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Abstract: The paper studies the secrecy communication threatened by a single eavesdropper in
Energy Harvesting (EH)-based cognitive radio networks, where both the Secure User (SU) and the
jammer harvest, store, and utilize RF energy from the Primary Transmitter (PT). Our main goal is to
optimize the time slots for energy harvesting and wireless communication for both the secure user as
well as the jammer to maximize the long-term performance of secrecy communication. A multi-agent
Deep Reinforcement Learning (DRL) method is proposed for solving the optimization of resource
allocation and performance. Specifically, each sub-channel from the Secure Transmitter (ST) to the
Secure Receiver (SR) link, along with the jammer to the eavesdropper link, is regarded as an agent,
which is responsible for exploring optimal power allocation strategy while a time allocation network
is established to obtain optimal EH time allocation strategy. Every agent dynamically interacts
with the wireless communication environment. Simulation results demonstrate that the proposed
DRL-based resource allocation method outperforms the existing schemes in terms of secrecy rate,
convergence speed, and the average number of transition steps.

Keywords: cognitive radio network; energy harvesting; physical layer security; deep reinforcement
learning

1. Introduction

Cognitive Radio (CR) is regarded as a potential solution for spectrum resource scarcity
as a result of the extensive use of wireless technology, the growing demand for high-
speed data transmissions and the traditional static spectrum strategies [1]. In Cognitive
Radio Networks (CRNs), cognitive users are able to utilize licensed spectrum resources
by underlay, overlay or interweave modes. In the underlay mode, the cognitive users are
allowed to access the licensed spectrum occupied by the Primary Users (PUs) only when
the interference temperature to PUs is lower than a desired level [2].

However, battery-limited devices in CRNs will bring great inconvenience [3], e.g.,
for the key elements embedded inside human bodies or wireless sensors working under
extreme environments, replacing or recharging their batteries is not accessible. Luckily,
Energy Harvesting (EH) technique has appeared as an exciting solution to this issue. EH
refers to harvesting energy from the environments (e.g., via thermal, wind, solar, and
wireless Radio Frequency (RF) energy sources) and then converting it into electric power
energy for self-maintenance circuits [4]. Compared with natural energy supply, RF energy
is capable of providing continuous, stable, and clean power to CRN terminals. Therefore,
using RF energy to supply cognitive wireless networks is a significant technology for
raising spectrum utilization and energy efficiency in CRNs.

Despite the aforementioned advantages, the CRN system is often subjected to illegal
wiretapping as a result of characteristics of wireless channels [5]. In recent years, owing
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to rapid development in computational capacity, traditional cryptography encryption
techniques are easily decoded by illegitimate users. Therefore, Physical Layer Security
(PLS) approach has become an alternative technology for secure transmissions [6]. PLS
technique aims to ensure secrecy performance, e.g., secrecy rate means a communica-
tion rate at which secrecy signals could be transmitted from a transmitter to an expected
receiver [7]. In the information security theory, secrecy capacity refers to the maximum
achievable secrecy rate. Once the secrecy capacity is worse than zero, the communica-
tions between the transmitter and the receiver are at risk, and eavesdroppers would be
able to wiretap secrecy signals transmitted by the transmitter [8]. The method signifi-
cantly improves the security of communications by diminishing the wiretapping capacity
of eavesdroppers [7]. The broadcast characteristics of wireless channels also provide
the opportunity to introduce interference into transmissions to reduce the wiretapping
ability of an eavesdropper while enhancing the ability of both legitimate users to com-
municate securely [9]. To this end, Artificial Noise (AN) and Cooperative Jamming (CJ)
have emerged as promising approaches for enhancing secrecy performance. The former
realizes the process by mixing the AN signal, which acts as jamming signals, into the
confidential information signals to interfere with eavesdroppers. In contrast, the latter
realizes it by directly sending the jamming signals from the cooperative jammer to hin-
der the wiretapping channels and weaken the capabilities for decoding the wiretapped
information [10]. If the legal receivers support full-duplex communications, it is technically
feasible to transmit jamming signals to raise system performance benefits [11], and, fur-
thermore, the CJ technology will be more positive and efficient once the eavesdroppers
get closer to the legal receiver [12]. In addition, there are also beamforming and precoding
secure transmission methods; however, the complexity of the Beamforming and Precoding
schemes in the actual wireless communication system is critical to the operation of the
system, and the extremely high computational complexity makes it difficult to apply it
in practical systems. In the research of existing papers, CJ is one of the most important
ways to achieve secure PLS transmission. In the CJ secure transmission scheme, the jammer
can complete the design of jamming signals beamforming vector by using the statistical
Channel State Information (CSI) of illegal channels, which is more suitable for actual wire-
less communication scenarios. Considering the above points, in this paper, we apply the
CJ method to our proposed network. The research on physical layer security is usually
divided into two cases: one is that the CSI of the eavesdropper is known, and the other
is that the channel state information is not perfect. In most practical cases, the accurate
location and CSI of the eavesdropper are unknown to the network. Our work considers the
second case, which is a common assumption in the field of physical layer security.

2. Related Work

In the last few years, many explorations on combining the EH and CR techniques for
the purpose of improving secrecy communication have been conducted. In [13], the authors
investigate the communication security in an EH-based cooperative CRN, where the cogni-
tive source and cognitive relays are capable of harvesting RF energy from the surrounding
environment and derive the closed-form expressions of secrecy outage probability via
the proposed two relay selection schemes. In [14], the authors investigate the security
and efficiency of data transmission for overlay CRNs and then propose an optimal relay
selection solution on the basis of two EH schemes for a balance between the secrecy perfor-
mance and the efficiency of communication transmissions. Unlike the overlay spectrum
access considered in [14], the authors in [15] study an underlay CRN which consists of a
Secondary Base Station (SBS), a PU, and multiple energy-constrained secondary users. The
secondary users first harvest RF energy signals emitted by the Primary Transmitter (PT) and
then communicate with the SBS via the proposed user scheduling schemes. The authors
in [16] study an Unmanned Aerial Vehicle (UAV)-aided Energy Harvesting CRN in which
an EH-enabled UAV as a secondary user first harvests energy, performs spectrum sensing
and then communicates with a ground destination. For maximizing the outage energy
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efficiency for the CRN, a resource allocation policy is utilized to solve the proposed opti-
mization problem. Linear EH in [13–15] is an ideal acquisition model, while the non-linear
EH model can better reflect the actual situation of EH. Different from the linear EH model
in [13–15] and the random energy arrival model in [16], the authors in [17] consider a more
realistic nonlinear EH model and jointly optimize the EH time-slot, channel selection, and
transmission power by utilizing the 1-D searching algorithm. Numerical results show the
secrecy performance acquired by the nonlinear EH model is equivalent to that acquired
by the linear EH model. Similar to [17], the authors in [18] study a MIMO non-orthogonal
multiple access CRN with a realistic non-linear EH model. An AN-aided beamforming
design problem with the practical secrecy rate and EH causality constraint is explored, and
then the semidefinite relaxation-based and cost function algorithms are proposed to solve
the proposed problems.

