
Citation: Perpetuini, D.; Formenti, D.;

Cardone, D.; Trecroci, A.; Rossi, A.;

Di Credico, A.; Merati, G.; Alberti, G.;

Di Baldassarre, A.; Merla, A. Can

Data-Driven Supervised Machine

Learning Approaches Applied to

Infrared Thermal Imaging Data

Estimate Muscular Activity and

Fatigue? Sensors 2023, 23, 832.

https://doi.org/10.3390/s23020832

Academic Editor: Giorgio Biagetti

Received: 30 November 2022

Revised: 7 January 2023

Accepted: 9 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Can Data-Driven Supervised Machine Learning Approaches
Applied to Infrared Thermal Imaging Data Estimate Muscular
Activity and Fatigue?
David Perpetuini 1,* , Damiano Formenti 2 , Daniela Cardone 3 , Athos Trecroci 4 , Alessio Rossi 5 ,
Andrea Di Credico 6 , Giampiero Merati 2,7 , Giampietro Alberti 8, Angela Di Baldassarre 6

and Arcangelo Merla 3

1 Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara,
66100 Chieti, Italy

2 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via Dunant, 3,
21100 Varese, Italy; damiano.formenti@uninsubria.it (D.F.); giampiero.merati@uninsubria.it (G.M.)

3 Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy;
d.cardone@unich.it (D.C.); arcangelo.merla@unich.it (A.M.)

4 Department of Biomedical Sciences for Health, University of Milan, 20129 Milan, Italy; athos.trecroci@unimi.it
5 Department of Computer Science, University of Pisa, 56127 Pisa, Italy; alessio.rossi2@gmail.com
6 Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara,

66100 Chieti, Italy; andrea.dicredico@unich.it (A.D.C.); angela.dibaldassarre@unich.it (A.D.B.)
7 IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy
8 University of Milan, 20122 Milan, Italy; giampietro.alberti@unimi.it
* Correspondence: david.perpetuini@unich.it; Tel.: +39-0871-3556954

Abstract: Surface electromyography (sEMG) is the acquisition, from the skin, of the electrical signal
produced by muscle activation. Usually, sEMG is measured through electrodes with electrolytic
gel, which often causes skin irritation. Capacitive contactless electrodes have been developed to
overcome this limitation. However, contactless EMG devices are still sensitive to motion artifacts
and often not comfortable for long monitoring. In this study, a non-invasive contactless method
to estimate parameters indicative of muscular activity and fatigue, as they are assessed by EMG,
through infrared thermal imaging (IRI) and cross-validated machine learning (ML) approaches is
described. Particularly, 10 healthy participants underwent five series of bodyweight squats until
exhaustion interspersed by 1 min of rest. During exercising, the vastus medialis activity and its
temperature were measured through sEMG and IRI, respectively. The EMG average rectified value
(ARV) and the median frequency of the power spectral density (MDF) of each series were estimated
through several ML approaches applied to IRI features, obtaining good estimation performances
(r = 0.886, p < 0.001 for ARV, and r = 0.661, p < 0.001 for MDF). Although EMG and IRI measure
physiological processes of a different nature and are not interchangeable, these results suggest a
potential link between skin temperature and muscle activity and fatigue, fostering the employment
of contactless methods to deliver metrics of muscular activity in a non-invasive and comfortable
manner in sports and clinical applications.

Keywords: electromyography (EMG); muscular fatigue; muscular activity; thermography; machine
learning (ML)

1. Introduction

Electromyography (EMG) is the measurement of the electrical signals produced by
activated muscles [1]. When a muscle fiber is stimulated by a motor neuron, the ionic
concentration surrounding the semi-permeable lipid membrane changes, resulting in the
formation of a biopotential gradient. The EMG sensors detect the simultaneous occurrence
of these potentials elicited by muscular activation as the sum of the motor unit action
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potential. This technique is widely used to investigate possible pathologic changes [2] or re-
habilitation benefits, as well as to evaluate neuromuscular responses in sports applications.
For example, EMG is used to evaluate muscle activity under a variety of running conditions
(e.g., on the ground or on a treadmill, at varying speeds and on different surfaces, and
during resistance training and weightlifting) [3].

Time-, frequency-, and non-linear-domain approaches are typically utilized to analyze
the EMG signal to obtain metrics indicative of muscular activity. Typically, time-domain
metrics are used to detect muscle force [4]. The average rectified value (ARV) is one of these
metrics. It represents the area under the normalized EMG signal divided by the considered
temporal window [5–7]. The frequency-domain variables are calculated using the power
spectral density (PSD). Specifically, the median frequency (MDF) of the PSD is utilized to
detect muscle fatigue [2,7].

Additionally, novel techniques based on complexity analysis and machine learning
(ML) have been applied to the analysis of EMG data (for a recent review, see Rampichini
et al., 2020 [8]). So far, nonlinear analyses based on fractals and self-similarity (as fractal
dimensions, detrended fluctuation analysis, multifractality), correlation (as correlation
dimension and recurrence quantification analysis), entropy (as approximate, sample, and
fuzzy entropies) and deterministic chaos (as Lyapunov Exponent) have been used to detect
muscle fatigue in EMG signal [9]. Furthermore, classifications of sEMG patterns via k-
means clustering or support vector machines [10,11] and the evaluation of gait disorders
through several ML approaches [12] have been proposed.

EMG signals may be recorded in either a contact or contactless fashion [13]. The
contact method could be implemented using a needle-like probe inserted invasively into the
human muscle or electrodes capable of measuring EMG signals through the skin (surface
EMG, sEMG). Compared to sEMG electrodes, invasive probes offer superior diagnostic
performance and better sensitivity of muscle abnormalities [14]. However, the invasive
method requires surgical preparation and trained operators; therefore, sEMG is preferred
whenever possible. Typically, Ag–AgCl conductive gel is utilized to increase conductivity,
improve electrode–skin coupling, and reduce motion artifacts. The primary disadvantage
of this type of electrode is the need for skin preparation prior to measurement. In addition,
the conductive gel may cause skin irritation and discomfort, and it dries out over time,
rendering long measurements noisy [15]. Moreover, the use of an electrolyte for chronic use
is inconvenient because the reliance on an electrolyte results in a decrease in signal quality
as the gel dehydrates [16], and the reapplication of gel may not be possible. In addition, the
recording may occur in a sensitive area, a previous skin treatment may render standard
electrodes ineffective, or the required distance between electrodes may be so close that
smearing of the electrolyte would occur [17,18]. Furthermore, the application and removal
of electrolyte gels is unpleasant for the patient and time-consuming for the clinician or
caregiver [19]. Finally, although rare, dermatological reactions can occur [16–18].

