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Abstract: In recent years, with the development of the internet, video has become more and more
widely used in life. Adding harmonious music to a video is gradually becoming an artistic task.
However, artificially adding music takes a lot of time and effort, so we propose a method to recom-
mend background music for videos. The emotional message of music is rarely taken into account
in current work, but it is crucial for video music retrieval. To achieve this, we design two paths to
process content information and emotional information between modals. Based on the characteristics
of video and music, we design various feature extraction schemes and common representation spaces.
In the content path, the pre-trained network is used as the feature extraction network. As these fea-
tures contain some redundant information, we use an encoder–decoder structure for dimensionality
reduction. Where encoder weights are shared to obtain content sharing features for video and music.
In the emotion path, an emotion key frames scheme was used for video and a channel attention
mechanism was used for music in order to obtain the emotion information effectively. We also added
emotion distinguish loss to guarantee that the network acquires the emotion information effectively.
More importantly, we propose a way to combine content information with emotional information.
That is, content features are first stitched together with sentiment features and then passed through a
fused shared space structured as an MLP to obtain more effective fused shared features. In addition,
a polarity penalty factor has been added to the classical metric loss function to make it more suitable
for this task. Experiments show that this dual path video music retrieval network can effectively
merge information. Compared with existing methods, the retrieval task evaluation index increases
Recall@1 by 3.94.

Keywords: retrieval; video music retrieval; common representation spaces; emotion

1. Introduction

Video, a form of data that records life and conveys opinions, is produced and uploaded
to the Internet by many users. Video is a media message that contains visual and auditory
information. Among them, visual information is mainly presented in the form of moving
images, while auditory information includes voice, ambient sound, background music, etc.
Music, as an art form to express emotions, is often used to enhance the artistic effect of the
video, resonate with the user and bring a better experience to the user. However, manually
selecting the right music for a video is an extremely lengthy and laborious task. Short video
applications often recommend music based on its popularity, and only part of the music
conforms to the video. Therefore, the automatic retrieval of suitable music clips based on
video information is a problem worth investigating. The study of this problem is equally
beneficial in helping us to understand how art communicates between different modalities.
Matching music with a given video belongs to the retrieval task, that is, the corresponding
music information is retrieved through the video information. Some studies [1–3] suggest
that both modals have semantic information related to the content. These studies therefore
tend to take a self-supervised approach, using matched video and music pairs with no
additional tagging information. They extract features using a generic network pre-trained
on large datasets, which results in features containing certain redundant information.
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Furthermore, due to the diversity of visual content and the richness of musical emotional
information, there is some asymmetry between the two modal data. Some research [4–6]
considers that the emotional information of music is relatively rich and uses the emotional
label to restrict the common space. However, they only use general networks to pre-train
on emotional datasets, so that the network has the ability to learn emotional representations.
This method has difficulty learning effective emotional information.

In this paper, we combine emotional information and content information to design
a dual path cross-modal retrieval network. In the content path, a content common space
with a fine network structure is designed and additional constraints are added to obtain the
content sharing representation of video and music. In the emotional path, the emotional
feature extraction scheme is designed to obtain emotional features. The representation of
the emotional sharing of video and music is achieved by designing a network structure with
simplified emotional common space. Combined with content and emotion, the common
fusion space is designed, and the final representation features of video and music are
achieved. By computing the similarity between features, the video music retrieval task is
finished. Our main contributions are as follows:

(1) A video-music retrieval dataset has been constructed and will be published on the
website. The dataset is derived from films with a certain level of popularity, and each
video–music pair includes an emotional descriptor and polarity labels.

(2) A dual path video–music retrieval network combining content information and emo-
tional information is designed. It can effectively learn various information and use
this information to perform retrieval tasks.

(3) A more task-consistent metric loss function was designed and used. By adding penalty
factors to the data pairs, the metric loss function is optimized differently for different
data pairs, achieving a dynamic optimization of the objective.