The formulation of physical layer security enhancement in EH-CRN in prior works can
be modeled as the optimization of resource allocation problems. However, many existing
documents only focus on conventional resource management and allocation approaches
which present poor efficiency and high computational complexity in seeking the optimal
strategies. As a matter of fact, the objection function in the optimization problem often
exhibits a non-convex property; therefore, it is difficult to be solved by traditional opti-
mization theory. Therefore, a more efficient and intelligent solution for resource allocation
is needed.

With the rapid growth of deep learning recently, Deep Reinforcement Learning (DRL)
also has gradually been rising and developing. Up to now, it has been extensively applied
to numerous sophisticated communication systems for providing high-quality services; for
instance, the authors in [19] introduce the DRL method to the 5G communication systems
for network slicing by dynamically allocating system resources for a wide range of services
over a common underlying physical infrastructure. A lot of work has validated its supe-
riority in improving the security of communications by achieving resource management
and allocation in existing wireless communication networks. In [20], the communication
security of a UAV-assisted relay selection CRN is studied by transmitting the AN signal
to the eavesdropper, and then a Q-learning algorithm is proposed for a dynamic power
allocation problem. Q-Learning algorithm is a typical model-free algorithm; the update of
its Q table is different from the strategy followed when selecting actions; in other words,
when updating the Q table, the maximum value of the next state is calculated, but the action
corresponding to the maximum value does not depend on the current strategy. However,
the Q-learning algorithm faces two main problems: (1) when the state space is large, Q-
learning will consume a lot of time and space for searching and storage; (2) Q-learning has
the problem of overestimation for state-action value. Considering the fatal shortcomings of
the Q-learning algorithm, we further turn to the research of the DRL algorithm.

Unlike the research in [20] that only focuses on a traditional reinforcement learning
algorithm, Ref. [21] proposes a Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) algorithm for maximizing the secrecy capacity by joint optimization of the UAVs’
trajectory, the transmission power, and the jamming power. The proposed MADDPG
method is an extension of DDPG in multi-agent tasks. Its basic idea is centralized learning
and decentralized execution. During training, the actor network is updated by a global
critical network, while during testing, the actor network takes action. MADDPG has a
distinct advantage in dealing with the continuous state and action spaces, compared with
the traditional reinforcement learning method in [20]. However, the MADDPG algorithm
is also susceptible to large state space, e.g., the large state space easily leads to an unsta-
ble convergence process. In [22], for maximizing the long-term achievable secrecy rate
while minimizing energy consumption, a UAV-to-vehicle communication scenario with
multiple eavesdroppers on the ground is modeled as a Markov Decision Process (MDP),
and then solved by a Curiosity-driven Deep Q-network (C-DQN) algorithm. On the one
hand, the C-DQN algorithm uses a deep convolutional neural network to approximate the
state-action value function, so the model has better robustness; on the other hand, C-DQN
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also has the same overestimation problem as the Q-learning algorithm. Different from the
communication scenario portrayed by [22], the authors in [23] consider a relay-assisted
mobile system. For maximizing the average secrecy rate, several model-free reinforcement
learning-based algorithms are developed for seeking optimal resource allocation strategies.
Specifically, the UAV relay equipped with multiple antennas is modeled as an agent. The
proposed algorithms can enable the agent to explore the characteristics of the environment
through a large number of interactions, thus, derive the optimal UAV trajectory policy. In
the above literature, although the Q-learning algorithm in [20] and the C-DQN algorithm
in [22] can improve the system performance to some extent, there exists the overestimation
of the state-action value. There is an urgent need for an improved DRL algorithm that can
overcome the overestimation and improve system performance to the greatest extent.

3. Motivation and Contributions

The DRL methods show great advantages in dealing with various resource allocation
problems in secure secrecy communication scenarios. However, to the best of our knowl-
edge, few papers have studied secrecy communications in EH-CRN networks by using
the DRL methods for joint scheduling of EH time slots and transmission power. Moreover,
motivated by the prior works, we focus our study in this paper on the PLS enhancement in
EH-CRN systems in the presence of a potential eavesdropper by combining CR, EH, and
PLS techniques for the following main reasons. Firstly, the CR technique allows SUs to
utilize the licensed spectrum of PU. Secondly, the EH technique is utilized to provide a
sustainable energy supply for energy-constrained nodes, i.e., Secure Transmitter (ST) and
jammer. More importantly, the throughput of the proposed network can be significantly
improved through the EH technique, and the jammer also becomes more aggressive in
defending against eavesdropping. Thirdly, the PLS technique is used to achieve secure
communication of the SU to transmit secrecy information. Although the authors in [20]
consider the combination of CR, EH, and PLS techniques, the traditional reinforcement
learning algorithm in [20] can only deal with the discrete state space, and it appears to be
too idealistic to reflect the real situation, so it is necessary to consider use the DRL method
to study a more reasonable and practical continuous state space.

Moreover, Refs. [21–23] do not consider the EH technique for their systems. Further-
more, the proposed DRL-based resource allocation method for PLS enhancement basically
differs from these existing papers [20–23] in the followings: A multi-agent DRL framework
for the proposed EH-CRN is modeled; The classical DRL algorithm is combined with the
Long Short-Term Memory Network (LSTM) for acquiring more performance improve-
ments; The proposed algorithm is equipped with favorable stability and fast convergence
speed.

