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Abstract: In view of the fact that the aerial images of UAVs are usually taken from a top-down
perspective, there are large changes in spatial resolution and small targets to be detected, and the
detection method of natural scenes is not effective in detecting under the arbitrary arrangement of
remote sensing image direction, which is difficult to apply to the detection demand scenario of road
technology status assessment, this paper proposes a lightweight network architecture algorithm
based on MobileNetv3-YOLOv5s (MR-YOLO). First, the MobileNetv3 structure is introduced to
replace part of the backbone network of YOLOv5s for feature extraction so as to reduce the network
model size and computation and improve the detection speed of the target; meanwhile, the CSPNet
cross-stage local network is introduced to ensure the accuracy while reducing the computation. The
focal loss function is improved to improve the localization accuracy while increasing the speed of the
bounding box regression. Finally, by improving the YOLOv5 target detection network from the prior
frame design and the bounding box regression formula, the rotation angle method is added to make
it suitable for the detection demand scenario of road technology status assessment. After a large
number of algorithm comparisons and data ablation experiments, the feasibility of the algorithm was
verified on the Xinjiang Altay highway dataset, and the accuracy of the MR-YOLO algorithm was as
high as 91.1%, the average accuracy was as high as 92.4%, and the detection speed reached 96.8 FPS.
Compared with YOLOv5s, the p-value and mAP values of the proposed algorithm were effectively
improved. It can be seen that the proposed algorithm improves the detection accuracy and detection
speed while greatly reducing the number of model parameters and computation.

Keywords: deep learning; pavement refill detection; MobileNetv3; CSPNet; YOLOv5s

1. Introduction

Nowadays, China’s vehicle ownership is gradually increasing, and the highway and
other traffic facilities have also put forward higher requirements. At the same time, along
with the long-term use of China’s highways, the impact of vehicle loads, the natural envi-
ronment, and other factors lead to different degrees of quality problems; highway pavement
damage caused by traffic accidents frequently occurs, seriously affecting people’s travel
safety. In order to prolong the service life of the highway and ensure safety performance, it
is necessary to carry out stage tracking inspection to discover its loss parts in time so that
certain measures can be taken effectively to prolong the life of the structure [1,2] and to
prevent the occurrence of catastrophic accidents [3,4]. At present, the detection of pave-
ment diseases in China also requires regular safety inspections by specialized pavement
management departments, which then carry out maintenance and repair. Commonly used
road maintenance condition inspection methods include two major categories: manual
inspection and multifunctional road vehicle inspection. Although manual inspection can
offer more complete statistics of pavement disease type, distribution, and size, the detection
efficiency is low, there is a need to close traffic, and the detection results are subjective judg-
ments. This method is no longer applicable to today’s pavement maintenance inspection
technology needs. The multifunctional inspection vehicle detection basically does not affect
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the traffic, but there are defects such as disease identification, positioning, and measure-
ment that need manual assistance. In addition, there are still problems of low efficiency and
accuracy of detection. With the rapid development of the field of unmanned aircraft, the
target detection technology under the UAV has increasingly become the focus of research
in the field of computer vision at home and abroad, the technology has a huge practical
application value in both civilian and military fields, and the application prospects are
very broad. Compared with manual detection and multifunctional road inspection vehicle
detection, UAV detection has the advantages of high detection efficiency and does not
affect traffic. However, when using UAVs to detect small targets, it is difficult to maintain
the detection rate while ensuring the detection accuracy of the target. Therefore, a method
with good real-time performance and high detection accuracy needs to be designed to solve
the above problems.

The development of deep learning has experienced a long start and has continued
to develop rapidly over the years, receiving more and more attention from domestic and
foreign researchers and scholars, and many of them have put forward innovative ideas to
explore more development potentials in the field of deep learning. In terms of engineering
applications, deep learning technology is integrated into all aspects of people’s daily life,
such as intelligent transportation, intelligent medical care, security services, etc. Due to the
rapid growth of computing power, target detection of remote sensing images has received
more and more extensive attention in the field of computer vision. Initially, the application
of deep learning target detection algorithms in the field of remote sensing was based on
target detection models with excellent performance in generic scenes and then transplanted
to the remote sensing domain images with a certain degree of adaptive optimization. Along
with the great achievement of Alexnet [5] in the ImageNet visual recognition challenge,
more and more deep learning models were proposed and applied to highway disease
detection and protection. Common deep learning target detection methods are divided
into two major categories based on the presence or absence of candidate frame generation
stages:single-stage target detection algorithms and two-stage target detection algorithms.
Two-stage target detection algorithms are used to generate candidate regions through
specialized modules first and then make secondary corrections to the candidate frames to
finally achieve the detection map, which are represented by R-CNN [6], Fast R-CNN [7],
and Faster R-CNN [8]. The two-stage algorithms have slow detection speeds and a high
accuracy rate. The single-stage target detection algorithm uses the idea of target regression
to generate detection results by direct feature extraction calculation of the image, which
is represented by YOLO [9–11], and SSD [12]. The single-stage algorithm is fast, but the
accuracy is low.