2. Related Work

In Section 2, we focus on research advances in video music retrieval and research
work on emotion information in video and music. In particular, Section 2.1 details the
current state of video music retrieval, based on two research ideas: content information and
emotional information. Furthermore, we again emphasize that sentiment information can
act as a bridge between the two modalities, video and music. Therefore, Section 2.2 focuses
on the research on video emotion recognition and music emotion recognition, which helps
to understand how sentiment information can be extracted from the different modalities.

2.1. Cross-Modal Video Music Retrieval

According to video retrieval, music belongs to the cross-modal retrieval technology,
where cross-modal retrieval is able to retrieve information from one modality to the other
modality associated with it. However, different modal data present heterogeneous low-
level features, and only matching different modal data present semantically related high-
level features. Faced with such a problem, cross-modal retrieval techniques often work
by learning a common/shared representation space in which the semantic similarity of
different modal data can be measured. In video music retrieval, the main current research
approaches can be divided into content-based and emotion-based video-music retrieval.

Content-based video-music retrieval considers that both modalities have semantic
content-related information, such as the consistency of the events of the video and the
theme of the music, etc. Consequently, they tend to be self-supervised methods, using
paired video and music pairs without additional label information. Hong S et al. [1]
proposed the Cbvmr model, which uses traditional machine learning methods to extract
the content features, and uses triple loss to limit the formation of the common representation
space. Based on the Cbvmr model, Pretel L et al. [2] used a deep learning network model
to replace the method of manually extracting features. Yi J et al. [7] propose a CMVAE
model using textual information. Pretet L et al. [3] proposed and verified the effectiveness
of movement information. The model uses Variational AutoEncoders (VAE) [8] as a
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common representation space and is optimized by generative loss functions. Zhang et al. [9]
designed a VAE-CCA network combining the encoder–decoder structure. The network
utilizes the decoder to reconstruct the features from the encoder, ensuring that the features
reflect the structure of the original data, thus improving retrieval performance. Surís
et al. [10] gave more attention to contextual long-term information. They used CLIP [11]
to extract visual information from video frames, used Inception [12] to extract musical
information from music segments. Lastly, the sequence information is entered into the
common representation space structured by Transformer [13] to find the common features.

Emotion-based video–music retrieval considers that music is often used as media
information to express emotions, so the emotional information of music is relatively rich.
Aiming for that characteristic of music, research often uses emotional information to restrict
the common representation space. Shin K et al. [4] used linear regression to predict the
emotion of video and music, and compute the Euclidean distance between video and
music data. Using emotional labels, Zeng D et al. [5] proposed a supervised DCCA (S-
DCCA) model as a common representation space. Li B et al. [6] trained video networks and
music networks separately on emotion datasets, making those networks to learn emotional
information. Shang L et al. [14] believed that the connotative association of images and
music included lyrical emotions in addition to semantic concepts, so they developed a
connotation-aware music retrieval framework (CaMR).

2.2. Video, Music and Emotion

As two different modalities, video and music have a large heterogeneity of data. Video
often contains a mix of content information such as actions, objects and scenes. In contrast,
music, as a kind of audio with lyrical characteristics, contains more emotional information.
Based on this heterogeneity, it is effective to take emotional information into account in
video–music retrieval. There is a broad base of research on emotion information for video
and music, namely video emotion recognition and music emotion recognition. Video
emotion recognition (VER), the main research method for understanding video content, is
not limited to facial information in emotion recognition, but focuses more on the emotional
information conveyed by the video [15]. Musical emotion recognition (MER) has been a
key area of research. Due to the specific nature of music, people can use music to resonate
with their emotions and relieve stress.

In video emotion recognition, the effective selection of emotion frames [16] (frames
rich in emotion information) is often the most fundamental part due to the redundant
information and sparse emotional content of video frames. Emotion frame selection is
mainly divided into key frame-based and video frame weight-based approaches. Key
frame-based methods often use uniform sampling or clustering to select some video frames
according to certain rules, which is fast, but not detailed enough for the selection of emotion
frames. Methods based on video frame weights obtain video frames by calculating the
weight value of each video frame [17–19], and video frames with larger weights contribute
more to video emotion. In video emotion recognition, researchers in recent years have used
deep learning networks to extract video features, including: action, object, scene and other
features. These deep features contain rich semantic information and contextual content,
with strong representation capability, and can effectively represent video emotion. In music
emotion recognition, timbre features are often used in current research, and timbre features
include zero crossing rate ZCR [20], acoustic spectrograms, spectral fluxes, etc. Among
them, the acoustic spectrogram includes the Merle cepstral coefficient MFCC [21,22], and
the cochlea spectrogram [23,24]. MFCC has information in the time-frequency domain of
music, is proposed based on human speech and hearing. It has the characteristics of strong
recognition ability and noise immunity, and the cochlea spectrogram contains richer texture
information [25].