The main contributions of this paper are listed in the following.

• We consider an EH-CRN, where the communication security of a legitimate user is
under threat, and a cooperative jammer is deployed to improve the system’s secrecy
performance. The main goal is to enhance the physical layer security by achieving the
optimal resource allocation for our proposed network.

• For tackling the joint EH time slot and power allocation issue, we propose a multi-
agent DRL-based resource allocation framework for our proposed network. Specif-
ically, we model two types of agents, and each agent interacts with the dynamic
environment through the state, action, and reward mechanisms.

• To improve the classical DRL algorithm performance, we propose a new DRL network
architecture, where the LSTM architecture is incorporated into the Dueling Double
Deep Q-Network (D3QN) algorithm for overcoming the negative effects of the dy-
namic characteristics of the network caused by the time-varying channels and the
random noise. Moreover, the construction of the loss function in the proposed method
is different from the previously mentioned algorithms, and, thus, it can well avoid the
overestimation of the state-action value and make the training process more stable.
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• Based on presented experimental results, the proposed scheme is efficient in improving
the long-term achievable secrecy rate with small training episodes overheads.

4. Paper Organization

The remainder of the paper is organized as follows. Section 5 presents an EH-based
CRN system model and a related optimization problem. Section 6 proposes a multi-agent
DRL framework to obtain a solution to this joint EH time and power allocation problem.
Section 7 presents simulation results to evaluate the system performance via our proposed
method as compared to benchmark schemes. Finally, Section 8 concludes this paper.

5. System Model and Problem Formulation
5.1. System Model

As shown in Figure 1, we examine a secrecy communication in a CRN with a PU
which consists of a PT and a Primary Receiver (PR), a SU which consists of an ST and a
Secure Receiver (SR), a cooperative jammer which enables jamming signals, a potential
eavesdropper who attempts to eavesdrop the secrecy data transmitted by the ST. The SU
is entitled to utilize the licensed spectrum to the PU using underlay mode. The ST and
the jammer are equipped with energy harvesters and batteries, respectively. The energy
harvester can collect RF energy signals from the PT, and store this energy in the battery.
We adopt a block-based quasi-static model; that is, the wireless CSI remains unchanged
over each transmission block but may vary from one block to another [7]. The information
link refers to the channels of PT-PR and ST-SR, while the wiretapping link refers to the
channels of ST-Eavesdropper. The EH link refers to the channels of PT-ST and PT-Jammer.
The interfering link refers to the channels of PT-SR and ST-PR. The jamming link refers to
the channels of Jammer-Eavesdropper. All nodes carry only one antenna.

Eavesdropper

PR

Jammer

PT

ST

GPP

GPJ

HPS

SR

PR

Jammer

PT

GSS

Energy Harvesting Phase Data Transmission Phase

JJE WSE

ISP

IPS

Information link Wiretapping link Jamming linkEnegy harvesting link Interfering link

ST

Figure 1. A CRN structure.

To destroy the eavesdropping capability, the SU and the jammer have perfect knowl-
edge of the CSIs for the wiretapping link, and the jamming link over each transmission
block [6,22,24]. It is assumed that the jamming signal from the jammer can be eliminated
by the SR but cannot be removed at the eavesdropper [25,26]. This can be realized by
the following method: A large number of stochastic sequences (jamming signals) with
Gaussian distribution are pre-stored at the jammer, and their indices act as the keys. The
jammer stochastically picks a sequence (jamming signal) and transmits its key to the SR.
The key can be transmitted in a secret way via channel independence and reciprocity. As
the stochastic sequence is only known at the SR, any eavesdropper is unable to extract
the stochastic sequence. We suppose that the ST will be given an indicator signal which
signifies whether the received Quality of Service (QoS) by the PR is satisfied [27].

A transmission link is made of multiple subcarriers, and let M , {1, 2, . . . , M} as
the set of these subcarriers. We denote GPP , {gm

PP|m ∈ M}, GSS , {gm
SS|m ∈ M},

ISP , {im
SP|m ∈ M}, IPS , {im

PS|m ∈ M}, WSE , {wm
SE|m ∈ M}, HPS , {hm

PS|m ∈ M},
HPJ , {hm

PJ|m ∈ M}, and JJE , {jmJE|m ∈ M} as the channel gain coefficients sets from the
PT-PR, the ST-SR, the ST-PR, the PT-SR, the ST-Eavesdropper, the PT-ST, the PT-Jammer, and
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the Jammer-Eavesdropper links. Different fading subchannels in each link are independent
and identically distributed Rayleigh distributed random variables with mean zero and
variances one. Over the m-th subcarrier, let pm

PT, pm
ST and pm

J indicate the RF power of the PT,
the transmission powers of the ST and the jammer, respectively. Denote, respectively, the
RF energy signal, the secrecy information signal from the ST, and the jamming signal from
the jammer as Sm

PT, Sm
ST and Sm

J , which are independent cyclic symmetric complex Gaussian
random variables with mean zero and different variances E(|Sm

PT|2) = pm
PT, E(|Sm

ST|2) = pm
ST

and E(|Sm
J |2) = pm

J . E(·) =
∫
(·) f (x)dx is the statistic expectation.

As shown in Figure 2, we consider a two-phase transmission scheme for both the
ST and the jammer by dividing each transmission block into two time slots. In the first
time slot T1, namely the EH phase, the PT broadcasts wireless RF energy signals to its
receiver. In the meantime, the ST and the jammer harvest and store RF energy in their
batteries, respectively. In the second time slot T2, namely the data transmission phase, the
PU instantaneously updates its transmission power based on a power control strategy but
is unknown to the SU [27], and transmits the public broadcasting signals to the PR, because
the public broadcasting signal is meaningless to eavesdroppers, this paper only considers
that the signal received by the eavesdroppers only includes the secrecy signal of SU. The
ST transmits secrecy information to the SR while the eavesdropper begins to wiretap the
secrecy information. To ensure secure communication, the jammer instantaneously sends
jamming signals to intercept its wiretapping. The length of each transmission block is T
and includes an EH duration and a data transmission duration. We denote αt

