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Abstract: There is great interest in automatically detecting road weather and understanding its
impacts on the overall safety of the transport network. This can, for example, support road condition-
based maintenance or even serve as detection systems that assist safe driving during adverse climate
conditions. In computer vision, previous work has demonstrated the effectiveness of deep learning
in predicting weather conditions from outdoor images. However, training deep learning models
to accurately predict weather conditions using real-world road-facing images is difficult due to:
(1) the simultaneous occurrence of multiple weather conditions; (2) imbalanced occurrence of weather
conditions throughout the year; and (3) road idiosyncrasies, such as road layouts, illumination, and
road objects, etc. In this paper, we explore the use of a focal loss function to force the learning process
to focus on weather instances that are hard to learn with the objective of helping address data imbal-
ances. In addition, we explore the attention mechanism for pixel-based dynamic weight adjustment
to handle road idiosyncrasies using state-of-the-art vision transformer models. Experiments with a
novel multi-label road weather dataset show that focal loss significantly increases the accuracy of
computer vision approaches for imbalanced weather conditions. Furthermore, vision transformers
outperform current state-of-the-art convolutional neural networks in predicting weather conditions
with a validation accuracy of 92% and an F1-score of 81.22%, which is impressive considering the
imbalanced nature of the dataset.

Keywords: computer vision; deep learning; image classification; loss functions; vision transformers;
weather detection; autonomous vehicles

1. Introduction

Different types of weather severely affect traffic flow, driving performance, and ve-
hicle and road safety [1]. Statistics from the Federal Highway Administration show that
increased amount of accidents and congestion are usually directly associated with hos-
tile weather [2]. As a result, there is the need for advanced intelligent systems that can
accurately and automatically detect weather conditions to support safe driving, traffic
safety risk assessment, autonomous vehicles, and effective management of the transport
network. Deep learning has emerged as one of the main approaches used for automatic
weather recognition as evidenced by the related work in Section 2. The state-of-the-art
literature mostly employs convolutional neural networks (CNN), which are trained on
outdoor weather images and subsequently label new images with a single weather class.
This type of classification for roads, however, produces less accurate results, as multiple
weather types are likely to occur simultaneously. For example, Figure 1 shows multiple
weather conditions (i.e., sunny and wet) present in a single scenario. Another limitation
found in the current related work is that deep learning models are mostly trained on
balanced and high variance weather datasets. This oversimplifies road weather conditions,
which are characterised by highly imbalanced and more complex scenarios, such as road
layouts, interacting elements, vehicles, people, and different illumination conditions. The
representation learning, therefore, becomes compromised as road elements that could
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potentially allow for a more specific type of learning for the road problem are not included.
There is also currently no research study investigating intelligent strategies for multi-label,
highly imbalanced and complex road scenarios, such as dynamic pixel-based weighting.
This drives the motivation of this study to propose a publicly available realistic multi-label
road weather dataset and employ vision transformers based on focal loss to address class
imbalance and road idiosyncrasies.

Figure 1. Multiple weather conditions (sunny and wet) existing in a single image.

The main contributions of this study are:

1. A multi-label transport-related dataset consisting of seven weather conditions: sunny,
cloudy, foggy, rainy, wet, clear, and snowy to be used for road weather detection research.

2. Assessment of different state-of-the-art computer vision models in addressing multi-
label road weather detection, using our dataset as a benchmark.

3. Evaluation of the effectiveness of focal loss function to increase model accuracy for
unbalanced classes and hard instances.

4. Implementing transformer vision models to assess the efficiency of their attention mecha-
nism (assigning dynamic weights to pixels) in addressing road weather idiosyncrasies.

This paper is organised as follows. In Section 2, we review the literature on weather
detection using deep learning techniques and describe the focal loss function to handle
imbalanced data and difficult-to-classify instances. Subsequently, we provide an overview
of the CNN architectures explored in this paper. Section 3 describes vision transformers in
comparison to CNN networks. Section 4 introduces our novel multi-label road weather
dataset, describes the vision transformer models implemented in this paper, and presents
the design of our experiments and evaluation protocols. In Section 5, the results are
presented along with a discussion, and Section 6 concludes the paper and establishes the
opportunity for future work.

