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Abstract: In smart cities, a large amount of optical camera equipment is deployed and used. Closed-
circuit television (CCTV), unmanned aerial vehicles (UAVs), and smartphones are some examples
of such equipment. However, additional information about these devices, such as 3D position,
orientation information, and principal distance, is not provided. To solve this problem, the structured
mobile mapping system point cloud was used in this study to investigate methods of estimating the
principal point, position, and orientation of optical sensors without initial given values. The principal
distance was calculated using two direct linear transformation (DLT) models and a perspective
projection model. Methods for estimating position and orientation were discussed, and their stability
was tested using real-world sensors. When the perspective projection model was used, the camera
position and orientation were best estimated. The original DLT model had a significant error in the
orientation estimation. The correlation between the DLT model parameters was thought to have
influenced the estimation result. When the perspective projection model was used, the position and
orientation errors were 0.80 m and 2.55◦, respectively. However, when using a fixed-wing UAV, the
estimated result was not properly produced owing to ground control point placement problems.

Keywords: smart city sensor; camera sensor; position and orientation estimation; direct linear
transformation; perspective projection model

1. Introduction

Cities have recently been transformed into smart cities to increase their survivability
and improve the quality of life of their residents. The goals of smart cities are achieved
through the use of various sensors to collect and analyze data [1]. Cameras are examples
of optical sensors that are used in smart cities. Optical sensors are used to perform real-
time actions such as traffic control, social safety, and disaster response [2,3]. For example,
closed-circuit television (CCTV) cameras are already installed in many cities and play
an important role. In Korea, the number of CCTV cameras installed is gradually increasing
for purposes such as crime prevention and disaster monitoring.

However, the precision of the three-dimensional position of optical sensors has re-
ceived little attention. In the case of CCTV, the position information is roughly provided.
However, only latitude and longitude can be checked, and the orientation information is
unavailable [4]. Furthermore, cameras used in smart cities are not standardized. Hence,
people cannot easily use specific information about cameras. Determining the specifications
and locations of these numerous sensors takes time, incurs administrative costs, and is
impossible without the cooperation of various organizations. In addition, public officials
in charge have a low perception of the significance of camera information. In summary,
interior orientation parameters (IOPs) and exterior orientation parameters (EOPs), which
are the most important information regarding a sensor, are difficult to use.
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To extract EOP information from cameras, various photogrammetric methods can
be used. Based on the collinearity equation, single-photo resection (SPR) is the most
representative EOP estimation algorithm. In SPR, a solution is obtained by repeatedly
adjusting three or more control points. SPR has been studied to increase its efficiency [5–7].
However, because SPR is sensitive to the initial values of EOPs, it is difficult to use if those
values are not specified [8,9]. A quaternion-based SPR algorithm was proposed to solve
the initial-value problem and the gimbal lock phenomenon [8]. However, only ground
control points (GCPs) that meet certain criteria can be used [10], which poses a limitation.
To estimate the camera’s EOPs, SPR algorithms based on the law of cosines [11] and the
Procrustes algorithm [12–14] were proposed. The PnP algorithm, proposed by Fischler and
Bolles, is a method of estimating the position and orientation of a camera using a point
corresponding to a 3D object and a 2D image [15]. It estimates the EOPs of a camera using
a perspective projection model and is used in a variety of fields including indoor positioning
and robotics [16–18]. Nonetheless, these methods can be used while the camera’s interior
orientation information is known. The objective of this study is to develop a method for
estimating the camera’s IOPs (especially focal length)/EOPs in situations where the vendor
has not performed camera calibration and new calibration is difficult to perform.

The direct linear transformation (DLT) model can be used to estimate the camera’s
IOPs and EOPs simultaneously. The DLT model was compared to the collinearity model
and the perspective model by Seedahmed and Schenk [19]. DLT parameters are used to
express EOP parameters. The least-square solution (LESS) is commonly used to estimate
DLT parameters [20]. This method is widely used in photogrammetry and computer vision
because of its significant advantage in estimating the camera’s IOPs/EOPs using a simple
formula [21,22]. However, the accuracy of the estimated IOPs/EOPs is inferior to that of
physical models such as the collinearity equation or the coplanarity equation [23].