There are two main types of deep learning network structures used to extract features
and recognize emotions in VER, MER: single networks and combined networks. The
single network mainly uses CNNs to complete video feature extraction and feature to
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emotion space mapping. For example, 3DResNet [26] for video emotion recognition,
2DResNet [27] and Vggish [28] for music emotion recognition. In addition, due to the
excellent performance of the Transformer structure in natural language, some researchers
have applied this structure to vision, such as ViViT [29] and Video Swin Transformer [30]
for video recognition. Combinatorial networks are mainly CNN-RNN [17,31], and long
and short term memory networks (LSTM) are dominant in RNN.

3. Methodology

In this section, based on theoretical foundations and the current state of research, we
first describe our proposed dual-path video music retrieval network (DPVM). The overall
structure of our proposed DPVM is shown in Figure 1. Next, the architectures of the content
public network, the emotion public network and the fusion public network are presented,
respectively. Finally, adaptive improvements made to existing metric loss are presented.
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Figure 1. Overview of the proposed DPVM that consists of a content common network, an emotion
common network, and a fusion network. Content features obtain their shared representations through
the content common space composed of encoder–decoder. Emotional features obtain their shared
representations through the emotion common space composed of MLP. Splicing Fusion refers to
splicing content features and emotional features of the same modal. Interactive Fusion fully interacts
with content information and emotional information. VC is the content feature vector of the video.
VE is the emotional feature vector of the video. MC is the content feature vector of the music. ME is
the emotional feature vector of the music. * representing ResNet101 with the addition of a channel
attention mechanism.

3.1. The Network Overview

Video music retrieval differs from other cross-modal retrieval techniques in that it
does not use semantic content information as the only bridge to cross-modal retrieval. The
reason for this significant difference is mainly due to the specificity of music, which tends
to express lyrical emotions as its main content. This difference leads to a different technical
route for video–music retrieval tasks than for other cross-modal retrieval tasks. In the
image–text retrieval task [32], the key point is how to accurately obtain the subject content
information and background information of the image; and how to accurately obtain
word information such as nouns, verbs and adjectives of the text, and to correspond these
two modalities of information. In the video–text retrieval task [33], as video is dynamic
information consisting of multiple images, it includes, in addition to the above key points,
the accurate acquisition of temporal content information of the video. For the audiovisual
correspondence and audiovisual matching tasks [34], which place more emphasis on video–
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audio correspondence, similar to the video–text retrieval task, the key point is also the
acquisition of audio content information (e.g., train whistle, water flow, bird song). As
these modalities contain more specific information and clear correspondence between
different modalities, cross-modal retrieval techniques are often based on the consistency or
correspondence of semantic content information as a criterion. Music, as a media message
that expresses emotion, does not have as its primary purpose the conveyance of some
explicit message. A positive melody is often enough to inspire the listener, a sad track often
enough to express condolences. Based on the characteristics of music, both emotional and
semantic content information are crucial in the task of video–music retrieval.

In current content-based video–music retrieval tasks, generic networks pre-trained
on large datasets are often used to extract video and music features, and thus the features
contain a large amount of redundant information, which leads to a misalignment of video
and music feature information. For example, video features often contain a mishmash of
content information such as actions, objects and scenes. Music, on the other hand, often
contains information that is not as clear as video, and as a kind of audio with lyrical features,
in addition to more specific content information, music also contains richer emotional
information. Current emotion-based video-music retrieval tasks often use generic networks
pre-trained on emotion datasets as a way to make the network capable of learning emotion
representations. This approach does not effectively learn emotion information and still
contains a large amount of redundant information.