In contrast, dry electrodes do not require any conductive gel because sweat from the
human body is used to improve contact. However, due to their high input impedance, dry
electrodes are highly susceptible to motion artifacts. Although various innovative electrode
designs have been proposed to improve the performance of dry electrodes [20,21], they are
still highly susceptible to motion artifacts. To overcome these limitations, capacitive EMG
sensors that do not require direct skin contact have been developed; however, they are still
highly sensitive to motion artifacts and are not comfortable for prolonged monitoring.

The development of methods capable of estimating EMG parameters at a distance,
without requiring skin-located sensors, could facilitate the use of EMG for long-term record-
ings. In this regard, it is well established in the scientific literature that the skin temperature
above a muscle was found to be related to EMG muscular activity [22]. For example,
Rodriguez-Sanz et al. discovered a significant correlation between EMG MDF and skin
temperature after running (Pearson correlation coefficient r = 0.78) [23]. Moreover, Shakihih
et al. discovered a statistically significant correlation between the average temperature
and the root mean square (RMS) and the MDF of the sEMG signal during repeated calf
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raises [24]. In order to assess temporomandibular joint dysfunction in juvenile idiopathic
arthritis, the EMG ratio between the masseter and temporalis muscles was estimated from
skin temperature [25].

In this regard, infrared thermal imaging (IRI) could be a suitable method for nonin-
vasively measuring skin temperature above any skeletal muscle. IRI is a technique that
measures the radiant energy emitted by a body to estimate its surface temperature from a
distance [26]. IRI is noninvasive, contactless, transportable, and inexpensive. This technol-
ogy is extensively used in biomedical and athletic applications to monitor skin temperature
for a variety of purposes (e.g., circulatory disease assessment, affective computing, and
thermoregulation) [27]. Particularly, thermal imaging is frequently employed in sports
science to assess the physical condition of athletes by measuring their muscle temperature
during exercise and their perceived fatigue [28].

This study tested a non-invasive, contactless method for estimating parameters indica-
tive of muscular activity and fatigue as it is assessed by EMG using IRI data. Specifically,
cross-validated data-driven multivariate procedures were applied to features computed
from the temperature time course of the skin above the activated musculature, to estimate
the ARV and MDF as measured by sEMG. Notably, the aim of the study is not to measure
the EMG signal from skin temperature variations assessed through IRI, but to find correla-
tions between metrics evaluated from the EMG signal and IRI signal features, although the
two processes are of a different physiological nature.

2. Materials and Methods
2.1. Participants

Ten active adults (6 males and 4 females) volunteered to take part in this study. Their
mean age, body mass, and height were 21.8 ± 2.9 yrs, 70.9 ± 6.3 kg, 176.2 ± 6.3 cm
(mean ± standard deviation, STD), respectively. They were habitually physically active,
but none of them was used to resistance training. All participants were non-smokers, not
injured, and without cardiovascular or pulmonary diseases. They had not consumed drugs
or medications with a potential effect on cardiovascular and thermoregulatory functions
during the two months before the tests. A week before the testing session, they removed
body hair on thighs that were clean and without cosmetics products.

2.2. Experimental Protocol

After a preliminary session aimed at familiarizing them with the testing procedures,
participants underwent a testing session in the following week. In the testing session,
after a 10 min warm-up composed of 5 min of running and 5 min of dynamic lower-limb
activities (such as low intensity jumping and lunging drills), participants acclimated to
the room climate conditions (temperature 22–24 ◦C; relative humidity 50–60%; no direct
ventilation and constant intensity of light) for 15 min at resting condition to achieve thermal
equilibrium between the body and the environment [29]. Then, participants performed
5 sets of bodyweight squats until exhaustion (maintaining hands on the hips) interspersed
by 1 min of rest, during which EMG and IRI were recorded simultaneously. In Figure 1,
a representative figure of the testing session is reported. A strength and conditioning
coach supervised the entire session, ensuring that participants maintained an appropriate
movement quality throughout the experiment. The speed of movement was standardized
with the aid of a metronome (1 s for eccentric, 1 s for relaxing, 1 s for concentric phase). The
subjects were instructed to refrain from strenuous physical activity during the two days
before the trials and abstained from assuming alcoholic or caffeine-containing products for a
4 h period before the start of the experiment. All sessions were scheduled in the late morning
to mitigate possible effects related to circadian rhythm changes. The IRI measurements
were performed in accordance with the guidelines provided by Moreira et al., 2017 [30].
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Figure 1. Schematic overview of the testing session. The figure is created with BioRender.com,
EMG: electromyography; IRI: infrared thermal imaging; ML: machine learning.

2.3. Electromyography Recording and Preprocessing

EMG was recorded employing the Encephalan Mini AP-10 system. The sEMG sensor
acquired at a sample frequency of 250 Hz. To maximize skin–electrode coupling, the
adhesion areas of the electrodes were shaved and cleaned with 96% isopropyl alcohol and
cotton. The bipolar sEMG Ag/AgCl electrodes (Ceracarta, Forlì, Italy) were positioned
2 cm apart along the muscle belly fibers in a longitudinal orientation. Particularly, they
were positioned at 80% of the distance between the superior anterior iliac spine and the
joint space at the anterior border of the medial collateral ligament on the left vastus medialis
(VM) [31].

Concerning the sEMG processing, the signals were high-pass filtered (with a cut-
off frequency of 20 Hz) with a zero-lag 3rd order Butterworth filter and rectified. The
filtering cut-off frequency was chosen based on previous studies and guidelines [32–34].
Particularly, De Luca et al. found that for applications involving isometric contractions or
natural and common movements (such as squats), the recommended corner frequency for
a Butterworth filter is 20 Hz [35].