1 and βt
1 as

portions of two time slots of the ST over a transmission block, αt
2, and βt

2 for the jammer.
Therefore, at the ST and the jammer, we have

αt
1 + βt

1 = 1, 0 ≤ αt
1 ≤ 1, 0 ≤ βt

1 ≤ 1 (1)

and

αt
2 + βt

2 = 1, 0 ≤ αt
2 ≤ 1, 0 ≤ βt

2 ≤ 1. (2)

The RF powers received by the ST and the jammer over the m-th subcarrier are given
by

pm
ST,received = αt

1η1 pm
PT|hm

PS|2, αt
1 <

T1

T
(3)

and

pm
J,received = αt

2η2 pm
PT|hm

PJ|2, αt
2 <

T1

T
, (4)

respectively. Here, η1 and η2 represent the EH efficiency at the ST and the jammer, respec-
tively. According to the traditional non-linear EH model, the harvested energy of the ST
and the jammer are respectively expressed as

Em
NL,l =

Γm
l − AlΨl

1−Ψl
, (5)

Ψl =
1

1 + exp(albl)
(5a)

and

Γm
l =

Al
1 + exp(−al(pm

l,received − bl))
, (5b)
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where Γm
l , l = {ST, J} is a traditional logic function related to the received RF power

pm
l,received. Parameters al and bl are related to the specification of the specific EH circuits. Al

represents the maximum EH power received by the energy receiver when the EH process
reaches a saturation [17,28]. Owing to the fact that an ideal linear EH model is unable
to reflect the practical EH situation. Consequently, this paper considers a non-linear EH
model for the proposed network in this paper.

P

SU:
Energy 

Harvesting

Secrecy Signal 

Transmission

Jammer:
Energy 

Harvesting

Jamming Signal 

Transmission

� T2
t

α T2
t

Figure 2. A two-phase EH transmission scheme.

Over the m-th subcarrier, the received signals by the PR, the SR, and the eavesdropper
are, respectively, denoted by

ym
PR = gm

PPSm
PT + im

SPSm
ST + nm

PR, (6)

ym
SR = gm

SSSm
ST + im

PSSm
PT + nm

SR (7)

and

ym
E = wm

SESm
ST + jm

JESm
J + nm

E , (8)

where nm
PR, nm

SR, and nm
E denote Gaussian noise signals received by the PR, the SR, and

the eavesdropper with mean zero and variances E(|nm
PR|2) = E(|nm

SR|2) = E(|nm
E |2) = 1,

respectively.
At the ST and the jammer, we have maximum transmission power constraints

0 ≤ ∑
m∈M

pm
ST ≤ pST,max (9)

and

0 ≤ ∑
m∈M

pm
J ≤ pJ,max, (10)

where pST,max and pJ,max denote maximum tolerable transmission powers at the ST and the
jammer, respectively.

The QoS constraints at the receivers, that the received Signal-to-Interference-plus-
Noise-Ratio (SINR) by the SR and the PR are, respectively, no lower than their minimum
levels λ1, λ2, can be represented by

SINRSR = ∑
m∈M

pm
ST|gm

SS|2

pm
PT|im

PS|2 + 1
≥ λ1 (11)
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and

SINRPR = ∑
m∈M

pm
PT|gm

PP|2

pm
ST|im

SP|2 + 1
≥ λ2. (12)

The energy causal constraint for the ST and the jammer that the consumed energy
for transmitting or jamming in the second time slot cannot exceed the currently available
battery capacity is given as

Et
NL,ST + Bt−1

ST − βt
1T ∑

m∈M
pm

ST ≥ 0, (13)

Et
NL,J + Bt−1

J − βt
2T ∑

m∈M
pm

J ≥ 0, (14)

0 ≤ Bt
ST ≤ BST,max, (15)

0 ≤ Bt
J ≤ BJ,max, (16)

where BST,max and BJ,max are the maximum battery capacity, Bt−1
ST and Bt−1

J stand for
the residual battery capacity of the ST and the jammer at the transmission block t − 1,
respectively.

In conclusion, the secrecy rate Rsec[t] at each transmission block t is defined by

Rsec[t] = ∑
m∈M

[
R(m)

SR [t]− R(m)
E [t]

]+, (17)

where [·]+ , max(0, ·), the achievable rate R(m)
SR [t] on the ST-SR link and the wiretapping

rate R(m)
E [t] on the ST-Eavesdropper and Jammer-Eavesdropper links over each transmis-

sion block t and m-th subcarrier are, respectively, expressed as

R(m)
SR [t] = βt

1 log2

(
1 +

pm
ST|gm

SS|2

pm
PT|im

PS|2 + 1

)
(18)

and

R(m)
E [t] =

{
R(1)

m [t], αt
1 ≥ αt

2

R(2)
m [t], otherwise

, (19)

where

R(1)
m [t] = (1− αt

1) log2

(
1 +

pm
ST|wm

SE|2

pm
J |jm

JE|2 + 1

)
(19a)

and

R(2)
m [t] =(αt

2 − αt
1) log2

(
1 + pm

ST|wm
SE|2

)
+ (1− αt

2) log2

(
1 +

pm
ST|wm

SE|2

pm
J |jm

JE|2 + 1

)
(19b)

5.2. Problem Formulation

In general, there exists a tradeoff between EH and WIT, e.g., for the jammer, a longer
EH duration can harvest more energy signals to increase the jamming power for fighting
against illegal eavesdropping; but, for the ST, it can reduce the EH duration to acquire more
available WIT duration for delivering confidential information at next transmission block.

Our goal is to seek an optimal joint EH time coefficient and transmission power
allocation strategy over each transmission block for maximizing the long-term achievable
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secrecy rate while maintaining other constraint requirements. The comprehensive problem
can be formulated as

max
αt

1,αt
2,pm

ST,pm
J

E
{ ∞

∑
t=1

Rsec[t]
}

s.t.(1), (2), (3), (4), (9), (10), (11), (12), (13), (14), (15), (16).

(20)

It is observed that the proposed problem is non-convex as the objective function is
non-concave, and, thus, an effective solution is needed.