Based on the above theoretical foundation and the current state of research, we use
a combination of content information and emotion information to solve the video–music
retrieval task, and designs a dual-path cross-modal retrieval scheme. For the content
information of video and music, content features are extracted using a generic network
model pre-trained on a large-scale dataset. The content features are refined using an
encoding–decoding structure because of their mixed information and redundancy. An
emotion extraction network is designed to extract features for the emotion information of
videos and music, where the emotional discriminatory loss is used to optimize the feature
extraction network. Compared with the content features extracted by the generic network
model, the emotion feature information is more specific and less redundant, so the emotion
common space with fully connected layer structure is designed to eliminate the heterogene-
ity of the two modalities and obtain the emotion shared representation. Finally, combining
content information and emotion information, the fusion shared space is designed to obtain
the final representation features of video and music, and the video and music retrieval task
is completed by calculating the similarity between the representation features.

3.2. The Content Common Network

As shown in Figure 2, for video, we use the pre-trained 3DResNet on the Kinetics-600
dataset [35] to extract its content features. For music, we use the pre-trained Vggish on
the AudioSet to extract its content features. In the design of the content common space, an
encoder–decoder structure is adopted. The encoder reduces the dimension, and unifies
the dimension of video and music features while sharing weights. The decoder is used to
reconstruct the dimension. At the same time, it ensures that important information about
dimensionality reduction features is not lost.

There are two parts which compose the optimization loss for content common net-
works: reconstruction loss and metric loss. Reconstruction loss optimizes encoder dimen-
sionality reduction processing for content features. Metric loss optimizes the consistency of
common feature information for generated video and music content.

Given video feature Vi and music feature Mi. The reconstruction loss:

LR =‖ Vi − D(E(Vi)) ‖ + ‖ Mi − D(E(Mi)) ‖ . (1)
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The metric loss:

LM =
1
2
(1−Y) ‖ E(Vi)− E(Mi) ‖2 +

1
2
(Y){max(0, margin− ‖ E(Vi)− E(Mi) ‖)}2. (2)

The content loss:
LContent = λ1LR + λ2LM. (3)

where ‖ · ‖ denotes the cosine distance, E(·) denotes the encoder, and D(·) denotes the
decoder.Y is paired labels, and if {Vi, Mi} is matching data, then Y = 0, otherwise Y = 1.
The margin represents the distance threshold, and λ1 and λ2 represent weight coefficients.

3.3. The Emotion Common Network

As shown in Figure 3, because the emotional content of the video is sparse, that is to
say the information of the video frame is redundant, and only a few frames contain rich
emotional information. To efficiently get the emotional information from the video, we
first choose the emotional key frames [36] from the video. Second, in the feature extraction
network, the ViViT visual transformer model is selected. This not only improves the
running speed, but also obtains the temporal context information of the video. In order
to effectively obtain emotional information from music, the ResNet101 is adopted and the
channel attention mechanism is introduced. Design an emotional common space with MLP
as the structure.

There are two parts that compose the optimization loss for emotion common net-
works: distinguish loss and inter-modal loss. The distinguish loss adopts the cross-entropy
loss function.

LD = −∑ Y(Vi) log
exp(F(Vi))

∑n
i=1 exp(F(Vi))

−∑ Y(Mi) log
exp(F(Mi))

∑n
i=1 exp(F(Mi))

. (4)

where Y(·) is the real emotion label, and F(·) denotes the emotion common representation
space of the multilayer perceptron structure.

Inter-modal loss preserves the difference in emotion characteristics of various modal
data. This benefits the emotional common space to form pure emotional distinguish
information from video and music.
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LM = − ‖ Vi −Mi ‖ . (5)

The emotion loss:
LEmotion = µ1LD + µ2LM. (6)

where µ1 and µ2 represent the weight coefficients.

