to convert the image into the desired results. The processing step may be synchronous
to the acquisition or may be done later. The former is obviously more challenging but is
key to time-critical operations such as weeding [2]. Image processing as a whole is also
seen as a challenging part, combining scientific fields such as signal processing, machine
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learning and deep learning [16] in order to create specific and complex algorithms suited
for a task (e.g., detecting the number of fruits [17]) or a set of tasks (differentiating the
symptoms from different diseases [3]). However, the acquisition step is also known to
be challenging since it takes place in noncontrolled environments. Natural lighting can
only be partly controlled and thus has a definitive effect on the obtained pictures, which
may or may not be possible to correct at a later stage. In addition, field hazards such as
dust, heat and physical obstacles, also make things more difficult (risk of damaging the
sensor, lack of mobility of the vehicle in the field, weather conditions, sensor overheating,
etc.). Sometimes, unexpected and nondetectable issues may even make a dataset unusable
(faulty GNSS system, camera lens obscured by dust).

However, it can be difficult to get into the details of these problems, considering the
wide range of optical sensors, crop types and vectors that can be used. The agricultural
and scientific community actors have thus specialized on very specific research domains,
in order to gain field experience and design the best-suited acquisition systems. Scientific
validation and promotion of these works is typically done through research articles covering
the methodology and the results, most of the time with a description of the acquisition
system. Data publishing is also more and more encouraged, leading to more occurrences of
articles in which the original data are freely made available for the community to use [18].
More details about the availability of the individual datasets presented in this study can be
found in the Data Availability Statement section.

The choices made during the acquisition system design step tend to be less discussed
in the literature, even though they are critical to the success of the application. A discussion
about the choice of the most appropriate vehicle for proximal sensing in agriculture can be
found in [19]. Still, that study remains general and does not focus on the specificity of the
grapevine crop. Depending on the context and the application, other grapevine studies
may discuss matters related to vehicle choice, lighting and image framing. In many cases,
artificial light is used to control the scene lighting, using, for instance, LED units [20,21].
In [21], experiments using the lighting unit during night and day were also conducted. The
authors concluded night image acquisitions were better to enable standardized conditions,
especially when the color of objects of interest (such as berries) was important. Flash
illumination methods have also been reported in the literature [22]. In that berry counting
application, two flash units with a custom diffusion filter were mounted on both sides of
the camera, the distance between the camera and the fruiting zone was about 0.9 m and
1.5 m. Other authors chose not to rely on artificial lighting, meaning a correction may have
been necessary to account for natural variability [10]. In that study, the authors proposed a
radiometric calibration method in order to standardize the multispectral images used to
compute in-field vegetation indices.

A direct use of agricultural machinery is also reported in some studies [23]. There, a
field phenotyping platform (aiming at yield and vigor parameters estimation) was directly
integrated to a grapevine harvester, taking advantage of the tunnel structure to avoid
disturbing environmental factors such as sunlight effects. Additionally, that acquisition
setup used a broadband light source to enforce near-standardized lighting conditions. One
other originality of that work was the use of three vertically aligned cameras, allowing
them to cover the canopy of each vine (the study also reported the distance from the camera
to the canopy was approximately 0.75 m). More compact and original vehicles have also
been reported in the literature, such as a within-row caterpillar equipped with an RGB-D
sensor [24] or a quad [20]. In both studies, only the grape area was targeted.

While many studies focus on the vine plant and thus use a lateral camera mounting
point, others are also interested in weed mapping or general vineyard navigation. In that
case, the sensor may be mounted on the front side of the vehicle, facing the direction of
the vehicle movement. A compact robotic platform dedicated to weed mapping using this
setup and an RGB-D sensor was for instance reported in [13]. Other studies chose not to
use a vehicle and conducted data acquisition using a handheld phone or a camera mounted
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on a pole [25]. In that case, the framing and image quality are easier to control, but the data
acquisition speed is a concern.

Finally, the incidence of experimental design choices on the efficiency of recent deep
learning algorithms was also discussed in a review comparing different plant disease
detection studies ranging from laboratory experiments to field experiments [3]. In that
research work, data diversity and contextual features in images were seen as the key
parameters to achieve robust disease detection results.

The case studies and projects presented in this paper come from both a research lab
specialized in image and signal processing perspective (IMS “Intégration du Matériau au
Système” laboratory—UMR 5218, CNRS Talence, France) and from an agronomic engineer-
ing school perspective (Bordeaux Sciences Agro, Gradignan, France). Our past experiments
led us to believe mobile proximal sensing was a promising solution for agricultural applica-
tions needing high-resolution imagery and a full view of the plant, such as fruit counting or
disease detection. Our localization (south-west of France, Bordeaux region) also naturally
led us to work on the grapevine crop, which is the main focus in this paper. Other works on
vegetable weeding applications or orchard trees [26] are not mentioned, even though some
lessons may still hold true in the case of orchard trees. Moreover, only color (RGB) imaging
is discussed. A single RGB camera was used for all the undermentioned projects; full details
about the sensor can be found in the Materials section. A wide variety of vehicle types has
been tested over the years and is also discussed in this paper. Finally, while experiments
outside the grapevine vegetative season are interesting for pruning applications, we chose
to discard them from the study.