Then, the MDF, which is indicative of muscle fatigue, is the frequency at which
the power spectrum of the EMG signal is divided into two parts of equal width, as
reported below:

MDF

∑
i=1

Pi =
N

∑
i=MDF

Pi =
1
2

N

∑
i=1

Pj

where Pi is is the EMG power spectrum at the ith frequency bin, and N is the number
of frequency bins. In this study, the power spectrum of the EMG signal was extracted
through Welch’s method [36] and N was set at the next power of 2 from the length of EMG
time-domain signal [37].

The ARV was computed to evaluate the muscular activity. It is defined as the averaging
of the rectified EMG signal across the duration of a motor task [7]. It is computed as follows:

ARV =
1
N

N

∑
n=1
|EMG[n]|

where N is the number of samples to be averaged. Since a fatiguing exercise until exhaustion
was employed in this study, the number of samples depended on the performance of the
participants.

These metrics were evaluated for each series (5 series for each participant), resulting
in 50 values for both ARV and MDF.

2.4. Infrared Thermal Imaging Recording and Preprocessing

Thermal infrared camera FLIR SC660 (FLIR, Wilsonville, OR, USA) (640 480 bolometer
FPA, sensitivity/noise equivalent temperature difference: 30 mK at 30 ◦C, field of view:
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24◦ 18◦) was used to record the VM’s temperature. The camera was placed 60 cm away
from the subject, focused on the subject’s legs, and acquired at a sample rate of 10 Hz.

To eliminate optical artifacts and the potential drift/shift in sensor response, the cam-
era was blackbody-calibrated. The acquisitions were carried out in accordance with thermal
measurement standards. In order to minimize thermoregulatory effects, IRI measurements
were conducted in a temperature-neutral environment.

The quality of recordings was evaluated visually, and no video was discarded. As
shown in Figure 2a, three regions of interest (ROIs) were chosen around the Ag/AgCl
electrodes. Particularly, ROI1 was placed between the two electrodes, ROI2 laterally to
the electrodes, and ROI3 below the electrodes. Notably, the ROIs were chosen in order
to cover the VM muscle avoiding the influence of the electrodes on the recorded muscle
temperature. A video tracking algorithm was utilized to track the ROI across thermal video
frames [38]. During the experiment, a representative temperature time course is depicted
in Figure 2b.
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2.5. Features Extraction and Machine Learning Procedures

The features for the ML-based regression were computed on the selected ROIs after
the end of each series. Specifically, the features extracted from the IRI signals are:

1. Mean value (MeanTemp): average value of the thermal signal T over a temporal
window of 10 s after the end of the exercise defined as:

MeanTemp =
1
N

N

∑
i=1

Ti

where N is the number of samples.
2. Standard deviation (STD): standard deviation of the thermal signal T over a temporal

window of 10 s after the end of the exercise defined as:

STD =

√√√√ 1
N − 1

N

∑
i=1

(Ti −MeanTemp)2

where N is the number of samples.
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3. Mean value of the power spectral density (MeanPSD) of the thermal signal T over
a temporal window of 10 s after the end of the exercise. The PSD is defined as the
Fourier transform of the autocorrelation matrix Rx(τ) of a random process X(τ):

SX( f ) = F{Rx(τ)} =
∫ +∞

−∞
Rx(τ)e−2jπ f τdτ

4. Kurtosis (Kurt): fourth standardized moment, and it is evaluated as follows:

K =
1
N

√
∑N

i=1 (Ti −MeanTemp)4

STD4

where N is the number of samples.
5. Skewness (Skew): third standardized moment, and it is evaluated as follows:

S =
1
N

√
∑N

i=1 (Ti −MeanTemp)3

STD3

6. 90th percentile (90th P): it is the temperature value below which the 90% of all
temperature frequency distribution are comprised.

7. Sample Entropy (SampEn): it is defined as the negative natural logarithm of the
conditional probability that signals that the subseries of length m (pattern length) that
match pointwise within a tolerance r (similarity factor) also match at the m + 1 point.
SampEn of a time series {t1, . . . ,tN} of length N is computed employing the following
set of equations:

SampEn(m, r, N) = − ln
[

Um+1(r)
Um(r)

]
Um(r) = [N −mτ]−1

N−mτ

∑
i=1

Cm
i (r)

Cm
i (r) = Bi

N−(m+1)τ

Bi = number o f j where d
∣∣Ti, Tj

∣∣ ≤ r

Ti =
(

ti, ti+τ , . . . , ti+(m−1)τ

)
Tj =

(
tj, tj+τ , . . . , tj+(m−1)τ

)
i ≤ j ≤ N −mτ, j 6= i

• Where U is the subseries vector considered and Cm(r) is the probability that any vector
Um(j) is within r of Um(i).

• In this study, m = 2 and r = 0.2·SD of the signal has been used, in accordance with [39].
• Spatial gradient (Grad): it is evaluated as follow:
• Grad = ∇T = ∂T

∂x ı̂ + ∂T
∂y ̂

• Delta (∆): difference between the average of the signal in the first 2 s and in the last 2 s
of a temporal window of 10 s after the end of the exercise.

To estimate the ARV and MDF from IRI features, the following ML regressors were
tested: linear regression (LR), support vector regressor (SVR) with linear and Gaussian
kernels, ensemble regressors, and Gaussian process regression (GPR).

The LR is a machine learning algorithm based on supervised learning that performs a
regression task, targeting prediction values based on independent variables [40].

The SVR allows the estimation of optimal separating boundaries between data sets
by solving a constrained quadratic optimization problem. By the use of different kernel
functions, several degrees of nonlinearity can be included in the model [41].
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The ensemble regressors use multiple learning algorithms to obtain better performance
than those obtained from any of the constituent learning algorithms alone [42].

GPR is a supervised learning method designed to solve regression problems that
delivers probabilistic predictions that interpolate the observations [43].

Several ML approaches relying on different kernels and estimation algorithms were
tested in order to provide a comprehensive and effective estimation of the relationship
between the EMG metrics and IRI features.

In order to estimate ARV and MDF, these models were trained and tested using as
input metrics obtained from each ROI separately (i.e., ROI1, ROI2, and ROI3).