3.4. The Fusion Common Network

The splicing fusion features are obtained by splicing two different features of the
same modal data. As the similarity between the data is calculated, the information in the
corresponding dimensions is calculated and accumulated separately. The splicing and
fusion strategy can therefore be seen as a simple superposition between the similarities
of the two feature dimensions. Therefore, on the basis of the splicing fusion, we have
designed the fusion common space, where the splicing features obtain interactive fusion
features through the fusion public space. This common space not only ensures that the
heterogeneity of content and emotional information is further eliminated, but also that
content and emotional information interact with each other, hence the choice of the fully
connected layer (FC) in the design of the network structure. In FC, each neuron is formed
with the participation of all neural units in the previous layer. This allows for comprehen-
sive information transfer between features, thus ensuring that content information and
emotional information can fully interact with each other.

The loss function optimized for common fusion space is the loss of contrast between
interactive fusion features:

LFusion =‖ F(V)− F(M) ‖ . (7)

Combining Equations (3), (6) and (7), we obtain the objective function of the proposed
method DPVM as:

Loss = k1LContent + k2LEmotion + k3LFusion. (8)

3.5. The Polarity Penalty Metric Loss

In metric loss, the model is optimized by increasing the similarity between related
data pairs and reducing the similarity between unrelated data pairs [37]. To some extent,
there are some unrelated constraints and low relevance. In a batch with N pairs of data,
{vk,mk} represents paired video–music data, and ϕ (vk,mi) is the similarity between the data.
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We use the cosine similarity Equation (9) to calculate ϕ (vk,mi), where x,y represents the
sample data and n represents the data dimension.

cos(x, y) =
∑n

i=1(xi × yi)√
∑n

i=1(xi)
2 ×

√
∑n

i=1(yi)
2

. (9)

The metric loss:

Lϕ(v,m) = ∑N
k ∑N

i 6=k(ϕ(vk, mi)− ϕ(vk, mk)). (10)

If ϕ (vk,mi) < ϕ (vk,mk), then vk and mi are called low-similarity data pairs. Repeatedly
processing these low-similarity data pairs will cause the optimization function to focus on
irrelevant targets for many times, resulting in low optimization efficiency. Therefore, we
propose a more efficient approach based on the existing loss function.

Firstly, with regard to the issue of redundancy of the metric weight loss coefficient, the
metric loss coefficient ρki of the low similarity data pair is set to 0.

ρki =

{
0, ϕ(vk, mi) < ϕ(vk, mk)
1, otherwise

}
. (11)

Given the low weight coefficient and task fitness, and the issue of label difference is
not taken into account, a polarity penalty coefficient Pki is proposed.

Pki = |labelk − labeli|. (12)

The polarity penalty metric loss as:

Lϕ(v,m) = ∑N
k ∑N

i 6=k(Pkiρki ϕ(vk, mi)− ϕ(vk, mk)). (13)

4. Experiments

In this section, we first describe the dataset and implementation details used in the
experiments. We then compare our evaluation results with other methods to demonstrate
the effectiveness of our proposed approach. Finally, we perform a number of ablation
studies to validate the performance benefits that each module of our method brings.

4.1. Dataset and Evaluation Metrics

Music compositions are protected by copyright, making datasets difficult to publish.
Hong S et al. [1] obtained the Hong-Im Music-Video 200K (HIMV-200K) benchmark dataset
from the large-scale tagged video dataset YouTube-8M [38]. The videos in this dataset were
sourced from the YouTube website, and each video contains audio and video modalities.
The videos are divided into 24 themes based on visual information. The data related to
“music videos” under the “Arts & Entertainment” theme was selected, with approximately
200K video–music pairs, including official music videos, parody music videos and user-
generated videos with background music. The author of the dataset provided the URLs of
the YouTube videos under the “Music Videos” category. However, the HIMV-200K dataset
suffers from the following problems: variable video quality, predominantly dance-themed
music videos (MVs), noisy background music containing ambient sounds, and some video
links not working. Due to the video link failure issue, the data available is 50K [2] in 2021
and 20K [10] in 2022.