The main objective of this paper is thus to discuss, based on our previous experiments
on various applications, the challenges and opportunities related to the use of vehicles
equipped with RGB cameras in the vineyard. We believe the things we learned and the
hardness we overcame may be of interest for the proximal sensing scientific community.

In chronological order, four projects are used in this paper. Project EARN’s main
objective was to estimate yield in a vineyard. As a first step, automatic berry counting
was performed and compared to manual counting [27]. Later projects aimed at detecting
disease symptoms on vines, namely grapevine wood diseases (project ADVANTAGE [28]),
downy mildew (project ProxiMaVi [29]) and flavescence dorée (project ProspectFD [30]).
These three disease detection projects differed by their end goals. For instance, flavescence
dorée is a damaging epidemic disease, meaning sources of contamination must be quickly
detected. In that case, proximal sensing is a promising way to quickly detect and contain
outbreaks (uprooting). Downy mildew detection is mostly related to spraying management,
which is a costly operation with high environmental impact. Finally, esca is a major cause of
long-term wilting in grapevine with no curative treatment, and early detection of symptoms
may allow viticulturists to quickly replace diseased plants and limit losses. Table 1 presents
a synthetic view of the four projects with complementary references. To our knowledge, no
other work on in-field downy mildew detection using optical proximal sensing exists.

The paper is organized as follows:
In the first part , the acquisition system used for all the previously mentioned projects

is presented, both from a hardware and a software perspective. The integration and
mounting of the system on different vehicles are discussed, as well as the organization
and the processing of the obtained datasets. It is important to keep in mind individual
results and performance metrics of the different developed image processing algorithms
are not discussed in detail, as the reader may refer to the individual published papers of
each project for more information.

In the second part, the incidence of experimental design parameters on the resulting
datasets and applications is discussed using small case studies.

Finally, recommendations and insights about how future work may handle these
issues are provided.
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Table 1. Description of the scientific projects used in the study. When possible, references of past
scientific publications are provided. (* publication covering both grapevine and apple detection
applications).

Project Name Application and
Image Analysis Task Years Project Literature

Reference

Other Literature
References on the

Application
(in-Field Optical

Proximal Sensing)

EARN Yield estimation, berry
counting 2014–2016 [27] * [31,32]

Prospect FD

Flavescence dorée,
epidemic management
(uprooting), detection

of symptoms

2020-present [30] [25,33]

ProxiMaVi

Downy mildew
management

(spraying), detection of
symptoms

2016–2019 [29] -

ADVANTAGE
Esca disease

management, detection
of symptoms

2015–2018 [28] [33,34]

2. Materials and Methods
2.1. Hardware Architecture

The main inspiration behind the sensor was first and foremost the numerous practical
constraints when performing in-field image acquisition. This means the ability to control,
as much as technically possible, the acquisition environment. The second inspiration was
the range of potential applications. Given this variability, the sensor’s architecture had to
be versatile with interchangeable and optional features so it could be easily adapted to the
various use cases. Easy maintenance and emergency repairability were also important.

The sensor architecture (as shown in Figure 1) was controlled by a single board
computer. Depending on the application, Raspberry Pi model 4 or Nvidia Xavier/Nano
computers may be used. The more powerful Nvidia computer was only used when edge
computing was necessary and is not discussed here. An independent battery-operated
clock was connected directly to the Raspberry Pi, allowing it to keep track of the date and
time (as there is no clock built into the Raspberry Pi). The 64 GB on-board storage was
enough to store around 50,000 images. For comparison, taking one picture per vine would
result in around 10,000 pictures per hectare in a vineyard with narrow 1.1 m width rows.
In that case, this meant roughly 5 ha could be covered in a single acquisition.

The sensor was equipped with a 5-megapixel RGB industrial camera, the Basler Ace
acA2440-20gc, which features a global shutter (well-suited for capturing moving objects)
2/3′′ type CMOS sensor and a Gigabit Ethernet connection. We used 6 mm or 8 mm optics
with a 85◦ and 69◦ diagonal field of view, respectively. At the typical acquisition distance
of 1 m, the physical resolution of a picture was about 4 pixels/mm². It is important to note
that the typical distance may not be achieved in practical conditions; results shown later in
this paper illustrate this phenomenon.