The selection of features was conducted using F-tests. Each F-test compares the null
hypothesis that the response values grouped by predictor variable values are drawn from
populations with the same mean to the alternative hypothesis that the population means
differ. A test statistic with a small p-value indicates that the corresponding predictor is sig-
nificant. In addition, in order to assess the generalizability of the procedure’s performance,
a nested cross-validation (nCV) was implemented. In nCV, data are divided into folds, and
the model is trained iteratively and nestedly on all data with the exception of one fold.
In contrast to the outer loop, which estimates the model’s performance across iterations
(test), the inner loop determines the optimal hyperparameter (validation). If the number
of folds is equal to the number of samples (one fold per sample), then the procedure is
known as leave-one-out CV. In this study, the leave-one-subject-out CV was utilized, so
the presented results demonstrate an out-of-sample correlation between the EMG and IRI,
thereby reducing overfitting effects.

3. Results

Table 1 reports the correlation analysis between the thermal regressors employed as
input to the ML frameworks and the ARV and MDF for each ROI considered.

Table 1. Correlation coefficients (r) computed between the ARV and MDF and the IRI features used
as input to the ML algorithms.

ROI IRI Feature r (ARV) r (MDF)

1

MeanTemp 0.607 (p = 0.001) 0.067 (p = 0.749)
STD −0.213 (p = 0.306) −0.160 (p = 0.444)

∆ 0.202 (p = 0.331) 0.240 (p = 0.248)
MeanPSD 0.5966 (p = 0.002) 0.106 (p = 0.615)

Kurt −0.167 (p = 0.426) −0.122 (p = 0.563)
Skew −0.015 (p = 0.942) 0.257 (p = 0.214)
90th P 0.5856 (p = 0.002) 0.049 (p = 0.818)

SampEn −0.293 (p = 0.155) −0.160 (p = 0.446)
Grad 0.034 (p = 0.870) −0.004 (p = 0.986)

2

MeanTemp 0.490 (p = 0.013) 0.192 (p = 0.357)
STD −0.052 (p = 0.804) −0.102 (p = 0.629)

∆ 0.256 (p = 0.217) 0.264 (p = 0.203)
MeanPSD 0.505 (p = 0.010) 0.195 (p = 0.350)

Kurt −0.161 (p = 0.441) −0.257 (p = 0.216)
Skew 0.082 (p = 0.699) 0.270 (p = 0.192)
90th P 0.487 (p = 0.014) 0.194 (p = 0.354)

SampEn −0.270 (p = 0.196) −0.088 (p = 0.675)
Grad 0.248 (p = 0.231) 0.211 (p = 0.312)

3

MeanTemp 0.541 (p = 0.005) 0.196 (p = 0.349)
STD −0.117 (p = 0.579) −0.151 (p = 0.473)

∆ 0.040 (p = 0.849) −0.064 (p = 0.761)
MeanPSD 0.540 (p = 0.005) 0.210 (p = 0.314)

Kurt 0.068 (p = 0.746) −0.159 (p = 0.449)
Skew −0.166 (p = 0.427) 0.232 (p = 0.264)
90th P 0.518 (p = 0.008) 0.186 (p = 0.375)

SampEn −0.247 (p = 0.235) −0.116 (p = 0.581)
Grad 0.020 (p = 0.924) 0.121 (p = 0.563)
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Figure 3 shows the results of the features selection procedure. Particularly, Figure 3a
shows the scores of the F-tests for the ARV estimation through IRI features, whereas
Figure 3b exhibits the scores obtained for the MDF evaluation. Notably, the first three
features indicated as most contributive to the prediction of the ARV and MDF were used
for further analysis.
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Figure 3. F-tests scores associated to each thermal feature computed for each ROI evaluated for the
ARV (a) and MDF (b) estimation.

Table 2 reports the regression results for each regressor tested for ARV. The perfor-
mance of the model was evaluated through the root-mean-square error (RMSE) computed
on the normalized values (z-score) and the correlation coefficients (r) between the EMG-
based ARV, considered the gold standard, and the estimated ARV from the IRI features.

Table 2. Results of the regression obtained by the several ML approaches considered to estimate the
ARV from the thermal metrics. Notably, the performance of the model was expressed as root-mean-
square error (RMSE) computed on the normalized (z-score) values and the correlation coefficient (r)
between the gold standard (EMG-based ARV) and the predicted metric (IRI-based ARV). The best
model is highlighted with an asterisk.

Model ROI RMSE r

LR 1 0.869 0.453 (p = 0.023)
SVR (Linear) 1 0.933 0.421 (p = 0.036)

SVR (Gaussian) 1 0.959 0.711 (p = 6.75·10−5)
Ensemble 1 0.824 0.545 (p = 0.005)
Gaussian 1 0.902 0.414 (p = 0.040)

LR 2 0.926 0.327 (p = 0.111)
SVR (Linear) 2 1.004 0.412 (p = 0.041)

SVR (Gaussian) 2 0.969 0.555 (p = 0.004)
Ensemble 2 0.821 0.550 (p = 0.004)
Gaussian 2 0.877 0.451 (p = 0.024)

LR 3 1.051 0.377 (p = 0.063)
SVR (Linear) 3 0.980 0.356 (p = 0.081)

SVR (Gaussian) 3 0.977 0.457 (p = 0.022)
Ensemble 3 0.833 0.529 (p = 0.007)
Gaussian 3 0.456 * 0.886 (p = 3.91·10−9) *
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Table 3 displays the regression results for each regressor tested for MDF, as measured
by the RMSE computed on the normalized values (z-score) and the correlation coefficients
between the MDF computed from the EMG signal (the gold standard) and the estimated
MDF from the thermal features.

Table 3. The regression results obtained from the various ML approaches considered for estimating
the MDF from thermal metrics. Notably, the model’s performance was expressed as the root mean
square error (RMSE) calculated on the normalized (z-score) values and the correlation coefficient (r)
between the gold standard (EMG-based MDF) and the predicted metric (IRI-based MDF). The best
model is highlighted with an asterisk.