6. Deep Reinforcement Learning for Joint Time and Power Allocation
6.1. DRL Framework

To solve the proposed problem, this paper proposes a multi-agent DRL framework
for it, as shown in Figure 3. The DRL framework is composed of an environment and
multiple agents. Each sub-channel from the ST-SR and the Jammer-Eavesdropper links is
regarded as an agent which aims to explore optimal transmission power allocation strategy.
Without loss of generality, a time allocation network as a “time” agent is established to
obtain optimal EH time coefficients

{
αt

1, αt
2
}

, respectively. Let K ,
{

0, 1, 2, . . . , 2M
}

as
the set of 2M + 1 agents. The others in this framework are regarded as the environment.
The agents are collectively interacting with the dynamic environment to acquire a large
number of learning experiences for seeking the optimal resource allocation policy. Such
an interactive process can be modeled as an MDP (S ,A,R,P , γ), where S is the state
space, A is the action space, R is the reward function, P is a state transition probability
and γ ∈ [0, 1) is a reward discount factor. A transmission block is regarded as a time step.
At each time step t, once given a current environment state St, each agent k ∈ K observes a
local observation Zk

t = O(St, k), and then takes an action ak
t . As a result, the agent receives

a reward rk
t from the environment, and the current state St instantaneously transfers to the

following state St+1 according to the probability P .

Agent1

Agent2M

Z2M = O(St ,2M)

Agent0

Z0 = O(St ,0)

. . .

State St

Reward r0

Action a1

Action a2M . . .

. . .

Z1 = O(St ,1)

Reward r2M

Reward r1

Action a0

Figure 3. A DRL framework.

6.2. Observation Space

To activate agents to learn an effective strategy π(At|St), the current environment
state St must reflect the environment characteristics as much as possible. The jointly
instantaneous CSIs from different transmission links can be expressed as
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Gt =
{
{gm

SS}m∈M, {im
PS}m∈M, {hm

PS}m∈M, {gm
PP}m∈M,

{im
SP}m∈M, {hm

PJ}m∈M, {wm
SE}m∈M, {jm

JE}m∈M
}

,
(21)

At the transmission block t− 1, we denote

It−1 =

{
∑

m∈M
pm

PT|im
PS|2, ∑

m∈M
pm

ST|im
SP|2, ∑

m∈M
pm

J |jmJE|2
}

, (22)

SINRt−1 =
{

SINRPR, SINRSR

}
, (23)

and

Bt−1 =
{

Bt−1
ST , Bt−1

J

}
(24)

as joint interference powers, the joint SINRs, and the joint residual battery capacity, respec-
tively. The instantaneous CSIs are included to reflect the current channel state. The joint
interference power It−1 is related to agents’ transmission powers, which have a straight
impact on the environment. For instance, the transmission power of the ST may cause
strong interference to the main link, under which the SU may be inhibited from accessing
the licensed spectrum to the PU and, thus, straightly leads to a temporary secrecy rate
reduction. The joint SINRs at the previous transmission block represents the received QoS
by the PR and the SR, and it facilitates the improvement of the power strategy of SU. As
current battery capacity Bt

ST is related to the residual capacity Bt−1
ST , the transmission power

at the ST will be influenced by Bt−1
ST . With further analysis of the state mechanism, the

previous reward rt−1 can be acted as feedback to activate agents, and, thus, the reward rt−1
is included in the observation Zk

t .
In conclusion, the observation function Zk

t of each agent k at the time step t is given as

Zk
t =

{
Gt, It−1, SINRt−1, Bt−1, rt−1

}
. (25)

6.3. Action Space

We denote ak
t as the action of the agent k at the time step t. The joint action of the

agents is formulated as

At =
{

a0
t , a1

t , · · · , aM
t , · · · , a2M

t

}
. (26)

The action of the “time” agent is set as the EH time coefficients Ct =
{

αt
1, αt

2
}

and the
actions of other agents are set as their transmission powers. Therefore, the joint action of all
agents is expressed as

At =
{{

αt
1, αt

2
}

, p1
ST, · · · , pM

ST, p1
J , · · · , pM

J

}
. (27)

To alleviate the effects during the process of learning, optional EH time coefficients αt
1

and αt
2 are discretized as L1 time levels, i.e., c1, c2, · · · , cL1 ; optional transmission powers

are discretized as L2 power levels, i.e., p1, p2, · · · , pL2 .

6.4. Reward Design

We convert some constraint requirements in the proposed problem into a part of the
reward. A reward consists of an instantaneous secrecy rate Rsec[t] at current transmission
block t, the joint SINRs at previous transmission block t− 1, and the battery capacity Bt

ST,
Bt

J . In conclusion, the reward for each agent k is expressed as

rt = η1Rsec[t] + η2RSINR[t] + η3RBac[t] (28)
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where

RSINR[t] =

(
∑

m∈M

pm
ST|gm

SS|2

pm
PT|im

PS|2 + 1
− λ1

)
+

(
∑

m∈M

pm
PT|gm

PP|2

pm
ST|im

SP|2 + 1
− λ2

)
, (28a)

RBac[t] =
(

Bt−1
ST − 0.1BST,max

)
+
(

Bt−1
J − 0.1BJ,max

)
, (28b)

η1 + η2 + η3 = 1, 0 ≤ η1, η2, η3 ≤ 1, (28c)

and 0.1 in (28b) is a critical threshold of the battery capacity.
In this reward rt, the first entry Rsec[t] is a performance-oriented part, which directs an

agent’s learning direction. The second entry RSINR[t] is related to the QoS of the SR and the
PR. There is a balance between an instantaneous secrecy rate and available battery capacity;
therefore, the third entry RBac[t] is necessary to be added into rt. Considering different
impacts on system performance, each entry is endowed with a positive weight that ranges
from zero to one.

At each time step t, the long-term expected return Rt for an agent k is defined as

Rt = E
[

∞

∑
l=0

wlrt+1

]
, (29)

where w ∈ [0, 1] is a discount factor. In DRL, the main goal is to maximize the return Rt by
seeking an optimal strategy π.

6.5. LSTM-D3QN Algorithm

In our proposed system, the dynamic characteristics are primarily presented in time-
varying channels, and the received random noise by the receivers. To overcome this issue,
we resort to a combination of a classical DRL algorithm and the LSTM network, namely
LSTM-D3QN, which is used to capture the temporal variation regularity of our proposed
system. The LSTM-D3QN network architecture is presented in Figure 4. Each time step
of the proposed algorithm is divided into two phases, i.e., the training phase and the
implementation phase.