An important feature of the sensor is the controlled illumination. A powerful xenon
Phoxene SX3 flash provided enough luminosity to counter natural light (output power
up to 20 J). This allowed a constant luminosity across the images, without shadows. A
powerful lighting also led to a brief exposure time, eliminating the motion blur that may
be caused by the vibrations of a moving vehicle; a smaller aperture, resulting in a deeper
depth of field; and a “day for night” effect that illuminates the foreground and keeps the
background dark. Practical issues arise when repeatedly using a flash (for instance, once
every second) during prolonged periods of time. For this purpose, an industrial xenon flash
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was chosen for our sensor architecture. Additionally, one major advantage of this setup
was the ability to synchronize the flash and the camera, which enabled a brief exposure
time (approximately 250 µs).

The sensor used a GNSS system to georeference the images and control the acquisition
process. Depending on the required precision, we could use the ublox Zed-F9P high-
precision unit or a standard precision generic USB GNSS unit based on the ublox Neo-6
chip. Since real-time georeferencing was not necessary, postprocessed kinematics (PPK)
could be used to achieve subdecimetric precision, which was sufficient to geolocalize vines.
The system could be powered by its own 12 V batteries or connected to 3 pin DIN 9680
sockets. The DIN 9680 socket applies to tractors and agricultural machinery with connector
systems for transmitting electrical power, up to 25 V. This meant the system could be easily
mounted on and connected to agricultural tractors.

Figure 1. Simplified schematic representation of the acquisition system.

If needed, an optional ultrasonic rangefinder (Maxbotix HR-USB-EZ1) could be added
to the sensor to measure the distance from the vines and detect the missing ones. The
distance data were used to determine the area covered by the photo. These data could also
be combined in real time with the GNSS positions for a better control of the acquisition
process. For instance, acquisition could be stopped when too many missing plants were
detected by the sensor or when the system left the acquisition zone, reducing power
consumption, the number of irrelevant images and preserving the flash.

As a whole, one key advantage of the system was the ability to easily plug different
devices (camera, flash unit, GNSS system, rangefinder) on a standardized central unit
(Raspberry Pi 4+). Connections were also kept minimal, namely a USB port (GNSS module),
a serial port (flash unit) and an Ethernet connection (camera).

In addition, the system could be embedded in different housings; two examples are
showcased in Figure 2. Housing changes allowed us to adapt to different agricultural
contexts (for instance, using a more compact case for narrow rows to avoid any contact
with vegetation or poles, as shown in Figure 2b).

The sensor was designed to simplify the integration with different vehicles; some
examples are shown in Figure 3. As the agricultural machines do not feature standardized
mounting points for sensors, specific mounting systems needed to be created for every
vehicle, whether it was traditional agricultural machinery (Figure 3b–d) or custom robots
(Figure 3a). The use of steel channels could also be necessary in order to adjust the camera
field. Given the variability of situations and machinery in the agricultural world, we
believe this is an unavoidable issue when working with different vineyards. It is also worth
noting the sensor could not be mounted on a vehicle and could be used as a pedestrian
system (using a custom cross-shaped steel beam support), allowing quick experiments in
the vineyard.
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Figure 2. Photography of the sensor embedded in two different cases. (a) Large case (including
details about devices and connections); (b) Narrow case.

Figure 3. Photos of the sensor mounted on different vehicles. (a) Mounted on a small electric robot;
(b) mounted on a harvesting machine; (c) mounted under a straddle tractor; (d) mounted on a tractor.

That consideration for flexibility also meant the sensor was suited to different vine-
yards and crop managements, or even other crops such as apple trees. This way, it was
possible to use the same architecture with few adaptations for different projects. For ex-
ample, it was possible to quickly change the camera sensor or add another type of sensor
(such as the rangefinder) to complete specific needs for the data acquisition.

2.2. Software Architecture

The sensor was controlled by the embedded single-board computer. A piece of soft-
ware handled the camera, the user interface, the GNSS module, the storage device and the
image processing pipeline. As the embedded Raspberry Pi computer was not particularly
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powerful, the piece of software had to be highly optimized, mainly by parallelizing the
different processes to run in parallel on separate CPU cores.

As the sensor can be hard to reach during the image acquisition, the main operation
mode was totally autonomous. In this case, the image acquisition was started and stopped
using the positioning data. The active plots could be defined in any geographical informa-
tion systems (GISs), including Google Earth, as polygons and saved as “.kml” files. As the
sensor entered one of these plots, the acquisition process started and stayed active as long
as the sensor was inside the plot.

The sensor could also be controlled manually using a remote Wi-Fi connection. An
Android smartphone application was developed (Figure 4), which connected to the sensor.
The user interface was exhaustive, showing the status of every component (Figure 4a),
the live captured image (Figure 4b), free storage space and other information. It also
allowed us to start and stop the acquisition manually and to set the camera parameters,
such as exposure time and frequency, as well as managing the data (deleting, copying to or
extracting on a USB device, updating the software tool, etc.).