Model ROI RMSE r

LR 1 1.094 0.368 (p = 0.063)
SVR (Linear) 1 1.114 0.271 (p = 0.239)

SVR (Gaussian) 1 0.981 0.447 (p = 0.025)
Ensemble 1 1.041 0.382 (p = 0.059)
Gaussian 1 0.854 0.509 (p = 0.009)

LR 2 1.077 0.319 (p = 0.121)
SVR (Linear) 2 0.994 0.528 (p = 0.007)

SVR (Gaussian) 2 1.016 0.498 (p = 0.011)
Ensemble 2 0.993 0.420 (p = 0.037)
Gaussian 2 1.017 0.464 (p = 0.020)

LR 3 1.085 0.364 (p = 0.074)
SVR (Linear) 3 0.775 0.623 (p = 8.85·10−4)

SVR (Gaussian) 3 1.026 0.335 (p = 0.102)
Ensemble 3 1.039 0.442 (p = 0.027)
Gaussian 3 0.751 * 0.661 (p = 3.21·10−4) *

Figure 4 displays the correlation plot (Figure 4a) and the Bland–Altman plot (Figure 4b)
for the model with the best ARV prediction performance (i.e., the Gaussian model). The
paired t-test did not assess differences between the gold standard and the predicted variable
(t-stat = −1.512; df = 49; p = 0.137). The slope of the linear regression equation is 0.93 and
the constant term is 0.10.
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Figure 5 depicts the correlation plot and Bland–Altman plot for the model with the
most accurate MDF prediction performance. The paired t-test assessed differences between
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the gold standard and the predicted variable (t-stat = −2.165; d.f. = 49; p = 0.035). The slope
of the linear regression equation is 0.46 and the constant term is 0.22.
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4. Discussion

This study describes a non-invasive, contactless method for estimating parameters
indicative of muscular activity and fatigue using IRI and cross-validated ML approaches.
Particularly, the ARV and MDF determined by EMG measurements have been estimated
based on thermal characteristics, although the physiological nature of the two processes is
different. The sEMG ARV and MDF were chosen as indicators of two distinct aspects of
muscle activity: activation level and muscle fatigue. Specifically, the ARV is associated with
muscle activity, whereas the MDF reflects muscle fatigue [7]. Regarding IRI metrics, they
were chosen as able to provide information regarding the skin temperature oscillations
associated to physiological activity. Particularly, both time- and frequency-domain data
analysis techniques were used in this study. In addition, non-linear approaches (such as
complexity analysis) were employed as they were demonstrated to be able to provide
information regarding the activation or dysregulation of a system [44,45]. Moreover, the
spatial distribution of temperature within a region of interest is also indicative of changes
in superficial blood circulation [46].

Regarding the ARV, the best performance was achieved by the Gaussian model, which
provided an estimation with a correlation coefficient of 0.886 and an RMSE on the normal-
ized values of 0.456 when using the thermal metrics evaluated on the ROI3 temperature
time course as input for the machine. Hence, in accordance with Cohen’s interpretation of
the correlation coefficient [47], a strong correlation between the estimated and measured
metric was found. Moreover, the paired t-test demonstrated the absence of a bias in the
model in estimating the ARV and the Bland–Altman plot showed a correspondence within
a tolerance factor of 1.96 standard deviation of the estimated metric with the gold standard.
In addition, the linear regression associated with the model showed a slope of 0.93 and a
constant term of 0.10. Since a good model should deliver a linear equation with the slope
around 1 and the constant term around 0 [48], this result demonstrates the effectiveness of
the proposed model in estimating the ARV, as it is computed from the EMG signal.

Considering the thermal features chosen by the features selection procedure, the Grad,
MeanTemp, and the 90th P selected over the ROI3 delivered the best estimation performance.
The correlation analysis demonstrated a large positive correlation between the selected
regressors and the ARV.

Notably, the MeanTemp and the 90th P were selected also for the ROI2 and ROI1,
demonstrating the great contribution of these metrics in the estimation of the ARV.
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Concerning the MDF, the best performance was obtained always by the Gaussian
model, delivering an estimation characterized by a correlation coefficient of 0.661 and an
RMSE on the normalized values of 0.751, when employing as input of the ML framework
the thermal metrics evaluated on the ROI3 temperature variations. However, although a
good correlation existed between the gold standard and the predicted metric, it should
be highlighted that the paired t-test assessed the presence of the bias in the estimation of
the MDF. Moreover, the Bland–Altman plot showed a systematic error in the estimation
of the MDF by the model, which is also visible considering the linear regression equation
delivered by the ML approach. It should be stressed that the systematic error and the bias
could be corrected in order to improve the estimation. However, further studies are indeed
necessary to enlarge the sample size to provide a more generalizable estimation.

The different result and ML predicting performance between amplitude (ARV) and
frequency (PDS) descriptors of EMG may be connected to the dissimilar values which
ARV and PDS have in depicting muscle fatigue: typically, spectral descriptors exhibiting
more consistent variations during fatiguing contractions than amplitude descriptors. This
is due to a variety of factors, including changes in conduction velocity during fatigue,
the progressive recruitment of larger fibers with greater action potentials, the possible
motor-unit rotation during prolonged constant force contractions, and many others. For
example, the future study of the changes in fiber conduction velocity during fatiguing
contractions may help in better adequate the ML approach to estimate spectral MDF in the
fatigued muscle.

Considering the thermal features chosen by the features selection procedure, the
SampEn, the 90th P, and the MeanPSD were selected. The correlation analysis between
the regressors and the MDF demonstrated a positive correlation between the 90th P and
the MeanPSD, and a negative correlation with the SampEn. SampEn has been shown to
decrease with fatigue, especially during concentric contractions. Therefore, the negative
correlation observed with IRI features, although not significant, is quite surprising, and
deserves further studies. Perhaps extending the correlation study between IRI estimators
and complexity estimators by evaluating other different non-linear aspects of muscle fatigue
will allow us to indicate which estimators are better approximated by the ML models.

ROI3 delivered the best performance for both the ARV and the MDF among the
considered ROIs. The ROI3 was chosen in the region beneath the EMG electrodes. The
oscillations in skin temperature are associated with changes in the superficial circulation in
response to muscle activity. It is important to note that the best results obtained from ROI3
can be attributed to the anatomy of the muscle fibers, which continues more laterally than
below the EMG electrodes. In fact, ROI2, which is lateral in relation to the EMG location
and the muscle under consideration, yielded the poorest estimates of EMG parameters.
Concerning ROI1, the less-than-optimal results could be attributed to the interference
on the superficial temperature caused by the presence of the electrodes, or to the small
area examined. In fact, the area between the electrodes is limited, and it is known that
accurate temperature measurement through IRI is dependent on the extension of the ROIs.
Specifically, small ROIs may produce inaccurate temperature measurements [49].