For this purpose, we select well-known cinematic works from the film platform and
capture video clips that contain only background music. We modify these clips to ensure
that the duration of the video is about 15 s, forming a MVED dataset of about 3k video-music
pairs. Emotional descriptions like “sad, happy, scared, surprised” and other adjectives
were also provided. Based on these emotional descriptors, the dataset provides three
polarity labels: “positive, negative, neutral”. We combine emotion descriptors and emotion
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annotations to form a compound tag of adjective–emotion polarity, such as happy–positive,
sad–negative, etc. For each video data, five matching music tracks were selected based
on the composite tags. The matching principles were as follows: priority was given to
background music from the same film or TV series, the composite tags were consistent, and
the subjective feelings of the video data and music data were consistent. Finally, five music
data were matched for each video, forming a 10k video–music pair, which was divided
into a training set and test set in the ratio of 7:3. More importantly, we publish the original
dataset in a text table format that can be easily used by other researchers. The published
form of the MVED dataset is shown in Table 1.

Table 1. Example data from MVED.

Data Video Clip Source Interception
Period

Emotional
Descriptions Polarity Labels

100,601 Titanic 01:21:40–01:22:00 Happy Positive
206,202 The Shining 00:10:37–00:10:52 Depress Neutral
119,907 Oceans 01:01:50–01:02:05 Nervous Negative
100,304 Forrest Gump 01:44:42–01:44:57 Happy Positive
220,405 Stand by Me 01:11:20–01:11:30 Sad Negative

Following the previous works, we use Recall@K as an evaluation metric, as it is widely
used in retrieval tasks.

Recall@K =
TP@K

TP@K + FN@K
. (14)

where TP@K represents the number of positive samples predicted to be positive in the first
K results returned. FN@K illustrates the number of positive samples predicted as negative
samples in the first K results returned.

4.2. Implementation Details

Due to the difference between the content shared path network and the emotion shared
network path, the data formats used as input to the different paths are also different. In
the content sharing network, each video data is first divided into six segments of the same
number of frames in frame order (time) using a fixed frame sampling scheme, and 16 consec-
utive frames are selected in each segment. The input video datum is VC ∈ R6×16×3×256×256.
Each music datum is extracted with MFCC features through the Librosa library, where the
feature vector dimension is set to 32, the sampling frequency to 14,400, the FFT window
length to 2048 and the step size to 2048, i.e., no overlapping samples. To ensure consistent
music input dimensions, the maximum length was set to 192 by copying the data overlay
operation. The input music data is MC ∈ R1×32×192.

To further reduce the redundancy of the video data in the emotion-sharing network,
frames that contribute more to the emotion are selected, so the emotion keyframe scheme is
chosen. The emotion keyframes scheme first detects the shot boundaries of the video based
on the color histogram differences between frames and divides the shots one at a time.
For each shot boundary frame, an emotion score is obtained by using a picture emotion
recognition network model, setting an emotion score threshold and filtering out key shots.
In each key shot, the frame with the largest inter-frame difference is selected as the key
frame, which makes the difference between frames greater and further reduces redundancy.
The final keyframe was set to 16, and the input video datum is VE ∈ R16×3×224×224. Each
music datum was extracted from the Librosa library with MFCC features, where the
feature vector dimension was set to 32, the sampling frequency to 16,000, the FFT window
length to 1024 and the step size to 512, i.e., the overlap sampling rate was 50%. To ensure
consistent music input dimensionality and subsequent network processing, the maximum
length is set to 4096 dimensions by copying the data overlay operation. In this paper, it is
segmented and evenly divided into 16 segments. This means that the input music datum is
MC ∈ R16×32×256.
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We use Adam optimizer [39] with {β1 = 0.5, β2 = 0.999} and train the model for
100 epochs. The learning rate is set to 1 × 10−4, and the batch size is 64. Metric loss uses
the calculation method of cosine distance. In (3), (6) and (8), λ1 = 0.8, λ2 = 1.0; µ1 = 0.8,
µ2 = 1.0; k1 = 0.5, k2 = 0.5, and k3 = 1.0. Our proposed network was implemented with a
PyTorch framework and trained with four NVIDIA GeForce GTX1080 Ti GPUs.

4.3. Comparison to Other Methods

To evaluate our method, we compare its performance with methods from related work.
Table 2 shows the experimental results on the MEVD dataset.