Deep learning-based disease detection methods allow for better target feature ex-
traction and classification. Cha et al. [13] took the form of sliding windows to segment
images into blocks and used convolutional neural networks for feature extraction and
classification of road pavement diseases. L Zhang et al. [14] used local block information
of images and convolutional neural networks to determine the type of road diseases in a
single block of images. Ale L et al. [15] compared the detection performance of SSD and
RetinaNet using a dense convolutional network, a deep residual network, and a visual
geometry group network as backbone networks for the road pavement distress task. The
aforementioned algorithms are highly accurate in detecting highway pavement distress
and protection, but they are unable to achieve accurate localization during the detection
process. To be able to locate the location of road pavement diseases, Ju et al. [16] used Fast
R-CNN for road disease detection, which achieved high accuracy but poor detection speed
and failed to meet the real-time requirement. Rasyid et al. [17] used Faster R-CNN for
disease detection, which had problems such as low detection accuracy and low efficiency.
Kanaeva et al. [18] used Mask R-CNN and U-Net based for pavement crack detection with
good accuracy. Mead H et al. [19] used a generative adversarial network combined with
Poisson mixing to merge the disease images, while the synthesized disease images were
fed into the training set, resulting in a 5% improvement in F1-Sscore metrics. Naddaf-Sh S
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et al. [20] implemented the EfficientDet model based on the detection of road pavement
distress. Mandal V et al. [21] compared the performance of YOLOv5, EfficientDet, and
CenterNet models on the pavement distress detection task. However, it is difficult for the
above methods to maintain high accuracy in pavement disease detection while achieving
the application requirements of real-time detection.

Our research contributions are as follows: an arbitrarily oriented target detection
method based on YOLOv5 is proposed. To better match image features, a new boundary
discontinuity-free rotation detector is used to solve the angular periodicity problem by
transforming the angular regression problem into a classification problem, and the angular
error after classification is evaluated using the long-edge representation. At the same
time, the feature network of the original network was improved. A MobileNetv3-based
lightweight network structure is used to replace part of the YOLOv5s backbone structure,
thereby reducing the computational effort. To find regions of attention in a specific large
range of images, we use a cross-stage local area network module to replace part of the
MobileNetv3 network structure. Finally, by balancing the focus loss and incorporating LRM,
the detection performance is improved, and the detection method is further optimized for
remotely sensed images.

2. Methodology
Background of YOLOv5

Target detection based on remote sensing images has high requirements for algorithm
accuracy and real-time, and the target size scale varies, while the YOLO algorithm is a
current detection algorithm with good real-time detection and accuracy and adapted to
multi-scale target detection, and the algorithm is now increasingly used in industrial fields.
Compared to previous versions, YOLOv5 features fast detection, high recognition rates,
and is lightweight. Based on its small size YOLOv5s is ideally suited for deployment into
embedded devices for the detection of remotely sensed image targets. Therefore, based on
the comprehensive consideration of recognition accuracy and detection speed, this paper
uses YOLOv5s, which has relatively high recognition accuracy and the fastest detection
speed, to study and improve and optimize its network structure to achieve the demand of
real-time target detection.

The YOLOv5 model differs in the depth and width of the network, which can be
divided into s, m, l, and x in increasing size, all consisting of four parts: Input, Backbone,
Neck, and Head. The input uses Mosaic data augmentation to randomly scale, randomly
arrange, and randomly crop the image, and finally stitch the image; the adaptive initial
anchor frame calculation is to set the initial anchor frame adaptively before the neural
network training so as to output the predicted frame and compare it with the real frame;
the image scaling adaptively adds a minimum black edge to both ends of the image and
transforms it into a fixed size before feeding it into the neural network model Backbone
uses Focus processing to increase the number of features in the image without changing the
information in each feature, the role of the Focus is to slice the input image to ensure that
the feature information is not lost without downsampling, reducing the number of network
model parameters while increasing the speed of network inference, the slice operation is
shown in Figure 1. The CSP structure refers to the use of residual components to make
the algorithm lighter and improve the learning capability of the model while reducing the
computational effort, and the SPP pooling pyramid structure enhances the ability to extract
feature information from the images by increasing the perceptual field.