Figure 4. Screenshots of the in-house Android smartphone application used to control and monitor
the sensor. (a) Connection and settings. (b) Picture quality preview. Overexposed or underexposed
parts of the picture are highlighted in red when present.

The embedded piece of software analyzed the acquired images for over- and under-
exposure and other errors. If needed, it could also process the images in real time using
deep neural networks and other GPU-based computer vision algorithms on the Nvidia
embedded computers.

2.3. Data Storage

The image files were stored in jpeg format (85% compression, around 1 megabyte).
Each image was linked to a text file containing geolocalization, timestamp and distance in-
formation (when the rangefinder was plugged in). The files were temporarily stored on the
sensor then transferred to a server equipped with a high-end GPU. Datasets were organized
using a simple PostgreSQL spatial database, keeping track of the different pictures (com-
bined with the GNSS position when possible) and their associated plots/sensors/vehicles.
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2.4. Image Processing Summary

The projects presented in this study were aimed at different applications and used
different processing methods. Berry detection (project EARN [27]) used as a first step
a radial Hough transform to highlight spherical shapes. The illumination power of the
embedded flash was used to create light gradients toward the center of each berry, which
could then be detected. As a second step, a convolutional neural network (CNN) was used
to invalidate potential false positives. Each berry could then be identified by its center and
its size. Disease detection projects used both conventional machine learning approaches and
more recent deep learning approaches. Image foreground extraction followed by texture
analysis with a color structure tensor was used to detect downy mildew spots [29], while
detection neural networks were used to detect the position of esca and flavescence dorée
in the pictures using bounding boxes [28,30]. In the case of flavescence dorée detection, a
random forest algorithm was also trained on the leaves detection to predict whether or not
the whole vine suffered from flavescence dorée.

A summary of that information, as well as visual examples of end results, can be found
in Table 2. More details about these projects, the databases and the quantitative evaluation
of the results can be individually found in the associated published papers (Table 1).

While the individual examination and evaluation of the used algorithms is beyond
the scope of this paper, it is worth noting both traditional handmade features extracting
algorithms and state-of-the-art deep learning algorithms were used, and in some cases
compared [28]. While traditional methods tend to lag behind in terms of raw performance,
we believe handmade features may be more robust in some cases, and their potential
shortcomings with different datasets may be easier to predict. Even though each algorithm
used the original image of 2448 pixels × 2048 pixels as the basis, downscaling was always
performed as a subsequent step (in order to alleviate GPU memory issues with deep
learning frameworks). Details about the labeling process of each project can also be found
in the associated papers.

All these experiments were conducted separately without any overlap. There is a
growing interest in performing the simultaneous detection of several grapevine symptoms
on the leaves (or on the grapes). However, this leads to two major problems.

The first one is obviously methodological. Designing an algorithm suited to two
different problems can be a huge challenge, even when using more flexible deep learning
architectures. For instance, downy mildew and esca disease lead to foliar symptoms at
different scales. Mildew leads to small spots and esca leads to global patterns on the leaf.
This also means the end result can be different, as illustrated here since esca was detected
using bounding boxes and mildew spots were precisely segmented.

The second one is purely practical. Different diseases cause symptoms on the plant at
different time periods, which do not necessarily overlap. In our case, it was not possible to
detect both mildew and esca at the same time, the latter being expressed at a much later
time during the grapevine vegetative season. Detecting both esca and flavescence dorée is,
however, possible [30]. Simultaneous disease detection and yield estimation would lead to
similar problems.

However, the simultaneous detection of the plant architecture and of symptoms is an
interesting prospect. In the case of flavescence dorée, the lack of wood hardening and/or
grapes adds precious contextual information and may be crucial to the decision [30].

The following section is dedicated to the description and the discussion of three critical
parameters when conducting experiments in vineyards. The application-specific differences
when dealing with these parameters are also discussed.
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Table 2. Methodological detail of the algorithms used to process the images acquired by the experi-
mental setup on different projects.

Task and Reference Methodology and
End Result

Approximate Number of
Images/Annotated Images Visual Result Example

Berry detection [27]

Methodology:
Detection of gradients on
round objects illuminated

by the flash
End results
Bounding circles

∼250,000/150
(∼10,000 berries)

Esca symptoms detection
[28]

Methodology:
SIFT feature extraction

combined with bag-of-word
modeling; convolutional
neural network backbone

integrated to the MobileNet
detection network

End results:
Bounding boxes

∼1800/∼1200

Downy Mildew symptoms
detection [29]

Methodology:
Color structure tensor

modeling combined with
hysteresis segmentation

End results:
Segmentation (manually

circled in the
result example)

∼10,000/∼400

Flavescence Dorée detection
[30]

Methodology:
Convolutional neural

network associated with a
random forest algorithm for
decision at the plant scale

End results:
Bounding boxes/decision at

the plant scale

∼43,000/∼1400
(image-scale label) + 1000

(leaf-scale bounding boxes)

3. Results

After examining the datasets and the results for the four projects in the study, the
acquisition parameters with an effect on the obtained images (and a potential effect on the
end result) were roughly separated into three categories:

• Acquisition system integrity;
• Parameters influencing the appropriate framing of the object of interest;
• Parameters related to lighting and colors.