2. Background
2.1. Related Work

The rapid evolution and widespread application of sensors (e.g., onboard cameras)
has led to large volumes of data streams constantly being generated in transportation. Deep
learning approaches have emerged as suitable approaches to address big data problems
as they reduce the dependency on human experts and learn high-level features from data
in an incremental manner. Specifically, for weather recognition tasks, convolution neural
networks have been vastly explored by many researchers.

Kang et al. [3] introduced a weather classification framework based on GoogleNet
to recognise four weather conditions—hazy, snowy, rainy and others. Their framework
was trained using the general MWI weather dataset [4] and achieved 92% accuracy. The
model outperformed multiple kernel learning-based approaches [4] and AlexNet CNN [5].
Similarly, An et al. [6] explored ResNet and Alexnet coupled with support vector machines
for weather classification. The authors evaluated the models using several multi-class
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weather datasets. The ResNet architecture outperformed AlexNet with a classification
accuracy of 92% and 88% for sunny and cloudy classes, respectively.

In Khan et al. [7], the authors developed deep learning models to recognise both
weather and surface conditions based on images from roadside webcams. Their dataset
consists of three weather conditions (clear, light snow and heavy snow) and three road sur-
face conditions (dry, snowy and wet). They explored different CNN architectures, including
ResNet-18, GoogleNet and AlexNet, and amongst the architectures, ResNet-18 achieved
the best detection accuracy with 97% for weather and 99% for road surface conditions.

Guerra et al. [8] introduced another multi-class Weather dataset called RFS, consisting
of three classes—rainy, foggy and snowy. The authors also employed ResNet architecture
to achieve 80.7% accuracy on their dataset. Later, Jabeen et al. [9] utilised inception CNN
architecture for weather detection using a new multi-class weather dataset consisting of
2000 images belonging to three classes, namely foggy, rainy and clear. Their model achieved
an average of 98% accuracy for the three classes.

Zhao et al. [10] employed CNNs coupled with recurrent networks on a multi-label
weather dataset to address the problem of more than one weather condition existing in a
single image. The dataset consists of five classes, including sunny, snowy, cloudy, rainy, and
foggy. Their architecture achieved an average F-score of 87% for the five classes. However,
the dataset used is a generalised weather dataset that is not specific to roads.

Recently, Xia et al. [11] explored ResNet CNNs to classify images in a multi-class
weather dataset called WeatherDataset-4 into different weather conditions. WeatherDataset-
4 dataset is made up of four major classes, including foggy, snowy, rainy and sunny. The au-
thors achieved an average classification accuracy of 96.03%. In addition, Togacar et al. [12]
employed GoogleNet and VGG16 Spiking Neural Networks (SNNs) for weather recogni-
tion. The weather dataset used by the authors consists of four classes: cloudy, rainy, sunny
and sunrise. The features from GoogleNet and VGG16 are combined and trained using
SNNs. The average classification result obtained with the combined CNNs and SNNs was
97.88%, which is much better than using the CNN models without SNNs.