Neck mainly improves the residual network (ResNet) [22] and implements a multi-
scale feature fusion network with FPN [23] + PAN [24] structure. The FPN layer conveys
semantic information from the top down through upsampling, while the PAN layer conveys
localization information from the bottom up through downsampling so that the features
extracted from the backbone network and the detection network can be aggregated to
improve the network’s feature fusion capability. The main function of the Head is to
identify and classify the images to be detected, and there are three detection heads. Three
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loss functions are used to calculate the classification, localization, and confidence losses,
respectively, and to improve the accuracy of the network prediction through NMS. The
network structure of YOLOv5 is shown in Figure 2.
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3. Proposed Method

The MR-YOLO model is optimized on the basis of YOLOv5s, and the improved
structure is shown in Figure 2. The overall network structure consists of three parts:
backbone network, feature fusion network, and output layer. The model applies the
lightweight network structure MobileNetv3, replacing its backbone network (backbone)
with the improved MobileNetv3-YOLOv5 structure. MobileNetv3 greatly improves the
module processing speed, increases the efficiency of the overall model, and reduces the
model size. The CSPNet network structure is also introduced in the backbone network
to eliminate the duplicate features and computational bottlenecks generated during the
computation, further ensuring the accuracy and speed of the model. Finally, the output
layer replaces the original loss function on the basis of the focal loss function to solve the
loss problem caused by sample imbalance. The improved structure is shown in Figure 3.
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Figure 3. Network structure diagram of improved YOLOv5. The components DBH + CBH form the
feature extraction network part. CBH: consists of three components Conv + BN + H-wish activation
function. DBH: consists of two components depth separable convolution + point convolution.

3.1. Improving the MobileNetv3-YOLOv5 Model
3.1.1. MobileNet Model

The core idea of the MobileNet series network is to introduce the deep separable
convolution operation, which divides the standard convolution filter into two structures:
deep convolution and point convolution. Compared with the classical CNN model, it
mainly replaces some of the fully-connected layers to achieve the effect of reducing the
computational effort and network parameters. The standard convolution process is to
multiply the convolution kernel with the corresponding bit phases of the feature map and
then add them together. The standard convolutional structure is shown in Figure 4.
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Assuming that the standard convolution corresponds to a constant length × width of
the input and output, and the convolution process is to convert the output layer with an
input of DF×DF×M into an output layer of DF×DF×N, the computation of the standard
convolution kernel is:

DF × DF × DK × DK ×M (1)

In the equation, DF×DF is the length × width of the input or output layer, DK×DK is
the scale of the convolutional kernel filter, and M,N represents the number of input and
output channels.

The depth separable convolution idea is to achieve the fusion between the information
of each channel without feature combination, using only the depth convolution to perform
the convolution operation for each channel alone, and then the point convolution to achieve
the function by using 1 × 1 convolution. When the size of the convolution kernel of depth
convolution and point convolution is DK×DK and 1 × 1, the feature map is input to the
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depth convolution layer, and a single output is obtained after the convolution operation,
which is used as the input of point convolution, and the depth feature output is obtained
after the convolution operation. The depth separable convolution structure is shown in
Figure 5. The computational quantities of depth convolution and point convolution are:

DF × DF × DK × DK ×M× N (2)

DF × DF ×M× N (3)
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The total computation of deep separable convolution is:

DF × DF × DK × DK ×M + DF × DF ×M× N (4)

The ratio of the computation of the depth-separable convolution to that of the standard
convolution is:

DF × DF × DK × DK ×M + DF × DF ×M× N
DF × DF × DK × DK ×M× N

=
1
N

+
1

D2
K

(5)

MobileNetv3 [25] is a lightweight network architecture that has been improved from
the previous two generations by the NetAdapt algorithm and the neural architecture
search MNAS algorithm. mobileNetv3 first combines the deep separable convolution of
MobileNetv1 [26], the inverse residual structure of MobileNetv2 [27]. Then, by introducing
the light-weighted SE (Squeeze and Excitation) attention mechanism in MnasNet, the net-
work focuses on more favorable channel information to adjust the corresponding weights
of each channel; finally, the original swish function is replaced by the h-swish activation
function. Finally, the original swish function is replaced by the h-swish activation function
to ensure that the computation is greatly reduced under the condition of a certain number
of parameters, which effectively improves the recognition accuracy of the model. The
purpose of introducing the MobileNetv3 model in this paper is to reduce the computation
to reduce the size of the model and improve the detection accuracy.