Replay Memory Dk

. . .

Loss function

L=E[(r+�Q*(s',a')-Q(s,a))²] 

Decision 

Q-network

Target

Q-network

s

a

s'

Q(s,a) Q*(s',a')

r

maxQ(s',a')

Find action 

a’=argmaxQ(s',a')

Copy neural network parameters every N time steps

Next State s'State s Reward r

Update by gradient descent

Fully Connected Layer 1

Input State s', Action a'

Fully Connected 

Layer 3

Fully Connected Layer 2

LSTM Layer

Fully Connected 

Layer 4

V
Add

Target Q-network

Fully Connected 

Layer 5

Fully Connected 

Layer 6

A

r

Fully Connected Layer 1

Input State s, Action a

Fully Connected 

Layer 3

Fully Connected Layer 2

LSTM Layer

Fully Connected 

Layer 4

V
Add

Decision Q-network

Output Layer

Fully Connected 

Layer 5
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Layer 6

A

Action a

Softmax

Q

Output Layer 

Softmax

Q*

Figure 4. LSTM-D3QN network architecture.
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(1) Implementation phase

At the beginning of each episode, the environment state is randomly initialized. At
each time step t, each agent k takes an action

ak
t =

{
random(A) 0 ≤ p < ε

argmaxak
t∈A

(Q) ε ≤ p ≤ 1
(30)

based on the ε-greedy policy, i.e., the optimal action ak
t is selected from the action space

A with a probability 1 − ε according to the maximal estimated action-value function
Q(Zk

t , ak
t ) while a random action is derived with a probability ε. The collected transition

(Zk
t , ak

t , Zk
t+1, rt) by the agent k is stored into the prioritized experience replay buffer Dk

when the environment has evolved from the current state St to the next state St+1.

(2) Training Phase

Each agent k is a DRL algorithm model and, thus, has an LSTM-D3QN network
architecture with a decision Q-network Q and a target Q-network Q̂, which are initiated by
parameters θk and θ̂k, respectively. The action-value function of the decision Q-network is
expressed as

Q(St, ak
t ; θ1, θ2) = V(St; θ1) +

(
A(St, ak

t ; θ2)−
1
|A| ∑

a*∈|A|
A(St, a*; θ2)

)
, (31)

where V is a state-value function with a parameter θ1 and A is an advantage function
with a parameter θ2. The relationship between the value of taking an action a in current
state s and the value of taking an action a′ in the next state s′ is described by the Bellman
expectation equation

Q(s, a) = Eπ [rt+1 + γQ
(
St+1 = s′, At+1 = a′

)
| St = s, At = a]. (32)

The structure of the target Q-network Q̂ is the same as that of the decision Q-network
Q. During the prioritized experience replay, the agent samples a mini-batch of transitions
{(s, a, s′, r)}K

i=1 from the replay buffer Dk for updating the decision Q-network. The priori-
tized experience replay mechanism can accelerate the learning process by endowing each
transition with different priorities. We define the TD-error for the replay buffer as

e = rt + γQ̂(S′, a′; θ̂k)−Q(St, ak
t ; θk), (33)

where S′, a′, St, ak
t ∈ Dk. It will be more easily selected from Dk as a training sample if a

transition (St, ak
t , St+1, rt) has a bigger absolute value |e|. The loss function of the decision

Q-network Q is defined as a sum-squared error, that is

L(θk) = ∑
(St ,ak

t )∈Dk

(
y−Q(St, ak

t ; θk)
)2, (34)

where

y = rt + γQ̂(St+1, a′; θ̂k), (34a)

a′ = argmax
a′∈A

Q(St+1, a′; θk). (34b)

We apply the Adam optimizer with a learning rate δ to minimize the loss L(θk) for
updating the decision Q-network. For the target Q-network, the parameter θ̂k will be
renewed once every NQ̂ time steps per episode by assigning current parameter θk to θ̂k.
The specific training procedure is described in the Algorithm 1.
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Algorithm 1 LSTM-D3QN with prioritized experience replay

1: Start environment simulator and generate the network topology
2: Initialize the channel gain of each link
3: Initialize neural networks parameters randomly
4: Initialize the capacity for each replay buffer Dk
5: for each episode e ∈ {0, 1, 2, · · · , Emax − 1} do
6: Update the locations of all nodes and the channel gains
7: Select randomly a joint EH time coefficient Ct
8: Initialize randomly transmission powers
9: for each step t ∈ {0, 1, 2, · · · , Lmax − 1} do

10: for each agent k do
11: Observe an observation Zk

t = O(St, k) from
the current environment

12: Choose an action ak
t according to the ε-greedy

policy
13: end for
14: Update the channel gains
15: for each agent k do
16: Observe the next observation Zk

t+1 and receive
the reward rt and then store the
transition (Zk

t , ak
t , Zk

t+1, rt) into Dk
17: end for
18: end for
19: for each agent k do
20: Sample a mini-batch of transitions from the replay

buffer Dk and then update the decision Q-network
21: Renewing the parameter θ̂k of target Q-network

every NQ̂ time steps by assigning the current
parameter θk to θ̂k

22: end for
23: end for

6.6. Computational Complexity Analysis

The computational complexity of our proposed algorithm is mainly determined by the
multiplications times in terms of the networks Q and Q̂ [29]. We calculate the computational
complexity of the implementation and training phases at each time step, respectively.

In the implementation phase of each time step, for an input s of the environment state,
the network Q calculates out its corresponding output. On the basis of the connection
and calculation theory about deep neural networks, the computational complexity of this
process from input to output can be calculated as O(Ω), where Ω , f1(I1 + W1W2) +
f2W2 + ∑3

i=2 fi fi+1 + f5( f2 + f6) + O1( f6 + 1), fl is the number of neurons in the l-th
(l = 1, 2, · · · , 6) full connected layer, W1 is the number of LSTM units, W2 is the number of
neurons in an LSTM unit, I1 is the dimension of the input environment state, and O1 is the
number of neurons of the output layer which is equal to the size of the action space.