The proposed procedure could represent a valuable tool for providing some metrics
related to muscle fatigue and activity in a non-invasive, contactless manner. Moreover,
it should be highlighted that IRI can also provide information on skin injuries, which
are associated to the athletes’ physical condition [46,50]. Moreover, the employment of
IRI in sport science can allow us to also monitor other physiological signals, such as
breathing rate and sweat gland activity, indicative of the psychophysiological condition
of the individual [27]. Indeed, previous studies demonstrate that non-contact techniques
such as IRI are highly valuable tools to estimate with good accuracy physiological variables
(heart rate variability, HRV) using an ML approach [51–53].

However, it should be highlighted that the origins of the EMG and IRI signals are
different; in fact, the EMG is an electrical signal, whereas the IRI measures thermal effects
due to modifications of superficial circulation [54]. Hence, this study aims to assess some
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correlations between metrics estimated from EMG and IRI features, despite their different
natures and the fact that they are indicative of different physiological processes. Notably,
establishing correlations between signals of different origins to assess physiological pro-
cesses is a very common procedure. For instance, functional magnetic resonance imaging
(fMRI) [55] or functional near infrared spectroscopy (fNIRS) [56] are able to evaluate the
hemodynamic oscillations associated with brain activity, which is an electrical signal eval-
uated through electroencephalography (EEG) or magnetoencephalography (MEG). As a
result, even though the physical origins of functional hemodynamic brain oscillations and
electrical depolarizations of neurons differ, it is possible to estimate brain activity from
hemodynamics. Importantly, combining these techniques can provide information on the
neurovascular coupling, which is impaired in several pathologies, such as Alzheimer’s
disease [57]. Hence, combining EMG and IRI could maybe provide some information
regarding altered perfusion of the muscle. Another example can be referred to as the
evaluation of the HRV through photoplethysmography (PPG). In fact, the HRV is inferred
from variations of the heart rhythm, which has an electrical origin, and it is measured
through electrocardiography (ECG). However, the modifications of the heart rate produce
modifications of the blood volume in the peripheral vessels that could be assessed through
PPG. Hence, although the PPG has a different physiological origin with respect to the ECG,
the variation of the pulse rate is commonly employed to evaluate HRV metrics [58,59].
Furthermore, remote PPG (rPPG) can assess pulse variations using an RGB video recording
with a high-resolution camera [60,61]. Indeed, modifications of the visible optical properties
of the skin have a different physiological origin with respect to the heart rate; however, it is
possible to estimate HRV metrics from rPPG. Notably, measuring PPG and rPPG does not
imply measuring the ECG, but they do allow for the estimation of HRV parameters.

However, it is important to note that the proposed method does not provide a highly
accurate estimate of the MDF metric; therefore, it may be worthwhile to conduct additional
research to improve the method’s precision. In fact, the limited number of participants
represents the study’s primary limitation. By increasing the sample size, it may be pos-
sible to obtain more precise results and to test more intricate machines, such as deep
learning. However, it has been showed that ML approaches similar to those used in this
study can provide very highly accurate estimations of physiological and performance
parameters, and that they are superior to univariate methods [62,63]. Nevertheless, the
proposed model was developed using a cross-validation procedure, thereby ensuring its
generalization performance.

Importantly, additional research is required to test the capability of estimating other
EMG metrics from the skin temperature time course over the activated muscle, considering
other ROIs or the entire muscular district of interest during the exercise. In addition,
it should be emphasized that only one type of exercise (i.e., bodyweight squats) was
analyzed in this study; therefore, additional research should be conducted to examine
the relationship between the superficial temperature and the muscle activity in other
types of exercise and other muscular districts. Finally, simultaneously with the EMG
muscle activation during fatigue, it will be necessary to study the adaptations of the local
vessels (for example with locally applied bio-impedance techniques) resulting from the
metabolic- and mechanoreceptor-driven activation of the muscles. In this perspective,
further studies should investigate the physiology underlying the relationship between the
muscles’ temperature and activation also through multimodal approaches. This would
allow researchers to investigate the modification of not only the superficial circulation, but
also of the deeper tissues perfusion, for instance, through near infrared spectroscopy [64,65].

In this perspective, it should be mentioned that the regulation of the body’s total
temperature balance during exercise was not considered in this study. Notably, investigat-
ing the regulation of the body’s temperature balance could provide some insight into the
physiology of the investigated system, which is beyond the scope of the present study. In
fact, the data-driven approach presented in this study only defines relationships between
EMG metrics indicating muscle activity and fatigue and skin temperature modulation
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assessed via infrared thermography, providing a local analysis of the skin temperature
rather than a systemic and global investigation. Future studies will indeed be performed to
provide insights on the local and systemic physiology of the blood circulation modification
associated with muscle activity.

Furthermore, in this study, a fatiguing exercise was chosen to produce an effect on
the muscular fatigue measured by EMG, in order to provide variability in the input data
set of the various machines tested. Hence, the oscillations in skin temperature can be
caused by several physiological factors, including the regulation of the body’s temperature
balance and the increase in blood perfusion associated with muscle activity. In fact, it is
well documented that unilateral exercise causes skin temperature changes on the untrained
side of the body as well, with the trained side always exhibiting a greater thermal response,
indicating the presence of both a systemic and local contribution to skin temperature
modulations [66,67]. However, it should be noted that the objective of this study was to
develop a data-driven model capable of defining a relationship between EMG metrics
of muscular activity and fatigue (i.e., ARV and MDF) and the above skin temperature,
regardless of the system’s physiology, as typical for a data-driven approach. Importantly,
this method is not a substitute for the EMG, as it merely identifies some relationships
between muscle activity and skin temperature.