In addition to the CNN models discussed above, due to significant improvements and
success of transformers in the natural language processing tasks [13], researchers applied
transformers to computer vision, with CNN being the fundamental component. In [14],
Chen et al. proposed an image generative pretrained transformer (iGPT) method combined
with self-supervised learning methods. This approach consists of pre-training followed by
fine-tuning stage and was inspired by unsupervised representation learning for natural
language. A sequence transformer is trained to auto-regressively predict pixels, without
considering the 2D input structure. Therefore, in this approach, sequence transformer
architecture is applied to predict pixels instead of language tokens. The proposed model
achieved 96.2% accuracy, with a linear probe on CIFAR-10. The model achieves results com-
parable to CNN models in the image classification tasks. Similarly, Dosovitskiy et al. [15]
proposed another model based on a transformer for image classification tasks named ViT.
The ViT model applies a pure transformer directly to the image patch sequences in order
to classify a complete image. Dosovitskiy et al. proposed various variants of ViT as ViT-
Base, ViT-Large and ViT-Huge, where the base and large models are adopted directly from
BERT [16]. Each variant uses brief notation to indicate the input patch size and the model
size. For instance, ViT-L/32 means the model variant “Large” with an input patch size
of 32 × 32. The largest model variant (ViT-H/14) achieved the highest accuracy of 99.5%
for the CIFAR-10 dataset. The detailed architecture of ViT is discussed later in detail in
Section 3. The models iGPT and ViT are both attempts to apply transformers to computer
vision applications. However, there are quite a few differences between the two, as follows:
(1) ViT only has a transformer encoder, while iGPT architecture is an encoder–decoder
framework; (2) ViT uniformly divides the images into a sequence of patches, whereas iGPT
takes a sequence of color palettes by clustering pixels as an input; (3) ViT is trained using a
supervised image classification task, while iGPT uses auto-regressive self-supervised loss
for training.
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The classification performance achieved in the above studies for weather recognition is
acceptable. However, the majority of the studies focused on multi-class classification, which
could be unrepresentative of real-world weather conditions where more than one weather
condition can occur simultaneously (as shown in the sample image in Figure 1). The few
studies that employ multi-label classification [10] are either implemented on a general
weather dataset or fail to make their datasets available for comparison and advancement.
In addition, the studies use carefully selected outdoor images, which create well-balanced
weather datasets. This oversimplifies the road weather detection problem, which is usually
imbalanced in nature, e.g., icy and snowy weather conditions rarely occur in the United
Kingdom (UK). The outdoor datasets also fail to include different lighting conditions and
road characteristics, making them ungeneralizable to road weather images.

We address the above limitations by proposing a multi-label weather dataset for roads
to address the problem of multiple weather existing in a single frame. In addition, as the
weather data are inherently unbalanced, an attention mechanism needs to be provided to
address those categories that are harder to learn, as those are more likely to be extreme
(rare) conditions, and their misclassification by the intelligent systems should be minimised.
Hence, the systematic approach followed in this study allows the model to focus more on
less represented classes instead of data-dominated labels to prevent training a bias network.
We also focus on feeding the model information about hard instances to avoid the gradient
being outclassed by the accumulation of the losses of easy instances. Lastly, we focus on
dynamically assigning weights to the pixels allowing the model to focus more on relevant
features during classification, which can potentially increase the model’s efficiency for
highly complex data. Specifically, the study involves identifying the potential of adapting
weighted loss and focal loss function to deal with class imbalance problems and hard-to-
learn instances in the dataset. The study also involves exploring vision transformer models
allowing the model to focus more on relevant pixels only. To the best of our knowledge,
this study is the first attempt to recognise the potential of weighted loss, focal loss and
pixel-based attention mechanism for multi-label road weather classification.

2.2. Loss Functions Explored in This Study to Deal with Data Predicaments

• Class Weighted Loss Function: The traditional cross entropy loss does not take into
account the imbalanced nature of the dataset. The inherent assumption that the
data are balanced often lead to fallacious results. Since the learning becomes biased
towards majority classes, the model fails to learn meaningful features to identify the
minority classes. Therefore, to overcome these issues, loss function can be optimised
by assigning weights such that more attention is given to minority classes during
training. Weights are assigned to each class such that the smaller the number of
instances in a class, the greater the weight assigned to that class. For each class,
Weight assigned to the class = Total images in dataset/ Total images in that class. The
weighted cross-entropy loss function is given by:

L =
N

∑
i=1

C

∑
c=1

ωc[−(yc ∗ (pc) + (1− yc) ∗ (1− pc))] (1)

where L is the total loss, c represents the class, i represents the training instance, while
C and N represent total number of classes and instances, respectively. The yc indicates
the ground truth label for the class c, and pc is the predicted probability that the given
image belongs to class c, while ωc represents the weight of the class c.