3.1.2. CSPNet Network

Cross Stage Partial Network (CSPNet) [28] was proposed mainly to solve the problem
that the use of neural networks requires a large amount of inference computation, and
people need to rely on expensive computational resources. The proposed network enables
the detection model to achieve richer gradient combination information, enhances the
learning ability of CNN, and reduces the computational effort. By dividing the feature map
of the base layer into two parts, SHORT PART, and MAIN PART, and then merging them
using a cross-stage hierarchy. By splitting the gradient streams, CSPNet makes the gradient
streams propagate through different network paths. Meanwhile, the CSPNet structure
will be used as CSPDarknet53 and CSPResNeXt, which are often applied in the ResNet
structure and Darknet53 module to reduce the computation and improve the accuracy of
experimental results. In summary, it can be seen that CSPNet can effectively reduce the
memory cost in the training process, greatly reduce the computation, and improve the
inference speed and accuracy. The flow chart of the CSPNet module is shown in Figure 6.
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3.2. MobileNetv3-YOLOv5 Based Network Model

This model is a feature extraction operation by replacing the Backbone backbone
network of YOLOv5 with a MobileNetv3-based backbone network. Since MobileNetv3
is a lightweight model, it can be used to improve the detection speed of targets by tak-
ing advantage of its characteristics of fewer parameters, faster speed, and lower memory
consumption, which can increase the operation speed while reducing the number of pa-
rameters. MobileNetv3 combines the four features of MobileNetv1 and MobileNetv2. First,
the 1 × 1 convolution is up-dimensioned, the inverse residual structure of MobileNetv2 is
introduced; then the multi-channel depth-separable convolution kernel is operated, and
finally, the fusion of feature maps is completed after the point convolution operation to
reduce the size of the network model. The experiments show that the training speed of the
model is further accelerated by using the features of MobileNetv3 and the fast real-time
data processing of YOLOv5 to achieve the effect of real-time. The Spatial Pyramid Pooling
Network (SPPNet) is introduced to convert the feature maps obtained from deeply sepa-
rable convolution operations into feature vectors matching the fully connected layers to
enhance the perceptual field and thus improve the accuracy of the feature map information.
The speed of the candidate frame is improved by avoiding the repeated computation of
convolutional features. Finally, the Cross Stage Partial Network (CSPNet) is introduced
to eliminate the duplicate features and computational bottlenecks generated during the
computation, which reduces the size of the model and ensures the training speed and
accuracy of the model.

3.3. MobileNetv3-YOLOv5 Based Network Model

The loss function used in YOLOv5s is the GIoU function [29], which is an improved
version of the intersection-over-union (IoU) function [30]. IoU evaluates the performance
of the target detector and is used to calculate the ratio of intersection and concurrence
between the predicted and true frames. GIoU, on the other hand, introduces a penalty term
on top of IoU to more The GIoU is a penalty term based on IoU to reflect the intersection
ratio between the predicted frame and the real frame more accurately. The specific formulas
for both are as follows:

IoU =
|A ∩ B|
|A ∪ B| (6)

GIoU = IoU − |C− (A ∪ B)|
|C| (7)

In the formula, A denotes the predicted detection box, B denotes the true detection
box, and C denotes the area of the smallest rectangular box that contains both the detection
box and the true box, |C− (A ∪ B)| indicating the penalty term.

GIoU can better distinguish the position relationship between the predicted detection
frame and the real detection frame when the two frames are in the case of complete
intersection, GIoU = 1; when the two frames do not intersect, the farther the distance, the
closer the GIoU is to −1. However, when the detection frame and the real frame appear in
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the special case contained in Figure 7, the penalty in GIoU is 0, which will degenerate to
IoU, and cannot reflect the relative positions of the two frames. At the same time, it appears
in the calculation process that the prediction box is difficult to optimize in horizontal and
vertical directions, and the convergence speed is slow.
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Figure 7. Schematic diagram of the relationship between the predicted frame and the real
frame position.

To solve the above problem, the DIoU [31] loss function is proposed, which not only
can reflect the position distance under the complete inclusion of the box, but also converges
faster than the GIoU function, and its expression is as follows:

DIoU = IoU − p2(b, bgt)

c2 (8)

In the formula, b, bgt are the positions of the centre points of the predicted and true
detection frames, respectively; p denotes the Euclidean distance between the two points;
c denotes the diagonal distance of the minimum closure region containing the two boxes.

CIoU [32] is an evolved version of a series of IoUs. The original DIoU loss value is
relatively homogeneous and lacks a basis for judgment, so there is CIoU, which adds the
penalty of aspect ratio and is no longer homogeneous but contains multiple comparison
criteria such as distance to the center point and overlap area, which can ensure faster
convergence of the prediction frame and higher accuracy of regression localization during
training. In addition, for multi-parameter regression loss and inconsistency between
objective function and evaluation index, CIoU performs best. Therefore, CIoU is selected
as the frame regression loss function of the baseline algorithm in this paper. The formula of
CIoU is shown in the following equation:

LCIoU = 1− IoU(A, B) + p2(Actr, Bctr)/c2 + αν (9)

α =
ν

1− IoU + ν
(10)

ν =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(11)

In the formula, Actr indicates the point coordinates of the centre of the prediction
frame,Bctr indicates the point coordinates of the centre of the real frame, wgt and hgt

indicate the width and height of the real frame, and w and h indicate the width and height
of the prediction frame.