Another concern regarding the feasibility to employ the developed method in sports
science is related to the reliability of the IRI measurements. In fact, IRI recordings are highly
influenced from both environmental factors and the thermal camera placement with respect
to the individual. Concerning the environmental factors, modifications of the measured
temperature can be produced by a direct exposition to sunlight and ventilation, and by
variations of the ambient temperature and humidity [68,69]. Regarding the placement of the
thermal camera, Vardasca et al., 2017, demonstrated that modifications of the participant–
thermal camera distance within a range of 20 cm produces non-statistical modifications of
the mean temperature evaluated on a ROI, whereas, considering the angles, a range of±15◦

can be accepted [49]. The effect of the angle on the IRI measurements for facial regions was
also investigated by Cardone et al., 2020, demonstrating that applying a warping procedure,
a reliable estimation of regional temperature within a range of head rotation of ±24.23◦ for
yaw and ±13.79◦ for pitch movements can be obtained [70]. In this perspective, further
studies are indeed necessary to evaluate the feasibility to employ the developed method in
sports applications during which the distance of the athlete and the thermal camera and
the environmental conditions cannot be standardized.

In addition, the developed model can estimate EMG metrics by integrating information
over a 10 s time window following muscle activity. To ensure that the thermal signal is
not corrupted by motion artifacts, a time window selected immediately after the exercise
series was chosen. However, additional research is required to reduce the amplitude of the
temporal window for EMG metric prediction. Moreover, it should be noted that during the
exercise, the tracking algorithm required to obtain the skin temperature was implemented.
Occlusion of the ROIs during the exercise (e.g., due to excessive muscle rotation) could
prevent the time course from following the body movement, and motion artifacts could
corrupt the signal and render the prediction inaccurate. Therefore, preprocessing methods
should be developed to enhance the signal’s quality during movement.

Although preliminary, these findings could pave the way for the use of IRI for contact-
less evaluation of muscular fatigue and activity metrics in sports science and rehabilita-
tion applications, which could be exploited in an Internet of Things context. Specifically,
this model could be suitable for applications in which contact techniques are unsuitable
(e.g., individuals with sensitive skin, patients in isolation, newborn incubators, etc.), for
the continuous monitoring of athletes’ performance, and for human–machine interaction.

5. Conclusions

This study proposed an innovative approach based on Gaussian model to establish
relationships between EMG metrics evaluated from vastus medialis and features computed
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on the above skin temperature time course assessed by IRI. Specifically, ROIs from the
muscle were considered to compute thermal features used for the ARV and MDF prediction.
The performances of the model were tested through RMSE, correlation analysis, Bland–
Altman plot, and paired t-test. A model delivering a good estimation of ARV on a temporal
window of 10 s was implemented, whereas the model to estimate the MDF exhibited
some limitations (i.e., presence of a bias and a systematic error in the prediction) Further
studies are indeed necessary to investigate the physiology underlying the link between the
muscle activity and the skin temperature. However, although preliminary, these results
could pave the way to the employment of IRI for the evaluation of metrics indicative of
muscle functioning, suitable for sports science applications or in situations in which contact
methods are not implementable.

Author Contributions: Conceptualization, D.P., D.F., D.C., A.T., A.R., A.D.C., A.D.B., G.A., G.M.
and A.M.; methodology, D.P., D.F., D.C., A.T., A.R., A.D.C. and A.M.; software, D.P.; validation D.P.,
D.F., D.C., A.T. and A.R.; formal analysis, D.P. and D.F.; investigation, D.P., D.F., D.C., A.T., A.R. and
A.D.C.; resources, G.A. and A.M.; data curation, D.P. and D.F.; writing—original draft preparation,
D.P.; writing—review and editing, D.P.; visualization, D.P., D.F., D.C., A.T., A.R., A.D.C., A.D.B., G.A.,
G.M. and A.M.; supervision, G.A., A.D.B., G.M. and A.M.; project administration, G.A. and A.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of University of Milan (approval code: 2/12).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy issues.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rodríguez-Tapia, B.; Soto, I.; Martínez, D.M.; Arballo, N.C. Myoelectric Interfaces and Related Applications: Current State of

EMG Signal Processing–A Systematic Review. IEEE Access 2020, 8, 7792–7805. [CrossRef]
2. Naik, G.R.; Selvan, S.E.; Nguyen, H.T. Single-Channel EMG Classification With Ensemble-Empirical-Mode-Decomposition-Based

ICA for Diagnosing Neuromuscular Disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 734–743. [CrossRef]
3. Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; van der Kruk, E.; Rossi, S. Sport Biomechanics Applications

Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl. Bionics Biomech. 2020, 2020, e2041549. [CrossRef] [PubMed]
4. Merletti, R.; Rainoldi, A.; Farina, D. Surface Electromyography for Noninvasive Characterization of Muscle. Exerc. Sport Sci. Rev.

2001, 29, 20–25. [CrossRef] [PubMed]
5. Hatton, A.L.; Dixon, J.; Martin, D.; Rome, K. The Effect of Textured Surfaces on Postural Stability and Lower Limb Muscle Activity.

J. Electromyogr. Kinesiol. 2009, 19, 957–964. [CrossRef] [PubMed]
6. Edwards, L.; Dixon, J.; Kent, J.R.; Hodgson, D.; Whittaker, V.J. Effect of Shoe Heel Height on Vastus Medialis and Vastus Lateralis

Electromyographic Activity during Sit to Stand. J. Orthop. Surg. Res. 2008, 3, 2. [CrossRef] [PubMed]
7. Hibbs, A.E.; Thompson, K.G.; French, D.N.; Hodgson, D.; Spears, I.R. Peak and Average Rectified EMG Measures: Which Method

of Data Reduction Should Be Used for Assessing Core Training Exercises? J. Electromyogr. Kinesiol. 2011, 21, 102. [CrossRef]
8. Rampichini, S.; Vieira, T.M.; Castiglioni, P.; Merati, G. Complexity Analysis of Surface Electromyography for Assessing the

Myoelectric Manifestation of Muscle Fatigue: A Review. Entropy 2020, 22, 529. [CrossRef]
9. Lawrence, M.A.; Leib, D.J.; Ostrowski, S.J.; Carlson, L.A. Nonlinear Analysis of an Unstable Bench Press Bar Path and Muscle

Activation. J. Strength Cond. Res. 2017, 31, 1206–1211. [CrossRef]
10. Martens, J.; Daly, D.; Deschamps, K.; Staes, F.; Fernandes, R.J. Inter-Individual Variability and Pattern Recognition of Surface