In the training phase of each time step, a minibatch of transition tuples {(s, a, s′, r)}K
i=1

are sampled to update the network Q. Each episode contains L time steps, and the number
of the agents is 2M + 1. As the target network Q̂ is updated every NQ̂ time steps, the
computational complexity for 2M + 1 agents in networks Q and Q̂ during the training
process of each episode is O((1 + 1/NQ̂)(2M + 1)KLΩ). During the prioritized experience
replay, each state transition tuple (s, a, s′, r) stored in buffer Dk are sorted by the priority,
and the corresponding computational complexity is O(∑2M+1

k=1 |Dk|log2(|Dk|)), where |Dk|
represents the capacity of buffer Dk. The total computational complexity for the whole
training is calculated as O((1 + 1/NQ̂)(2M + 1)KLΩ + KL ∑2M+1

k=1 |Dk|log2(|Dk|)).
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6.7. Convergence Analysis

The convergence of the Double Q-learning algorithm is the prerequisite for the conver-
gence of the proposed algorithm. The Double Q-learning algorithm includes two functions:
QA and QB.

Theorem 1. If Double Q-learning based DRL algorithm meets these following conditions: (C1): a
large number of state transition tuples {(s, a, r, s′)}K

i=1 can be acquired by a proper learning policy;
(C2): the reward discount factor γ ∈ [0, 1]; (C3): the learning rate δt satisfies

0 ≤ δt ≤ 1,
∞

∑
t=1

δt = ∞,
∞

∑
t=1

(δt)
2 < ∞; (35)

(C4): the reward function rt in the EH-CRN which is defined by the Equation (30) is bounded;
(C5): the Q values QA and QB are stored in a lookup table, and (C6): both QA and QB are updated
infinitely many times. Then, Q values QA and QB will converge to the optimal value function Q*,
i.e., QA, QB → Q*.

Proof. In (C1), the ε-greedy policy in the Equation (32) can be used as the proper learning
policy to collect a large number of state transitions. In (C2), γ is easily found by taking
a value between 0 and 1. In (C3), the learning rate can be set as δt = 1

t+1 , and then
the formula 

0 ≤ 1
t+1 ≤ 1,

∑∞
t=1 δt = ∑∞

t=1
1

t+1 = ∞,

∑∞
t=1(

1
t+1 )

2 < ∑∞
t=1

1
t(t+1) = ∑∞

t=1

(
1
t −

1
t+1

)
< 1 < ∞

(36)

holds. In (C4), the reward function rt in the Equation (30) includes three parts: (1) Rsec[t];
(2) RSINR[t]; (3) RBac[t]. For the finite transmission powers pm

ST and pm
PT, the finite channel

coefficients, the finite battery capacity, and the constant reward weights η1, η2, η3, all parts
Rsec[t], RSINR[t] and RBac[t] are also finite, and, thus, the reward function rt are bounded.
In (C5), we can create a Q table in the same way as the Q-learning algorithm and then store
the Q values QA and QB in it. In (C6), QA and QB can be updated infinitely by (36) as long
as time steps are long enough, i.e., t→ ∞. Consequently, QA and QB can converge to the
optimal Q values function Q*. The proof is completed .

7. Simulation Results

In this part, we conduct some numerical experiments to verify the proposed DRL-
based joint EH time and power allocation scheme for our proposed system. Main simulation
parameters are listed in Table 1.

In the simulation setup, the number of multiple sub-carriers is started by N = 32.
We define the EH circuit parameters al = 150.0, bl = 0.014, Al = 1.5 W [17]. As shown
in Figure 4, the decision Q-network consists of six fully connected layers, an LSTM layer,
an output layer, and a Softmax layer. In the LSTM layer, there are five LSTM units, and
each unit consists of 100 neurons. The number of neurons in the fully connected layers are
64, 64, 128, 128, 128, and 128, respectively. Rectified linear units (ReLUs), which are defined as
f (x) = max(0, x), are employed as the activation function of these six fully connected layers.
The output layer generates a vector containing the Q-values corresponding to all actions, and
then the Softmax layer normalizes the Q-values to zero and one. In the reward, we set the
positive weights η1 = 0.6, η2 = 0.2, η3 = 0.2, respectively. At the start of each episode, all
nodes are distributed randomly at the square area with a 300 m length of a side.
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Table 1. Main Simulation Parameters.

Parameter Value

Carrier frequency 750 MHz

Bandwidth per channel 10 MHz

Number of training episodes 2000

Number of training steps per episode 1000

Number of LSTM units 5

Number of neurons of an LSTM unit 100

Number of sub-carriers 32

Noise power σ2 0.0001 W

Transmission powers for the PT [1.0,1.5,2.0,2.5,3.0] W

Transmission powers for the ST [0.5,1.0,1.5,2.0,2.5,3.0] W

Transmission powers for the jammer [0.5,1.0,1.5,2.0,2.5,3.0] W

Learning rate (δ) 0.00025

Discount rate (γ) 0.95

Initial exploration rate 0.99

For verifying the performance of our proposed method, our proposed method is
compared with the following benchmark schemes for resource allocation.

(1) JOEHTS-TP-QL (Joint Optimization of EH Time-Slot and Transmission Power
Based on Q-Learning) in [20]: This method is based on a traditional reinforcement learning
algorithm. To apply it to solve our problem, the state space is required to be discretized. It
aims to maximize the achievable secrecy rate by optimizing transmission power.

(2) MADDPG Based Resource Allocation in [21]: It aims to maximize achievable
secrecy rate by jointly optimizing EH time slot and transmission power.

(3) C-DQN scheme in [22]: This method is a combination of a curiosity-driven mech-
anism and Deep Q-network (DQN), and the agent is reinforced by an extrinsic reward
supplied by the environment and an intrinsic reward.