Problems related to GNSS data were omitted from that list. One major issue with
geolocalization is that, even when access to subdecimetric RTK/PPK precision is possible,
the camera position does not amount to the vine position. A geometric transformation is
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possible but the distance between the camera and the plant (as well as the view angle) may
not be constant during the acquisition. This means converting a position dataset to a lattice
vine position grid can be tricky. Even though they are critical for some applications, GNSS
logs are auxiliary data that do not directly contribute to the integrity and the quality of the
obtained pictures. Hence, we chose not to get into the details of these.

In the following sections, the three categories are described and analyzed, using the
experience from the projects as a basis.

3.1. Acquisition System Integrity

Integrity parameters are the most obvious when considering the whole experimen-
tal chain. They tend to be critical since they can prevent the picture data recording. As
explained in the description of our acquisition system, they are mostly related to the en-
vironment (e.g., dust, humidity or heat) and randomly hinder experiments. Adequate
protection of the acquisition system is key to avoid these (e.g., reinforced case and connec-
tors). It is however important to keep in mind it is nearly impossible to entirely avoid the
effect of the environment. The effect of the acquisition vehicle is also crucial. For instance,
an acquisition system mounted at the bottom of a harvesting high-clearance machine would
get less affected by direct sunlight than if it was mounted on the side of a tractor. However,
it would also get more affected by dust. Severed cables and wrong voltages may also
randomly happen and threaten individual parts (e.g., flash device) or the whole acquisition
system. Spare parts and basic repairing tools thus have to be brought accordingly into the
field during the experiments.

Integrity parameters effects tend not to be application specific. The only exception to
this would be a faulty flash device for applications relying on direct light reflections (e.g.,
berry counting); however, all tested applications greatly benefited from a working flash
and the resulting improved contrast in pictures.

3.2. Framing-Related Parameters

When using proximal sensing, it is essential for the area of interest to be part of the
camera frame. In fruit crops organized as rows, however, this may be a challenge, especially
in vineyards with very narrow rows. Looking at Figure 5, it is easy to see the framing
quality may drastically vary between acquisitions in the vineyard. Lower and higher parts
of the vertical trellis may be missing from the picture. Missing the lower part (Figure 5c)
is obviously a problem for applications such as yield estimation. Not dealing efficiently
with framing issues makes yield estimation a more difficult task since that bias needs to be
corrected, on top of existing biases such as berries occluded by leaves.

In some cases, the side parts of the plant may also be missing. Depending on the
crop, the pruning system and the within-row distance between plants, the borders between
neighbor plants are also sometimes hard to distinguish as illustrated in Figure 5c, where two
different vines blend together. This factor should be monitored vigilantly for applications
where precise per-plant diagnosis is necessary (e.g., individual uprooting operations for
grapevines affected by chronic esca symptoms). Other ones such as yield estimation or
global epidemic diagnosis (flavescence dorée) suffer less from overlapping plants in the
pictures. Possible partial solutions to horizontal framing problems may include plant-by-
plant manual acquisition or a precise use of RTK GNSS positions combined with previous
knowledge of the vines’ positions.
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Figure 5. Examples of framing differences on grapevine acquisitions. (a) Bottom part and trunk of the
vine. (b) Leaf area of the vine. (c) Top part of the vine. Images extracted from the 4 projects’ datasets.

In order to ensure the pictures are well framed, one could use the following simple
formula to compute the appropriate distance for a given height:

d =
f ∗ h

s
, (1)

where f is the focal length (mm), s is the height of the sensor (mm) and h is the physical
height of the object (mm). Using this formula, it is easy to compute the recommended
distances to achieve a proper framing in a vineyard, as illustrated in Figure 6. For instance,
if d = 50 cm, a surface represented by the orange dotted square can be covered. In that case,
most of the foliar area can be sampled. However, this does not guarantee perfect framing,
since any vertical shift from this perfect configuration will make it subpar.

Figure 6. Examples of framing possibilities on one vine row. For each framing example (color dotted
rectangles), the corresponding distance between the camera and the vertical trellis is indicated with
the same color.

Looking at the possibilities, it is obviously impossible to always control the framing
during the acquisition, as it would imply that the camera could be placed at any distance of
the plant, which is not true for row crops such as vineyards, in which the environment can
sometimes be very tight. When using a tractor or a movable robot, the vehicle is running
in the middle of the row with the camera facing one row, meaning the maximum possible
distance is inferior to the width of the row. For instance, a lot of vineyard rows in France
are separated by roughly a single meter. Using a high-leg tractor may alleviate the issue but
in that case, the maximum distance still is inferior to the distance between rows. Another
possible trick is moving the camera to the front or the back of the vehicle in order to move
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the camera away from the plant as much as possible, with no risk of machinery parts
appearing in the frame (setup illustrated in Figure 3a).