Electromyography in Front Crawl Swimming. J. Electromyogr. Kinesiol. 2016, 31, 14–21. [CrossRef]
11. Silva, L.; Vaz, J.R.; Castro, M.A.; Serranho, P.; Cabri, J.; Pezarat-Correia, P. Recurrence Quantification Analysis and Support Vector

Machines for Golf Handicap and Low Back Pain EMG Classification. J. Electromyogr. Kinesiol. 2015, 25, 637–647. [CrossRef]
[PubMed]

12. Fricke, C.; Alizadeh, J.; Zakhary, N.; Woost, T.B.; Bogdan, M.; Classen, J. Evaluation of Three Machine Learning Algorithms for
the Automatic Classification of EMG Patterns in Gait Disorders. Front. Neurol. 2021, 12, 666458. [CrossRef] [PubMed]

13. Ng, C.L.; Reaz, M.B.I. Evolution of a Capacitive Electromyography Contactless Biosensor: Design and Modelling Techniques.
Measurement 2019, 145, 460–471. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2963881
http://doi.org/10.1109/TNSRE.2015.2454503
http://doi.org/10.1155/2020/2041549
http://www.ncbi.nlm.nih.gov/pubmed/32676126
http://doi.org/10.1097/00003677-200101000-00005
http://www.ncbi.nlm.nih.gov/pubmed/11210442
http://doi.org/10.1016/j.jelekin.2008.04.012
http://www.ncbi.nlm.nih.gov/pubmed/18565764
http://doi.org/10.1186/1749-799X-3-2
http://www.ncbi.nlm.nih.gov/pubmed/18186937
http://doi.org/10.1016/j.jelekin.2010.06.001
http://doi.org/10.3390/e22050529
http://doi.org/10.1519/JSC.0000000000001610
http://doi.org/10.1016/j.jelekin.2016.08.016
http://doi.org/10.1016/j.jelekin.2015.04.008
http://www.ncbi.nlm.nih.gov/pubmed/26027794
http://doi.org/10.3389/fneur.2021.666458
http://www.ncbi.nlm.nih.gov/pubmed/34093413
http://doi.org/10.1016/j.measurement.2019.05.031


Sensors 2023, 23, 832 15 of 17

14. Ulas, U.H.; Cengiz, B.; Alanoglu, E.; Ozdag, M.F.; Odabasi, Z.; Vural, O. Comparison of Sensitivities of Macro EMG and Concentric
Needle EMG in L4 Radiculopathy. Neurol. Sci. 2003, 24, 258–260. [CrossRef] [PubMed]

15. Laferriere, P.; Lemaire, E.D.; Chan, A.D.C. Surface Electromyographic Signals Using Dry Electrodes. IEEE Trans. Instrum. Meas.
2011, 60, 3259–3268. [CrossRef]

16. Padmadinata, F.Z.; Veerhoek, J.J.; van Dijk, G.J.A.; Huijsing, J.H. Microelectronic Skin Electrode. Sens. Actuators B Chem. 1990, 1,
491–494. [CrossRef]

17. Searle, A.; Kirkup, L. A Direct Comparison of Wet, Dry and Insulating Bioelectric Recording Electrodes. Physiol. Meas. 2000, 21, 271.
[CrossRef]

18. Godin, D.T.; Parker, P.A.; Scott, R.N. Noise Characteristics of Stainless-Steel Surface Electrodes. Med. Biol. Eng. Comput. 1991, 29,
585–590. [CrossRef]

19. McLaughlin, J.A.; McAdams, E.T.; Anderson, J. Novel Dry Electrode ECG Sensor System. In Proceedings of the 16th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, Baltimore, MD, USA, 3–6 November 1994;
Volume 2, p. 804.

20. Oh, T.I.; Yoon, S.; Kim, T.E.; Wi, H.; Kim, K.J.; Woo, E.J.; Sadleir, R.J. Nanofiber Web Textile Dry Electrodes for Long-Term
Biopotential Recording. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 204–211. [CrossRef]

21. Fonseca, C.; Cunha, J.P.S.; Martins, R.E.; Ferreira, V.M.; de Sa, J.P.M.; Barbosa, M.A.; Martins da Silva, A. A Novel Dry Active
Electrode for EEG Recording. IEEE Trans. Biomed. Eng. 2007, 54, 162–165. [CrossRef]

22. Priego-Quesada, J.I.; De la Fuente, C.; Kunzler, M.R.; Perez-Soriano, P.; Hervás-Marín, D.; Carpes, F.P. Relationship between Skin
Temperature, Electrical Manifestations of Muscle Fatigue, and Exercise-Induced Delayed Onset Muscle Soreness for Dynamic
Contractions: A Preliminary Study. Int. J. Environ. Res. Public Health 2020, 17, 6817. [CrossRef] [PubMed]

23. Rodriguez-Sanz, D.; Losa-Iglesias, M.E.; Becerro-de-Bengoa-Vallejo, R.; Dorgham, H.A.A.; Benito-de-Pedro, M.; San-Antolín, M.;
Mazoteras-Pardo, V.; Calvo-Lobo, C. Thermography Related to Electromyography in Runners with Functional Equinus Condition
after Running. Phys. Ther. Sport 2019, 40, 193–196. [CrossRef] [PubMed]

24. Shakhih, M.F.M.; Ridzuan, N.; Wahab, A.A.; Zainuddin, N.F.; Delestri, L.F.U.; Rosslan, A.S.; Kadir, M.R.A. Non-Obstructive
Monitoring of Muscle Fatigue for Low Intensity Dynamic Exercise with Infrared Thermography Technique. Med. Biol. Eng.
Comput. 2021, 59, 1447–1459. [CrossRef] [PubMed]

25. Perpetuini, D.; Trippetti, N.; Cardone, D.; Breda, L.; D’Attilio, M.; Merla, A. Detection of temporomandibular joint disfunction in
juvenile idiopathic arthritis through infrared thermal imaging and a machine learning procedure. In Proceedings of the European
Medical and Biological Engineering Conference, Portorož, Slovenia, 29 November–3 December 2020; Metzlerarmn, J.B., Cvetko,
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