Figure 5 shows the changes in secrecy rate at each episode during the training phase. In
this figure, the secrecy rate under the proposed method represents a growing trend despite
of continuous fluctuations during the earlier 1000 episodes and later reaches a convergence
at a steady rate, which presents the effectiveness in improving secrecy performance. After
1400 training episodes, the performance gaps between our proposed method and other
schemes become distinctive. The MADDPG method shows a wide range of fluctuation and
requires more training episodes to converge while our proposed method converges quickly
and steadily, and this demonstrates the effectiveness in improving the secrecy rate and
overcoming the influence caused by the instability. Compared with the previous schemes,
the C-DQN scheme can steadily converge to a lower secrecy rate due to the nonuse of the
EH technique. The secrecy rate under the JOEHTS-TP-QL scheme slowly increases and
surpasses the C-DQN scheme after 1280 training episodes.

The proposed method solves the basic instability and overestimation problems of
using function approximation in reinforcement learning: prioritized experience replay and
target network by using deep learning (DL) and reinforcement learning (RL). Prioritized
experience replay enables RL agents to sample and train offline from previously observed
data. This not only greatly reduces the amount of interaction required by the environment,
but also can sample a batch of experiences to reduce the differences in learning and
updating. In addition, by uniformly sampling from a large memory, the time dependence
that may adversely affect the RL algorithm for RL is broken, thereby improving throughput.
Both JOEHTS-TP-QL and C-DQN schemes are not equipped with the above advantages.
MADDPG has the following problem: each critic network needs to observe the state and
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action of all agents, and it is not particularly practical for a large number of uncertain agent
scenarios, and when the number of agents is too large, the state space is too large. Based on
this, they fall behind the proposed method.

Figure 5. Secrecy rate versus the number of episodes.

Figures 6 and 7 show the secrecy rates with respect to increasing transmission powers
of ST and jammer under different schemes, respectively. In Figure 6, the transmission power
of the jammer is fixed as 2.0 W. The secrecy rate under our proposed method increases as
the maximum transmission power of ST becomes greater, and the maximum secrecy rate
is obtained when it is between 1.5 W and 2.5 W. Increasing the maximum transmission
power contributes to a greater secrecy rate in some ways, but a greater transmission power
is likely to cause strong interferences to the PU and, thus, jeopardize the spectrum access of
the SU for gaining further performance enhancement. The C-DQN and the JOEHTS-TP-QL
schemes have similarly low secrecy rates. In Figure 7, the maximum transmission power
of ST is fixed as 2.0 W. It can be observed that when the maximum transmission power
of the jammer is kept below a certain power level, the jamming signal of the jammer has
little impact on the eavesdropper. This indicates that the jammer must harvest enough
energy to increase the transmission power such that the secrecy performance can be
improved further.

Figure 6. Secrecy rate versus maximum transmission power of ST.
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Figure 7. Secrecy rate versus maximum transmission power of jammer.

We study the effect of different discount rates on the cumulative reward per episode. In
Figure 8, the more the discount rate deviates from 1.0, the more dramatically the trajectory
of the reward fluctuates. When γ is set as 1.0, the reward converges in the fastest and
most stable way. Theoretically, the agent is likely to focus on short-term returns when the
discount rate γ is lower than 1.0. During the training process, the secrecy rate as a main
part of the reward dominates the learning direction of the agent, hence maximizing the
cumulative rewards encourages more instantaneous secrecy information to be delivered.
However, agents cannot transmit secrecy data for long periods of time due to the limited
energy. Therefore, γ = 1.0 acts as an optimal balance factor between the EH and WIT
phases.

Figure 8. Reward under different discount rates.

Figures 9 and 10 show the secrecy rates under all the algorithms versus the maximum
battery capacity of jammer and ST, respectively. With the increase in the maximum battery
capacity, the secrecy rates under different schemes also increase. Of all the algorithms, the
proposed algorithm gains the best performance at each given value of maximum battery
capacity. When the maximum battery capacity is beyond 60 mJ, all algorithms start to
converge to different performance levels; this is mainly because the jammer and ST are
influenced by the limited RF energy that can be harvested.
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Figure 9. Secrecy rate versus maximum battery capacity BJ,max of jammer.

Figure 10. Secrecy rate versus maximum battery capacity BST,max of ST.

Figure 11 shows the secrecy rate versus the number of subcarriers m. The proposed
method is capable of greatly enhancing the secrecy rate and outperforms other schemes
with the highest secrecy rate. The MADDPG and the C-DQN schemes have performance
gaps of approximately 28.8% and 80.5% with our proposed method, respectively, when
the number of subcarriers is 128. The secrecy rate under the JOEHTS-TP-QL scheme
degrades dramatically when the number of subcarriers is beyond 96. It is observed that
the secrecy rates under all schemes start to deteriorate when the number of subcarriers
is beyond 128. It is mainly because increasing the number of subcarriers will increase
the size of the action space, and it is harder to find the optimal strategy, which brings a
decline in performance.

Figure 11. Secrecy rate versus the number of subcarriers m.
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With the knowledge of the environment regularity, agents can intelligently adjust
their decision strategies so that a target state can be obtained from any initial state in a
few numbers of transition steps. Here, a target state is defined as a given state where all
constraint requirements in the proposed problem are satisfied. Similar to [27], we use the
indicator “average number of transition steps,” which is defined as the average number of
continuous transition steps agents take from an initial state to a target state, to measure the
robustness performance for our proposed algorithm.

Figure 12 shows the average number of transition steps in each test. Multi-agents
are tested in five hundred time steps at the end of each training episode. Our proposed
scheme only requires the smallest number of transition steps to achieve the target state,
while the other schemes need to take more transition steps. Moreover, when it is the 25th
test, the proposed method fundamentally converges while other schemes at least need to
take 65 tests and even more, and, thus, this makes the convergence speed of the proposed
method 160% faster than the benchmark algorithm.

Figure 12. Average number of transition steps in each test.

This corroborates the robustness and rapidity of the proposed method.

8. Conclusions

In this paper, we have developed a multi-agent DRL framework for the proposed EH-
based CRN with a wireless-powered cooperative jammer and propose the corresponding
resource allocation problem. The D3QN algorithm is combined with an LSTM network to
improve the system’s secrecy performance. The proposed method is divided into training
and implementation phases. The numerical results demonstrate that the proposed method
can increase the long-term achievable secrecy rate by 30.1% and convergence speed by
160% with the minimum average number of transition steps overheads, compared with
the benchmark algorithms. In the future study, we will further explore the secrecy of
energy-efficient resource allocation for our proposed network.
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