Even when the distance between rows is known, it is crucial to also consider that
part of that space will be used by the plant foliage volume and clearance within high-
vigor rows may be more difficult. When taking into account this volume and the spatial
footprint of the acquisition vector, the maximum distance quickly becomes limited. It is
then often mandatory to make compromises in the framing. Obviously, the estimations
made in Figure 6 only hold true for this specific example, as parameters such as the distance
between plants and the height of the plant at a specific phenological stage for a specific
pruning system vary a lot. A lot of these parameters are actually linked, vigor being for
example a complex combination of cultivar effect, pruning system, local soil and plant
health. Unfortunately, it is not trivial to take this into account, vigor being a phenomenon
with huge spatial and temporal variations [35]. This means predicting the optimal framing
setup beforehand is almost impossible, and most of these settings need to be done on the
fly before the experiment.

One possible alternative to accommodate for narrow rows may be changing the optics;
fisheye cameras could for instance be considered in more extreme cases. However, this
implies using different cameras, adding variability in the image database and specific
image treatments (distortion correction). When working with several projects, this is not
a desirable behavior since algorithms will have to be designed accordingly. It is also
worth noting border effects may occur, related to the casing or the camera optics. Trained
algorithms may thus also fail to operate in these areas.

Another important consequence of the framing variability is the objects’ size variability
in the resulting images. Even though image size is constant, objects appear bigger when
the camera is close to the plant. That, however, does not necessarily mean they are easier to
detect for the trained algorithms. If we add to this variability the natural seasonal variability
(phenological stages BBCH71 through BBCH89 in the case of grapevine berries [36]) and
cultivar differences, huge differences are to be expected. As a small visual experiment,
Figure 7 presents a set of sample square patches of leaves (Figure 7a) and berries (Figure 7b)
extracted from all the study projects.

Figure 7. Samples of leaf (a) and berry patches (b) in the databases from the 4 study projects. Numbers
indicate for each category the minimum and maximum square patch size in the batch. Original full
images were all of size 2448 × 2048 pixels.

Again, the importance of algorithm robustness shines here. Even in the same geo-
graphical area and at the same date, it is not wise to expect objects with similar sizes. A
multiplicative coefficient up to three should be expected in object sizes when sampling other
vineyards. This means the algorithm need to be able to perform under degraded conditions,
which may be impossible for some applications (e.g., small downy mildew spots).
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Appropriate vertical framing can also be difficult to achieve when dealing with agri-
cultural machines since the mounting point may be too low or too high. In theory, choosing
a vehicle depends on the vineyard characteristics and on the surface we need to survey.
In reality, the availability of the vehicles and conductors is actually the most important
part, as summarized in Table 3. Tractors need a tractorist and harvesting machines are only
available for specific operations, meaning they are only suited for certain applications at a
short period of time. On the other hand, small robots and do-it-yourself solutions can be
used at any time but have a more limited work rate.

Table 3. Description of the vectors on which the acquisition system may be mounted.

Vector Yield/Speed Availability

Harvesting tractor High/constant speed Harvest and sometimes tillage
works; skilled trained driver

High-leg tractor High/constant speed During crop control/tillage
works; skilled trained driver

Within-row tractor High/constant speed Trained driver

Remote-controlled robot Medium/variable speed Anytime access is possible;
trained user

“Pedestrian” System Low/variable speed,
user fatigue

Anytime access is possible;
anyone

In a nutshell, this means that unless the experiment plot is very well known and a
tailored solution can be imagined to perfectly fit it, perfect framing is near impossible for
large-scale experiments. This also implies research efforts devising algorithms robust to
these problems and estimating the bias of models fitted with that kind of uncertainty (on
top of already-present uncertainty, e.g., grapes occluded by leaves in very dense vines) are
a top priority in proximal sensing.

Another consequence of noncontrolled environments is the possible inclusion of ab-
normal objects in the field of the camera, or normal objects obstructing the field. Occlusion
is bound to happen, especially when the camera is mounted on the lower part of the acqui-
sition vector (e.g., harvesting machine). Weeds (Figure 8b) or even sometimes full leaves
(Figure 8a) may obstruct the object of interest. Processing of the picture then becomes more
difficult, or even impossible in some cases.

Figure 8. Example of images showcasing occlusion by (a) leaves and (b) weeds.