In the algorithm of this paper, the way in which the rotation frame is defined is deter-
mined. The baseline algorithm structure needs to be optimized to support the prediction
of rotating frames, and a new rotation angle prediction channel θ is added to the original
Head structure to achieve the prediction of rotating frames. As shown in Figure 8, the
improved Head structure is illustrated in detail. The remote sensing image is extracted
by the feature extraction network layer and Neck layer to obtain the final detection layer
P, which has a channel dimension of 3 × (C + 6). The CIoU Loss is also used to opti-
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mize the position and shape of the long-edge definition method [33] to obtain the final
prediction results.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 18 
 

 

ν
να

+−
=

UIo1  (10)

2
2 arctanarctan4

）（
h
w

h
w
gt

gt

−=
π

ν  (11)

In the formula, ctrA  indicates the point coordinates of the centre of the prediction 

frame, trBc  indicates the point coordinates of the centre of the real frame, 
gtw  and gth  

indicate the width and height of the real frame, and w and h indicate the width and height 
of the prediction frame. 

In the algorithm of this paper, the way in which the rotation frame is defined is de-
termined. The baseline algorithm structure needs to be optimized to support the predic-
tion of rotating frames, and a new rotation angle prediction channel θ is added to the 
original Head structure to achieve the prediction of rotating frames. As shown in Figure 8, the 
improved Head structure is illustrated in detail. The remote sensing image is extracted by 
the feature extraction network layer and Neck layer to obtain the final detection layer P, 
which has a channel dimension of 3 × (C + 6). The CIoU Loss is also used to optimize the 
position and shape of the long-edge definition method [33] to obtain the final prediction 
results. 

 
Figure 8. MR-YOLO: Head Detail Inspection Chart. 

Among them, the sample matching and border encoding process during training is 
exactly the same as the baseline YOLOv5. The main difference is that θ is also encoded. 
This paper makes use of the characteristics of the output value interval of the Sigmoid 
function to further prevent the network structure angle prediction value from exceeding 
the defined range of the long-edge representation. The optimized loss component consists 
of four parts: confidence loss, class classification loss, edge regression loss, and theta angle 
classification loss. For real scenarios where there are samples that are difficult to be 
learned, Focal Loss [34] has a good role in regulating the samples. By using a balancing 
factor α as well as a hyperparameter adjustment factor γ , the final Focal Loss formula 
output is shown below. The probability corresponding to the predicted class of the model 
is represented by p, and y is the sample class label, which takes the value of 1 or 0. 





=−−−
=−−

=
0),1(log)1(

1,log)1(
),(

ypp
ypp

ypFL
a

a
γ

γ

α
α

(12)

The main training process of this network is divided into extracting the category data 
and regression data first, coding the regression variables in order to reduce the difficulty 

Figure 8. MR-YOLO: Head Detail Inspection Chart.

Among them, the sample matching and border encoding process during training is
exactly the same as the baseline YOLOv5. The main difference is that θ is also encoded.
This paper makes use of the characteristics of the output value interval of the Sigmoid
function to further prevent the network structure angle prediction value from exceeding
the defined range of the long-edge representation. The optimized loss component consists
of four parts: confidence loss, class classification loss, edge regression loss, and theta angle
classification loss. For real scenarios where there are samples that are difficult to be learned,
Focal Loss [34] has a good role in regulating the samples. By using a balancing factor ff as
well as a hyperparameter adjustment factor fl, the final Focal Loss formula output is shown
below. The probability corresponding to the predicted class of the model is represented by
p, and y is the sample class label, which takes the value of 1 or 0.

FL(p, y) =
{
−α(1− p)γ loga p, y = 1

−(1− α)pγ loga(1− p), y = 0
(12)

The main training process of this network is divided into extracting the category data
and regression data first, coding the regression variables in order to reduce the difficulty of
network learning, and finally calculating the loss. For YOLOv5, which is a multi-category
label detection algorithm, the rate NMS algorithm is used to remove redundant frames
to achieve the final result in order to improve the detection rate of blurred categories in
aerial scenes. Finally, for the effect of foreground-background samples in the actual scene,
LRM [35] can filter out low-loss values and leave high-loss values that benefit the detector.
In this paper, a feature map ranking factor is used to find the most suitable high-loss value.
For example, if b = 0.1 and the feature map size is 3 × 40 × 40, the 480 cells with the highest
detection loss are selected, and the remaining cells are excluded from the backpropagation
process, further gaining improved detection performance. The final loss was calculated
as follows.