• Focal Loss Function: A focal loss function is a dynamically scaled cross-entropy loss
function. Focal loss forces the model to focus on the hard misclassified examples
during the training process [17]. For any given instance, the scaling factor of the focal
loss function decays to zero as the loss decreases, thus allowing the model to rapidly
focus on hard examples instead of assigning similar weights to all the instances. Focal
loss function is given by
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FL(po) = −αo(1− po)
γ log(po) (2)

where α and γ are hyperparameters such that setting γ greater than zero reduces
relative loss for examples that are easily classified. The hyperparameter γ >= 0 and
its value controls the loss for easy and hard instances, while α lies between [0,1] and
addresses the class imbalance problem.

2.3. Deep Learning Architectures Investigated

Several state-of-the-art CNN architectures have been successfully proposed for image
classification. Table 1 briefly describes the structure of state-of-the-art CNN architectures used
in this study, including VGG19, GoogleNet, ResNet-152, Inception-v3, and EfficientNet-B7.

Table 1. State-of-the-art CNN models assessed in this study.

Model Author Year Number of Layers Input Image Size

VGG19 Oxford University
Researchers [18] 2014 19 layers 224 × 224

GoogleNet Researchers at
Google [19] 2015 22 layers 224 × 224

ResNet-152 He et al. [20] 2015 152 layers 224 × 224

Inception-v3 Szegedy et al. [21] 2016 48 layers 299 × 299

EfficientNet-B7 Tan et al. [22] 2019 813 layers 600 × 600

3. Vision Transformers

Transformers were initially introduced for Natural Language Processing (NLP) tasks [23],
while image processing tasks usually relied on convolution neural networks. Recently,
transformers have been adopted for computer vision tasks [15] and they are called vision
transformers. Vision transformers are similar to NLP transformers, where patches of
images are used instead of sentences. Images are broken down into a series of patches and
transformed into embeddings, which can be easily fed into NLP transformers, similar to
embeddings of words.

Conventional CNNs typically assign similar attention (weights) to all the pixels of an
image during classification. As already proven in the field of NLP, introducing attention
mechanisms such that higher weights are assigned to pixels of relevant information could
lead to potentially better results and efficient models. Therefore, Vision Transformers (ViT)
capture relationships between different parts of an image allowing the model to focus more
on relevant pixels in classification problems. ViT computes relationships among pixels in
small sections of the image (also known as patches) to reduce computation time instead
of computing the relationship between each individual pixel. Each image is considered
a sequence of patches of pixels. However, to retain the positional information, positional
embeddings are added to the patch embeddings, as shown in Figure 2. These positional
embeddings are important to represent the position of features in a flattened sequence;
otherwise, the transformer will lose information about the sequential relationships between
the patches. A positional embedding (PE) matrix is used to define the relative distance of
all possible pairs in the given sequence of patch embeddings and is given by the formula:

PE(pos,2i)
= sin(pos/1000(2i/dmodel)) (3)

PE(pos,2i+1) = cos(pos/1000(2i/dmodel))

where pos is the position of the feature in the input sequence, i is used to map column
indices such that 0 <= i <= d/2, and d is the dimension of the embedding space.
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The results with the position embeddings are then fed to a transformer encoder for
classification, as shown in Figure 3. The transformer encoder module consists of a Multi-
Head Self Attention (MSA) layer and a Multi-Layer Perceptron (MLP) layer. The MSA
layer splits the given input into multiple heads such that each head learns different levels
of self-attention. The outputs are then further concatenated and passed through the MLP
layer. The concatenated outputs from the MSA layer are normalised in the Norm layer and
sent to the MLP layer for classification. The MLP layer consists of Gaussian Error Linear
Unit (GELU) activation functions.

Figure 2. Transformer vision model architecture overview.

Figure 3. Overview of the transformer encoder.

Figure 2 shows an overview of ViT. This section concludes by explaining in more detail
the attention mechanism adopted by the MSA layer.

A typical attention mechanism is based on trainable vector pairs consisting of keys
and values. A set of k key vectors is packed in a matrix K (K ∈ Rkxd) such that the query
vector (q ∈ Rd) is matched against this set of k key vectors. The matching is based on inner
dot products, which are then scaled and normalised. A softmax function is then applied
to obtain k weights. The weighted sum of k value vectors then serve as an output of the
attention. For self-attention, the vectors (Query, Key and Value) are calculated from a given
set of N input vectors (i.e., patches of images) such that:

Query = XWq, Key = XWk, Value = XWv , where Wq, Wk, and Wv are the linear
transformations with the constraint k = N, indicating that the attention is computed
between the given N input vectors.