Depending on the algorithm and the training base, abnormal objects may also trigger
false positives. An example of this phenomenon is shown in Figure 9. In that case,
the objective was to differentiate esca symptoms from other grapevine symptoms and
deficiencies (for instance, dried leaves). Here, an abnormal brown object filled with weeds
was wrongly detected as two dried leaves. This was not a surprising error since no such
objects were present in the training set. It is wise to expect many other potential false
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detections of this kind are possible. An algorithm may for instance detect pheromone
dispensers as dried leaves, even though it did not happen in our studies.

Figure 9. Extract of an image from the ADVANTAGE esca detection dataset showcasing false
detections of dried leaves (orange boxes). Numbers indicate the algorithm confidence.

These false positives tend to be rare and may or may not compromise the underlying
application. In the case of yield estimation, exceptional false berry detections have no
significant incidence when compared to the total number of berries and the expected yield
precision. Disease detection may be a bit more problematic, but the problem can be avoided
by considering, for instance, the total number of detected symptomatic leaves in each
image [30], only detecting a disease on the plant when the number of detected leaves is
superior to a given threshold.

3.3. Illumination Related Parameters

In a similar way to the parameters influencing framing, lighting parameters have an
influence on the picture quality and are unavoidable in noncontrolled environments. As
explained in the sensor presentation part, the use of a flash device allows us to mitigate
the effects of natural lighting. However. it has to be fine-tuned for the current lighting
conditions, which is a challenge in many practical cases. On cloudy days, illumination
may randomly switch between direct and diffuse lighting. Light levels also rapidly change
between dawn and morning, which can be a problem when doing experiments on several
plots over the course of a few hours. Figure 10 presents an example of a time series of
pictures taken throughout the morning on the same plot. Darkening of the background
gradually becomes more and more difficult and the general color palette gradually changes.

Figure 10. Example of the illumination evolution effect on the pictures taken over the course of
the morning (from (a–c)) using a flash device with the same settings. Images extracted from the
flavescence dorée detection ProspectFD dataset.

Bad flash timing or nonfunctional flash are also causes that may influence the illu-
mination of the scene. Yield estimation can be particularly affected by these issues as it
relies on the detection of spherical illuminated objects. Figure 11a presents an example of
nondetected berries caused by a badly adjusted flash while Figure 11b presents an example
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of nondetected berries caused by a faulty flash. Flash usage sometimes also causes a small
light halo on the borders of the picture.

Figure 11. Example of results from the EARN dataset for the detection of berries (red circles).
(a) Example of overexposed picture with undetected berries. (b) Example of a picture with no flash,
showcasing undetected berries.

The consequences when failing to darken the background using the “day for night”
technique are variable and depend on the application. In the case of small berries detection,
the consequences are usually small, since background objects appear very small and out
of focus. This can, however, be a problem for disease detection, especially flavescence
dorée and esca detection (leaf-scale symptoms). Figure 12 presents two samples from the
esca detection dataset. In Figure 12a, background leaves are not detected by the algorithm,
while in Figure 12b, one background leaf is wrongly detected as esca.

Figure 12. Example of detection results from the ADVANTAGE esca disease dataset. Red boxes:
esca detections. Orange boxes: other symptoms and deficiencies detections. (a) Example of good
behavior: background-row dried leaves appropriately not detected. (b) Example of bad behavior:
background-row esca leaf detected. Figures in both images indicate the algorithm’s confidence.

4. Discussion

In the previous part, we described the various parameters during acquisition with
an effect on the resulting images and a potential effect on algorithm efficiency. As a
summary, Figure 13 arranges that list of parameters according to two axes: whether or not
the parameter is problematic and whether or not it can be controlled by the user.

This figure shows unavoidable problems usually are not the most problematic. How-
ever, unavoidable problems (related to environmental effects) are still bound to happen
randomly. Application-specific problems ask for cautious planning, even though part of
them cannot be fully mastered, especially those related to the environment.

If we consider the acquisition system presented in this paper and the ones presented
in other research works, it is quickly apparent direct comparisons between studies can
be challenging. While similar design decisions can be encountered (such as the use of a
flash unit to detect spherical fruits [22] or the use of high-leg tractors [23]), many design
choices are actually related to vineyard layout and management. For instance, among
the cited research works, two of them provided information about the distance between
vine rows [22,23]. In both cases, that distance was superior to 75 cm, meaning the row
width was less of an issue than in our studies. Similarly, other researchers may encounter
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specific problems that prevent them from using certain vehicles such as heavy agricultural
machinery. This is a possible issue in grapevine plots with steep slopes or with wet soil
conditions. Another example of this diversity is vine pruning. Depending on pruning and
thinning practices, grapes may grow at a constant height [20] or spread on the vertical
plan [21]. These differences significantly affect image framing and experimental design.

Figure 13. Synthesis of the acquisition parameters. The horizontal axis describes how crucial a
parameter is to the acquisition. The vertical axis describes the difficulty in controlling this parameter.