Losstotal = λLosscls + βLossCIoU + αLossangle + γLosstheta (13)

4. Experiments

This paper is implemented based on the Pytorch 1.7 deep learning framework, us-
ing GPU for training. The model uses Adam as the optimizer during training, and the
specific configuration of the experimental environment is shown in Table 1 based on the
existing configuration.
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Table 1. Experimental environment configuration.

Attribute Value

OS Ubuntu 20.04

GPU NVIDIA RTX 3090Ti

Memory 24 GB

Deep learning framework Pytorch1.7

CUDA 11.0

The relevant experimental parameters are as follows: lr denotes the learning rate,
momentum denotes the learning rate momentum, weight_decay denotes the weight decay
coefficient, epoch denotes the training batch, and batchsize denotes the batch size, as shown
in Table 2.

Table 2. Network parameters of MR-YOLO.

Lr0 Momentum Weight_Decay Epoch Batchsize

0.01 0.937 0.0005 300 32

4.1. Experimental Dataset

There is currently no large-volume traffic road patching dataset available at home
or abroad, and this experiment uses a homemade dataset from the Big Data Smart IoT
Lab at Xinjiang University. The dataset was captured on a road section in Altay, Xinjiang,
and the whole process was carried out by a UAV. To ensure the accuracy of the detection
results, 2500 images containing road patch marks were captured, each with a size in the
range of 4000 × 4000 to 5472 × 5472. The 2500 images were randomly divided into a
training set and a validation set in the ratio of 8:2, with 2000 images for the training set and
500 images for the validation set. The images were resized to 640 × 640 before training, and
all image labels were chosen to be labeled with directed data and converted to long-edge
representation for training and prediction. Figure 9 below shows a section of the image
containing traces of oil filler.
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4.2. Long Edge Marking Method

Due to the existence of complex scenes and diversity in target scales in the oil replen-
ishment dataset, a large number of small, cluttered, and rotating targets are very sensitive
to angular changes, while it is difficult to accurately detect the area information of the target
object using horizontal bounding boxes, which cannot meet the detection requirements, so
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the rotating box annotation method is adopted in this paper. According to the previous
literature on rotating frame detection, there are two main types of common methods for
defining arbitrary rotating frames, namely the five-parameter definition method [36] and
the eight-parameter quadrilateral definition method [37–39]. The five-parameter definition
method can be described as the representation of a rotating frame with angular informa-
tion. Opencv and long-edge representations are common five-parameter representations.
Opencv contains five main parameters [x,y,w,h,θ]. Among them, θ indicates the direction
of the range of 360 degrees, 180 degrees, and 90 degrees three because the research object
of this paper does not need to strictly determine the object’s positive and negative, so
the main take is 180 degrees and 90 degrees two. The following Figure 9a indicates that
the angled label varies within 90 degrees, the angle is at an acute angle to the x-axis, the
angle label information is independent of the length and width, the detection method has
interchangeability between the long and wide sides, i.e., w is either long or wide. Although
the angular training loss is reduced by compressing the angular range, it also increases
the difficulty of regression of the aspect and further reduces the convergence speed of the
neural network due to the periodicity problem of angular rotation, which is not satisfactory
in practical application scenarios. Figure 10b indicates that the angle labels vary within
180 degrees, which defines the long side as the angle between the x-axes so that the aspect
is always unique. This approach has a large loss of neural network angle during training,
but the actual angle difference is small. Angle regression in this approach is more difficult
due to the periodicity of the angle.
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Despite the competitive performance detection advantages achieved by parametric
regression-based rotation detection methods for vision, these methods have largely suffered
from boundary problems. Based on the above analysis, some methods have been proposed
to address these problems, such as IoU-Smooth L1 Loss [40] to eliminate the problem of
sudden increases in boundary loss by introducing an IoU constant factor to modularise the
rotational loss [41] to increase the boundary constraint. However, these methods are still
regression-based detection methods and do not provide a solution to the root cause. To
address a series of problems with sudden increases in loss values and difficulty in learning
the target angle by the network, the angle regression approach is converted to a categorical
form by introducing CSL labels while using a Gaussian function as a window function
so that the loss value between the actual angle of the target and the Gaussian label of
the model’s predicted angle is calculated when calculating the angle loss. By converting
the angle regression problem to a classification task, the total category is 180, which is a
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multi-category task, so BCEWithLogitsLoss is used as the loss function for the angle. In
this paper, the window radius r is 6. The specific expression for the ring smoothing label is
as follows:

CSL(x) =

{
ae−(x−b)2/2c2

, θ − 6 < x < θ + 6
0, otherwise

(14)

In the formula, a, b and c are real constants, and a > 0. θ is the angular value of
the rotation.