The MSA layer refers to the “h” number of self-attention functions applied to the input,
as follows: Multihead(Q, K, V) = [head1, . . . , headh]W0, where W refers to the learnable
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parameter matrices. MSA computation is made such that query, key and value vectors are
split into N vectors before applying self-attention. The self-attention process is then applied
to each split vector individually. The independent attention modules are concatenated and
linearly transformed.

We conclude this section by summarising the image classification process of ViT using
the self-attention mechanism and encoder layer described above. Input images are split
into patches of fixed sizes and multiplied with embedding matrices. Each patch is assigned
a trainable positional embedding vector to remember the order of the input sequence before
feeding the input to the transformer. The transformer uses constant vector size in all the
layers so all the patches are flattened to map these dimensions using a trainable linear
projection. Each encoder comprises two sub-layers. The first sub-layer allows the input to
pass through the self-attention module while the outputs of the self-attention operation are
then passed to a feed-forward neural network in the second sub-layer with output neurons
for classifying the images. Skip connections and layer normalisation are also incorporated
into the architecture for each sublayer of the encoder.

4. Experiments
4.1. Proposed Dataset Description

Due to a lack of a publicly available multi-label road weather dataset, we have created
an open-source dataset consisting of road images depicting eight classes of weather and road
surface conditions, i.e., sunny, cloudy, foggy, rainy, wet, clear, snowy and icy. The images are
extracted from available online videos on YouTube captured and uploaded by ‘Alan Z1000sx’
(the YouTube account that owns the road-facing videos) using a video camera mounted on
the dashboard of a heavy goods vehicle completing journeys across the UK (a sample video
is available at [24]). The video clips captured different roads in the UK (i.e., motorways,
urban roads, rural roads, and undivided highways), different weather conditions (i.e., sunny,
cloudy, foggy, rainy, wet, clear, snowy and icy) and different lighting conditions (i.e., sunset,
sunrise, morning, afternoon, night, and evening). We downloaded 25 videos uploaded by
‘Alan Z1000sx’ with an average duration of 8 min. We developed a python script to extract
images from the videos every 10 s. A total of 2,498 images were extracted.

To annotate the images, we utilised an online annotation platform called Zooni-
verse [25]. In Zooniverse, volunteers assist researchers in data annotation and pattern
recognition tasks. We created a project in Zooniverse for annotating the images, uploaded
the images, specified the labels, and added volunteers to our project. Zooniverse provides
an easy-to-use interface for annotating the images, as shown in Figure 4. As shown in the
figure, each image could be assigned to more than one weather condition. The annotations
were carried out by two volunteers. After annotating the images, Zooniverse offers an
option to export the annotations to a comma-separated values file. Table 2 shows the
distribution of the images in different weather conditions. The dataset is imbalanced with
the majority of the images classified as clear and sunny, while icy is the least classified as
UK roads are rarely icy. Six sample images from the dataset are shown in Figure 5, and the
complete dataset is available online at [26].

Figure 4. A screenshot of using Zooniverse to annotate road weather images.
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Figure 5. Six samples of weather images from our multi-label road weather dataset.

Table 2. Class distribution of the proposed road weather dataset.

Class Number of Instances

Clear 1299

Sunny 1184

Cloudy 626

Wet 369

Snowy 147

Rainy 84

Foggy 78

Icy 3

4.2. Vision Transformers Implemented

Popular vision transformers include ViT-B and ViT-L architectures. Both architectures
differ from each other with respect to the dimension of flattened patches D such that D
equals 768 for ViT-B and 1024 for ViT-L. In this study, pre-trained ViT-B models are adopted
as their lower dimension makes them faster to train. We employ two variants of the ViT-B
model corresponding to the input patch size, including ViT-B/16 and ViT-B/32. The former
refers to the input patch size of 16 × 16, whereas the latter corresponds to a 32 × 32 patch
size. Smaller patch sizes are resource-intensive. The models are pre-trained on the 21k-
ImageNet dataset, which consists of 21k classes and 14 million images. Furthermore, the
architecture is fine-tuned on the ILSVRC-2012 ImageNet dataset consisting of 1k classes
and 1.3 million images.