Table 2. Video to music retrieval results on MVED.

Method Recall@1↑ Recall@5↑ Recall@10↑ Recall@15↑ Recall@20↑ Recall@25↑
B-Emotion [6] 5.39 10.61 15.37 20.08 23.53 26.17
B-Emotion [6]

+PPML 5.64 11.25 16.80 21.58 24.93 27.33

B-Connect [2] 7.59 15.23 20.31 26.25 30.13 34.27
B-Connect [2] +PPML 7.91 16.43 22.92 27.53 31.29 35.90

DPVMSp 9.13 16.94 22.33 29.50 37.41 42.35
DPVMSp
+PPML 10.42 18.34 24.07 31.74 38.26 43.19

DPVMIn 10.94 18.84 24.39 34.32 43.26 49.97
DPVMIn
+PPML 11.53 20.11 26.67 36.01 44.87 50.63

The benchmark network is the prior method of Prétet et al. [2], MLP is used as
the common space and optimized with triplet loss. They use ImageNet to extract video
features and utilize OpenL3 [40] to extract music features. The dual stream emotional
network [6] only pre-trained the network on the emotional dataset, and does not further
extract emotional information. In our work, these two classic networks are called content-
based baseline networks (B-Content) and emotion-based baseline networks (B-Emotion).
Among them, DPVMSp is DPVM using splicing fusion strategy, and DPVMIn is DPVM
using interactive fusion strategy. Meanwhile, we replace the metric loss with the polarity
penalty metric loss (PPML).

The results show the effectiveness of the DPVM network and the best results so far
based on interaction fusion. In addition, replacing the classical metric loss with a polarity
penalty metric loss has a significant improvement on the retrieval results.

4.4. Ablation Study

In order to verify the validity of the proposed content and emotional messages, ablation
experiments are conducted for common spaces. Among them, DPVMC refers to the single
content path network, and DPVME refers to a single emotional path network. Meanwhile,
we replace the metric loss with PPML. Table 3 shows the experimental results on the MEVD
dataset. The results indicate that the content information path is more efficient than the
emotion information path. This is because feature extraction networks are pre-trained on
large-scale dataset. However, there currently exists a lack of such pre-trained networks
for emotional information. The DPVM network using interactive fusion strategy works
best. Moreover, the suggested metric loss of polarity penalty also shows good performance.
The experimental results demonstrate the effectiveness of using the encoder–decoder
structure as a common representation space for content and the ability of the emotion
feature extraction scheme to effectively extract emotion information.
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Table 3. Video to music retrieval results on MVED.

Method Recall@1↑ Recall@5↑ Recall@10↑ Recall@15↑ Recall@20↑ Recall@25↑
B-Emotion [6]

+PPML 5.64 11.25 16.80 21.58 24.93 27.33

B-Connect [2] +PPML 7.91 16.43 22.92 27.53 31.29 35.90
DPVME 6.43 13.54 20.26 25.09 31.41 37.26
DPVME
+PPML 7.17 14.85 21.44 26.73 32.05 38.16

DPVMC 8.31 16.42 21.21 27.99 33.94 39.01
DPVMC
+PPML 9.29 17.86 23.21 28.65 34.30 39.47

5. Discussion and Conclusions

In video–music retrieval work, we emphasize the importance of emotional informa-
tion by designing a dual path network to integrate content information with emotional
information. Due to the difference between content information and emotional informa-
tion, we have various designs for feature extraction and common representation space.
Specifically, the content information is extracted through the pre-trained network, and
the content common space of the coding and decoding structure is designed to remove
redundant information. The path of emotional information adopts the emotional scheme,
and constructs the common space of emotional with the MLP as a structure. We also
explored ways to integrate content with emotion. Furthermore, we optimized the classical
metric loss function according to the characteristics of the task. Finally, we produce and
publish an emotion-labeled video music retrieval dataset: MVED, which we hope will
contribute to research in this area. As part of future work, we will continue to conduct
in-depth research on the interaction between emotion and content. At the same time, in
addition to movie videos, we are also exploring further for user-generated videos.
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