4.3. Experimental Evaluation INDEX

Remote sensing image target detection usually uses several metrics to evaluate algo-
rithms, and this experiment uses mean Average Precision (mAP), Precision (P), and Frame
Per Second (FPS) as the main evaluation criteria. Precision represents the proportion of
correctly branched oiling targets. For example, if there are ten oiled targets in an image and
the algorithm detects only five targets, three of which are oiled targets, then the precision
is 60%. The recall represents the proportion of the number of positive samples in the
network that are detected. For example, if there are ten oil-filled targets in an image, and
the algorithm detects five oil-filled targets, then the recall is 50%. Mean accuracy (mAP)
indicates the accuracy of multiple sets of data and is averaged. Frames per second (FPS)
indicates how many images can be processed per second. Their calculation process is
shown in Formulas (15)–(18).

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

AP =

1∫
0

PdR (17)

mAP =
1
N

C

∑
C=1

APC (18)

In the formula, FP indicates the number of false detections in the test; TP indicates
the number of correctly detected samples in the test; FN indicates the number of cor-
rect samples predicted as false samples in the test; APC represents the AP value of the
Cth category.

4.4. Experimental Results and Analysis
4.4.1. Effectiveness Experiments

In order to fully validate the effectiveness of the module improvements in this paper,
experimental analysis was conducted on the road refueling dataset of the Big Data Smart
IoT Lab at Xinjiang University to verify the importance of each of the proposed components.
The experiments use YOLOv5s as the baseline model and embed each component into the
baseline model in turn, where improvement a indicates that the Backbone backbone net-
work of YOLOv5 is replaced with the MobileNetv3-based backbone network to perform the
feature extraction operation; improvement b indicates that the CSPNet network structure is
introduced in the backbone network to eliminating duplicate features and computational
bottlenecks generated during computation; improvement c indicates the use of long-edge
representation to achieve rotation of the target frame, replacing the effect of periodic varia-
tions induced by the regression problem on network training with classification ideas. The
same hyperparameters and training techniques were used in each set of experiments, and
the results of the ablation experiments are shown in Table 3.
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Table 3. Experimental comparisons of each combination in the feature extraction network.

Method MobileNetv3 CSPNet CSL P/% mAP@0.5/% mAP@0.95/%

YOLOv5 82.7 84.1 64.5

a
√

81.9 83.5 58.3

b
√

84.5 86.2 67.1

c
√

87.3 88.1 68.8

d
√ √

85.3 87.8 70.4

e
√ √

89.4 89.6 71.3

Ours
√ √ √

91.1 92.4 71.9

From Table 3, it can be seen that the improved method proposed in this paper has
different degrees of improvement in algorithm accuracy and average precision compared
to the original YOLOv5s algorithm on the homemade dataset, where the CSL module repre-
sents a long-edge representation to achieve rotation of the target frame, using classification
ideas instead of the impact of periodic changes induced by the regression problem on
the network training, the module detects the best improvement, with algorithm accuracy
and average accuracy improved by 4.6%, 4%, and 4.3%, respectively. The addition of the
MobileNetv3 module reduces accuracy and average precision. However, when combined
with the CSPNet module, the accuracy and average precision improved by 2.6%, 3.7%,
and 5.9%. The effectiveness of the different improvement methods proposed in this paper
was again demonstrated through ablation experiments, where the accuracy and average
accuracy of the MR-YOLO algorithm proposed in this paper were higher than the detection
results of the base value YOLOv5s, where the p-value was improved by 8.4% and the
mAP by 8.3% and 7.4%, respectively. It is verified that the algorithm proposed in this
paper can better deal with the detection and identification of road refills based on remote
sensing images.

4.4.2. Performance Comparison

In addition, in order to further verify the effectiveness of the algorithm proposed in
this paper, the algorithm proposed in this paper was also compared with other remote
sensing image target detection algorithms for experimental analysis and validated on the
validation set. The results are shown in Table 4. According to the comparative experiments
in Table 4, it can be seen that the algorithm proposed in this paper achieves the best results
in terms of p-value and mAP-value.

Table 4. Performance comparison of different algorithms.