4.3. Experimental Design

The training and evaluation process for the CNN architectures comprised four stages:

• Stage 1: Pre-trained the state-of-the-art CNN architectures on the ImageNet dataset.
• Stage 2: Re-trained the architectures on our proposed road weather dataset using cross

entropy loss function.
• Stage 3: Optimise the architectures using class weighted loss function.
• Stage 4: Optimise the architectures using focal loss function.
• Stage 5: Pre-trained the state-of-the-art Transformer vision models on the ImageNet

dataset.
• Stage 6: Re-trained the architectures on our proposed multi-label road weather dataset.

In the first stage, the ImageNet [27] dataset is utilised to pre-train the CNN architec-
tures: VGG19, GoogLeNet, ResNet-152, Inception-v3 and EfficientNet-B7. We chose these
architectures due to their remarkable image classification performance on the ImageNet
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dataset [28,29]. The images are first resized into the required image size for the CNN archi-
tectures, e.g., 224 × 224 for most of the models except EfficientNet-B7 and Inception-v3,
which require an input size of 600 × 600 and 299 × 299, respectively. Later, the models are
pre-trained by setting the ‘pre-trained’ parameter in the models to True (in Pytorch).

In stage 2, the pre-trained models are re-trained on our proposed road weather dataset
by replacing the number of outputs in the final fully connected layer of the CNN models
with the number of weather classes. It is important to note that ‘icy’ road weather images
were eliminated from our experiments as they were only three instances. Therefore, seven
weather classes were utilised in our experiments to re-train the models. Only the last layers
of the CNN architectures are optimised during the training process using cross entropy loss.

In the third stage, we update the cross entropy loss to incorporate the number of
images in each class (i.e., class weighted loss function). This is important to reduce the bias
of the majority classes of imbalanced datasets by providing higher weights to images from
minority classes and lower weights to images from majority classes.

In the fourth stage, focal loss function is implemented to pay more attention to classes
that are harder to learn, e.g., extreme (rare) weather conditions.

Convolution neural networks assign similar weight to all the pixels during classifica-
tion, which might lead to inefficient results, especially in a complex road image with a lot of
background noise. To tackle this, in the fifth stage, an attention mechanism is implemented
using Vision Transformers (ViT), which are pre-trained on the ImageNet dataset. In the last
stage, ViT models, namely ViT-B/16 and ViT-B/32, are re-trained on the proposed road
dataset for multi-label weather detection.

4.4. Evaluation Protocol

The CNN architectures were trained and evaluated using five-fold cross-validation
using Pytorch programming language. The optimal learning rate for the models was set to
0.001 and momentum was 0.9. A batch size of 32 and 50 epochs was utilised in training
the models. It is worth mentioning that the results obtained by the training and validation
set at each fold were averaged to evaluate the final performance of the models. We used
the following evaluation metrics to compare the performance of models: accuracy and
F1-score. Since the data are highly imbalanced, the F1-score is a better metric to evaluate
the models. Vision Transformer models were trained and evaluated using exactly the
same hyperparameter settings and the patch size of 16 × 16 and 32 × 32 for Vit-B/16 and
Vit-B/32, respectively.

5. Results and Discussion
5.1. State-of-the-Art CNN Models

Table 3 shows the multi-label classification results for the pre-trained models using
binary cross entropy loss. It can be seen that ResNet-152 outperforms the other state-of-the-
art CNN models in both accuracy and F1-score using our multi-label road weather dataset,
followed by VGG19 and EfficientNet-B7. ResNet-152 achieves an average validation
accuracy of 87.73% and F1-score of 64.22%. This result is similar to previous studies [6–8,11],
where ResNet-152 showed better performance compared to other CNN architectures.
However, the F1-score is low due to the imbalanced nature of the dataset.