It is thus expected the proximal sensing scientific community and commercial market
will face significant challenges in the future when trying to adapt existing computer vision
algorithms to different vineyards. While proximal sensing has attracted a lot of attention
these last 10 years, great precautions are needed when analyzing the results and imagining
future commercial applications. Indeed, whether they try to roughly detect or precisely
segment objects and phenomena on plants, algorithms will always have to deal with a huge
variability and unexpected cases. It is safe to assume the vineyards sampled in this paper
do not accurately describe the actual range of vineyard variability: worse performance
is then expected when applying the algorithms to other vineyards. That being said, it is
however important to keep in mind the observations made in this paper are related to the
diversity of French vineyards, which may be less important in other vine-growing countries.
Its great diversity of cultivars and pruning systems makes it harder to design acquisition
systems suited for all the vineyards, even in the same vine-growing region (Bordeaux).

The acquisition issue is closely related to the database size and variability problem.
The most robust algorithm cannot be trained without an extensive database showcasing
detailed spatial (from the region scale to the plot scale) and temporal (phenological stages)
variability. Ways to automatize picture acquisition are thus crucial, notably, finding ways
to systematically link agricultural machine passage (tractors, high-leg tractors, robots, etc.)
with picture acquisitions. This, however, means algorithms must be designed around huge
image databases which, in the current research state, tend to favor deep-learning-based
algorithms. In this paper, the projects’ database sizes varied a lot (depending on the vehicle
and the number of available vineyards) but the actual numbers of labeled images used
to train the algorithms was similar. The image labeling step is thus a clear bottleneck
here. This means existing pipelines to label the training images need to be strengthened
to be more efficient, whether they use fully manual annotation or new techniques such as
transfer learning (TL) or few-shot learning (FSL) [37]. The specificity of manual annotations
in the agricultural world is, however, that in certain cases, the user needs to be highly
skilled at the task at hand. Actually, even skilled professionals may struggle when labeling
disease images, due to the lack of contextual information. For instance, flavescence dorée
labeling benefits a lot from grapes and shoots examination. Whole pictures of the plants at
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different angles would be optimal in that case, which stresses even more the importance of
parameters related to picture framing.

While the focus of this paper was the vine crop, similar conclusions could be derived
when dealing with orchard crops such as apple trees. However, several key differences
have to be taken into account, such as wider rows, higher objects of interest and different
agricultural machinery uses. Similarly, experimenting on grapevines without leaves during
the winter season implies different strategies, since background removal becomes crucial
when considering potential wood-pruning applications. Using complementary depth infor-
mation from sensors such as RGB-D cameras is a promising way to ensure the background
is efficiently removed [38].

Future works may include the combination of different applications in order to obtain
a more contextual diagnosis of the plant. They may also include the combination of mobile
proximal sensing with fixed sensors, allowing us to merge high-spatial-resolution data
with high-temporal-resolution data. The wealth of spatial information generated by the
experiments (e.g., disease detection maps) may also lead to the creation of spatial models,
allowing us to gain a better understanding of the studied phenomena (epidemic diseases,
vigor variability, etc.).

5. Conclusions

In this paper based on 8 years of field experiments, we described the importance of
experimental parameters when conducting proximal sensing acquisitions using a movable
vector in vineyards. Organ detection and disease detection examples from four projects
were used to evaluate which parameters are crucial to the success of potential applications,
as well as which parameters can be controlled by an adequate experimental protocol.

Results showed that even though part of the acquisition workflow can be controlled,
great variability and unexpected behaviors will always be expected, such as erratic fram-
ing, varying light conditions or random material failures. This means any processing
algorithm should be, from the get-go, designed to take into account these differences.
Recent approaches thus tend to favor more robust deep learning frameworks. However,
given the sheer complexity of vineyards and well-known “black box” effects related to
deep learning, we believe significant efforts in the understanding and the evaluation of
these algorithms’ robustness will be necessary in the future to properly scale up proximal
sensing applications.

Results also stressed the need for the creation of better databases representing the
huge variability of configurations encountered in vineyards, a phenomenon with further
repercussions on the choice of algorithms. Mounting the cameras on agricultural machinery
in order to get repeated images from each plant in the vineyard is a promising approach in
order to boost the augmentation of these databases. However, it highlights a lot of practical
issues, related to the camera mounting point, farmer cooperation or the use of the device
in extreme conditions (spraying, moving mechanical parts). These issues still hold true
in the case of autonomous robots, whose increasing uses may be partly a solution for the
automation of image-collecting tasks.
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The following abbreviations are used in this manuscript:

RGB Red green blue
RGB-D Red green blue depth
UAV Unmanned aerial vehicle
LIDAR Light detection and ranging
CNN Convolutional neural network
GNSSS Global navigation satellite system
RTK Real-time kinematics
PPK Post-processed kinematics
GIS Geographical information system
GPU Graphics processing unit
CPU Central processing unit
TL Transfer learning
FSL Few-shot learning
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