Model P mAP@0.5/% mAP@0.95/% FPS/f*s−1

YOLOv3 83.2 85.3 65.1 75.9
MobileNetv3 + YOLOv3 85.1 86.2 57.7 78.3

MobileNetv3 + YOLOv3 + CSPNet 86.5 87.4 66.2 74.7
YOLOv3-Tiny 85.3 87.2 65.3 80.4

YOLOv5s 82.7 84.1 64.5 131.7
MobileNetv3 + YOLOv5s 83.4 85.5 66.3 128.5

MobileNetv3 + YOLOv5s + CSPNet 86.8 88.3 67.5 112.1
MobileNetv3 + YOLOv5s + CSL 87.1 89.3 70.9 105.8

SwinTransformer + YOLOv5s 85.4 86.7 58.3 59.5
SwinTransformer + YOLOv5s +

CSPNet + CSL 90.1 91.3 70.9 65.8

Ours 91.1 92.4 71.9 96.8

From Table 4, it can be concluded that the algorithm in this paper outperforms several
other detection algorithms in general when performing detection on the oil replenishment
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dataset. Compared to the YOLOv3 model, the introduction of MobileNetv3 and the
combination of CSPNet, etc., will greatly improve the detection accuracy but is not the
optimal solution, and the average mean and FPS are not the most suitable to meet the needs
of high accuracy detection and real-time detection. The method proposed in this paper
combines the above-mentioned shortcomings, and through comparison experiments, it
can be seen that the MR-YOLO detection algorithm has great advantages in the detection
and identification of pavement oil fillings. The accuracy of this algorithm is 91.4%, the
average accuracy is 92.4%, and the average detection time is 96.8 ms per frame on the oil fill
data set.

In this paper, the refueling dataset is selected for testing under different conditions,
which include normal altitude in the same flight environment and flight altitude in different
environments. The influencing factors include different scales, different target sizes, and
different background conditions to compare and validate. The YOLOv5s algorithm was
used for comparative analysis with the algorithm in this paper, and the test results are
shown in Figure 11a–d.
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Some of the detection results of the proposed algorithm in this paper are shown in
Figure 10 above. It can be seen that the detection results of the algorithm proposed in
this paper are better than the YOLOv5s algorithm in a normal environment. Figure 10a,b
shows the proposed algorithm in this paper has high detection accuracy, can detect more
ultra-small targets, and has higher advantages in the detection scenario for small targets.
As for the detection of the oil replenishment category with arbitrary directional rows and
varying target scales, the effect of the prediction frame of the algorithm proposed in this
paper is closer to the real shape while further solving the influence of background on
target classification, and the comparison results are shown in Figure 10c,d. It is further
demonstrated that the algorithm in this paper is more accurate than YOLOv5 detection and
reduces the problem of expanding the target detection area by the horizontal boundary
prediction frame and causing losses caused by the later road assessment and maintenance
stages; this detection performance is further enhanced in the detection of remote sensing
images with obvious scale variations.

By comparing the detection results of the algorithm in different environments at
different flight heights, as shown in Figure 11, it can be concluded that the detection effect
of the algorithm proposed in this paper is better and can be more suitable for the detection
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needs of the technical state of the road. From Figure 11a,b, it can be concluded that in the
scenario where the target image is not horizontal, the use of the rotation detection method
proposed in this paper can improve the detection accuracy and better match the real target
frame, which further provides accurate data for the subsequent real road inspection and
maintenance. At the same time, it can be seen from Figure 12c,d that in the detection of
ultra-small targets, the algorithm proposed in this paper has a better detection effect and
can clearly detect the target in the ultra-long range environment.
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5. Conclusions

For UAV-based pavement refill detection and recognition, the common algorithms
for natural scenes cannot meet the problems of detection accuracy and detection rate, as
well as the demand of practical application scenarios; this paper proposes an improved
MR-YOLO detection algorithm for YOLOv5s. The algorithm introduces the MobileNetv3
lightweight network structure and enhances the extraction capability of feature maps
by incorporating this module in the feature extraction network, reducing the model size
and increasing the detection rate while using the CSPNet network structure to eliminate
computational bottlenecks and making the algorithm better meet the demand for real-time
detection. In addition, a rotating frame is used to cope with the difficulty of obtaining
orientation information about the target object’s motion in a horizontal bounding frame,
while a circular labeling method is used to reduce the impact of variation in loss values
for the periodicity problem caused by angular regression. Finally, the focal loss function is
improved to further enhance the detection accuracy. The effectiveness of the MR-YOLO
network model is verified by scar identification experiments under the road refill dataset.
The comparison of experimental results with other algorithms shows that the proposed
algorithm in this paper has improved the p-value, mAP-value, and FPS are all higher than
those of the YOLOv3 model. However, the angles of the oil-filled images captured in
this dataset are relatively single, and the trained model has a high false detection rate for
oil-filled images from different angles, while the FPS is not the best at present. In order to
further enhance the generalization ability of the model so that it can meet the detection of
scars from different angles and improve the detection speed, we will try to apply the model
to the training of road oiling dataset with different angles and more complex backgrounds,
so that it can be optimized in terms of detection rate to meet the detection requirements.
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