After optimising the models using the class weighted loss function to reduce bias
produced by the majority classes, we observe the classification results in Table 4. The
table shows the multi-label classification results for the pre-trained models with a class
weighted loss function. Weights assigned to each class correspond to the total number images
divided by total images in that class. It can be seen that by optimising the models with the
class weighted loss function, performance has improved significantly. The best-performing
model, ResNet-152, now has an average F1-score of 71%. The CNN models VGG19,
GoogleNet, ResNet-152, Inception-v3, EfficientNet-B7 have increased by 0.29%, 2.37%,
1.4%, 1.72% and 1.71% for the weighted loss function as compared to binary cross entropy
loss. The model GoogleNet seemed to have the most significant improvement of 2.37%
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in the training accuracy when introducing weighted loss function. However, the models
VGG19 and EfficientNet-B7 are still the second and third-best models. The validation
accuracy for all the models has also increased in Table 4, with GoogleNet attaining the
most significant difference of 2.11%, while ResNet-152 is still the best-performing model
with a validation accuracy of 88.48% for the weighted loss function.

Table 3. Multi-label classification results for road weather detection using simple binary cross entropy
loss function (best performance in bold).

Model Avg Training
Accuracy Training SD Avg Validation

Accuracy Validation SD Avg F score F-Score SD

VGG19 84.19 0.005 85.14 0.002 58.50 0.008

GoogleNet 84.42 0.009 85.08 0.006 50.52 0.012

ResNet-152 87.58 0.003 87.73 0.005 64.22 0.014

Inception-v3 84.23 0.008 84.80 0.006 50.56 0.004

EfficientNet-B7 85.11 0.003 86.03 0.003 56.09 0.007

ViT-B/16 93.52 0.0118 91.92 0.0088 81.22 0.0182

ViT-B/32 94.65 0.0262 91.45 0.0065 80.48 0.0115

Table 4. Multi-label classification results for road weather detection using class weighted loss function
to force models to handle rare weather conditions (best performance in bold).

Model Avg Training
Accuracy Training SD Avg Validation

Accuracy Validation SD Avg F Score F-Score SD

VGG19 84.48 0.002 85.35 0.005 64.21 0.015

GoogleNet 86.79 0.002 87.19 0.003 63.54 0.010

ResNet-152 88.98 0.001 88.84 0.003 71.00 0.011

Inception-v3 85.95 0.004 86.87 0.004 62.52 0.009

EfficientNet-B7 86.82 0.002 87.24 0.005 63.38 0.007

ViT-B/16 95.97 0.3579 90.95 0.0076 79.18 0.0211

ViT-B/32 98.66 0.0178 90.48 0.0043 77.912 0.0073

When we focus on images that are difficult to classify, a focal loss function is used
to optimise the models. Table 5 shows that by using the focal loss function, performance
improves further. ResNet-152 still outperforms the other models with a 74.4% F1-score.
However, the best overall improvement can be seen for the model GoogleNet with a
17.74% from binary cross entropy loss to focal loss function and a 4.45% increase from
class weighted loss function to focal loss function. GoogleNet and Inception-v3 are now
the second and third-best-performing models instead of VGG19 and EfficientNet-B7. The
other models, ResNet-152, Inception-v3, EfficientNet-B7, have improved their validation
accuracy for the focal loss function by 0.44%, 0.13%, 0.39% and 0.48% as compared to the
weighted loss function. The focal loss function produces an overall better performing
and generalised model since the average F score is significantly improved for all the
models when introducing the focal loss function. The F score for focal loss has a significant
improvement of 2.07%, 4.45%, 3.4%, 3.77% and 2.77% for VGG19, GoogleNet, ResNet-152,
Inception-v3 and EfficientNet-B7, respectively, as compared to the class weighted loss
function. The best-performing CNN model for all the loss functions is ResNet-152 with an
F score of 64.22%, 71%, 74.4% for binary cross entropy, weight loss and focal loss function.
However, the focal loss function seems to outperform all other loss functions by focusing
more on hard instances. The class weighted loss function seems to be the second-best
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loss function as it assigns more weight to classes with fewer instances and significantly
improves the F score for all the CNN models, respectively.

Table 5. Multi-label classification results for road weather detection using focal loss function to force
models to handle difficult-to-classify weather images (best performance in bold).

Model Avg Training
Accuracy Training SD Avg Validation

Accuracy Validation SD Avg F Score F-Score SD

VGG19 83.90 0.003 84.85 0.005 66.28 0.012

GoogleNet 87.22 0.002 87.63 0.004 67.99 0.014

ResNet-152 89.44 0.004 88.71 0.007 74.40 0.010

Inception-v3 85.91 0.002 87.26 0.002 66.29 0.006

EfficientNet-B7 87.48 0.001 87.72 0.005 66.15 0.008

ViT-B/16 93.95 0.02942 91.26 0.0059 80.23 0.0077

ViT-B/32 94.80 0.3387 91.23 0.0050 80.25 0.0125

5.2. Vision Transformers

Lastly, given the highly imbalanced nature of our dataset, the results achieved so far
are satisfactory. However, overcoming the limitations of the CNN model, the transformer
vision model further incorporates attention mechanisms to the instances forcing the model
to focus on relevant pixels only. Tables 3–5 show the results obtained from the pre-trained
ViT models—ViT-B/16 and ViT-B/32—for binary cross entropy loss, weighted loss and
focal loss function, respectively. It can be seen that incorporating attention mechanisms
in the architecture has significantly improved the overall accuracy as well as F-score for
our multi-label road dataset. In Table 3, the validation accuracy achieved for ViT-B/16 is
91.92% along with an 81.22% F-score, and the validation accuracy achieved for ViT-B/32 is
91.45% along with 80.48%, both of which outperform all the CNN models. Nevertheless,
ViT-B/16 slightly outperforms ViT-B/32 and significantly outperforms the best-performing
focal-loss-based ResNet-152 with a 3.72% increase in the validation accuracy and 6.82%
increase in the F-score for our given dataset. In Table 4, vision transformers still outperform
the best-performing weighted loss function-based ResNet-152 significantly, with an F score
of 79.18% and 77.912% for ViT-B/16 and ViT-B/32. Similarly, in Table 5 for focal loss
function, ViT-B/16 and ViT-B/32 achieve an average F score of 80.23% and 80.25% as
compared to 74.4% for ResNet-152. Therefore, it is quite evident that Vision Transformers
outperform the CNN models for our given dataset significantly, with ViT-B/16 being the
best-performing model.

6. Conclusions

Intelligent weather detection is important to support safe driving and effective man-
agement of the transport network. Previous computer vision studies perform multi-class
weather classification, which is not always appropriate and reliable for road safety, as
multiple weather conditions are likely to occur simultaneously. In addition, the majority of
them use balanced randomly selected outdoor images, which are unrepresentative of the
real-world frequency of weather types and the unbalanced nature of road weather data. In
this paper, we have introduced multi-label deep learning architectures for road weather
classification, i.e., VGG19, GoogleNet, ResNet-152, Inception-v3, and EfficientNet-B7. To
adequately evaluate their performance, we have created a multi-label road weather dataset
using naturalistic road clips captured by onboard cameras. The dataset consists of road
images captured at different road types, different lighting conditions and different weather
and road surface conditions. Due to the imbalanced nature of the dataset, we improved
model performance using class weighted and focal loss functions to handle rare weather
conditions and hard-to-classify images. Results show significant classification improvement
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when higher weights are assigned to rare weather conditions (class weighted loss function),
e.g., snowy and icy weather, thereby reducing overfitting on frequently occurring weather
conditions, such as sunny and cloudy. Additionally, further improvement is observed when
the models are forced to focus more on hard-to-classify weather images (focal loss function).
Furthermore, we explore attention mechanisms for pixel-based dynamic weight adjustment
and segmentation to improve the models’ performance. This is essential in separating the
road layouts from the background and providing higher weights to pixels depending on
the weather conditions. For example, cloudy weather can be easily recognised by analysing
the background (clouds) and wet weather by analysing the road. This was achieved using
transformer vision models, ViT-B/16 and ViT-B/32, which outperformed all other CNN
architectures. For future work, Grad-CAM interpretation can be implemented to observe
an in-depth visual explanation to understand the learning process of ViT models under
these scenarios.
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