The EOP estimation method using the perspective projection model also produces
good results. For example, a perspective projection model was used to estimate radial
distortion values, principal distances, and EOPs [24–27]. The solution was discovered using
the Gröbner basis or the Sylvester matrix.

Several algorithms have been developed to estimate camera EOPs and to calibrate
cameras. Table 1 summarizes the features of each algorithm as well as whether the initial
value is required. Algorithms that can produce results without prior camera information
can be useful for extracting location information and camera parameter information from
many optical sensors in urban areas. These algorithms have good performance. However,
there have been few studies on the reliability of the results and the comparison of the
performance of each algorithm.

Table 1. Characteristics of each camera position and orientation estimation algorithm.

Algorithms Initial EOPs Initial IOPs Orientation Estimation

Ordinary SPR Required and sensitive Required ω, ϕ, k
Quaternion SPR Not required Required Rotation matrix

Law of cosine Required but
not sensitive Required Rotation matrix

Procrustes algorithm Not required Required Rotation matrix
PnP algorithm Not required Required Rotation matrix

DLT model Not required Not required Indirectly estimate
Perspective projection model Not required Not required Rotation matrix

Furthermore, some studies performed positioning estimation of various sensors using
deep learning [28–31], but it is difficult to accept that it is close to the true value from
a surveying standpoint.

Although many studies have been conducted in this way, previous studies have fo-
cused on the theoretical part rather than the application of actual data. Also, as far as we
know, no research has been conducted that analyzes each algorithm using the same data.



Sensors 2023, 23, 742 3 of 21

This study performed absolute position and orientation estimation as well as camera cali-
bration for cameras with no initial information. We proposed and compared standardized
algorithms that can be applied to a variety of camera sensors such as smartphones, drones,
and CCTV without initial information. This study focuses on estimating IOP (principal
distance)/EOP information. The main objectives were:

1. Investigation and comparative analysis of IOP/EOP estimation models;
2. Stability and accuracy analysis of IOP/EOP estimation models;
3. Analysis of estimation results using practical optical sensor data.

2. Methodology
2.1. Camera Geometric Model
2.1.1. DLT Model

A DLT model connects points in 3D space and 2D image planes using parameters.
Because of their simplicity and low computational cost, DLT models are widely used in
close-range photogrammetry, computer vision, and robotics. The mathematical model of
planar object space and image space using homogeneous coordinates is given as

x
y
1

 =

L1 L2 L3 L4
L5 L6 L7 L8
L9 L10 L11 L12




X
Y
Z
1

 (1)

where x and y are image coordinates; X, Y, and Z are the object space coordinates; and Ln is
the DLT parameter. This model can be written as follows:

x =
L1X + L2Y + L3Z + L4

L9X + L10Y + L11Z + L12
+ ex, y =

L5X + L6Y + L7Z + L8

L9X + L10Y + L11Z + L12
+ ey (2)

At least six well-distributed GCPs are required to calculate the DLT parameters in
Equation (2). The LESS can be used to determine the best DLT parameters. Lens distortion
parameters can also be applied to the DLT model by using Equation (3) [32]:

x =
L1X + L2Y + L3Z + L4

L9X + L10Y + L11Z + L12
+ distx + ex, y =

L5X + L6Y + L7Z + L8

L9X + L10Y + L11Z + L12
+ disty + ey. (3)

The DLT parameter can be obtained using a variety of constraints. The most com-
mon DLT condition is L12 = 1 (ordinary DLT, ODLT). Furthermore, the norm criterion
(L2

1 + L2
2 + · · ·+ L2

12 = 1, norm criterion DLT, NDLT) was also presented [33].

2.1.2. Perspective Projection Model

Equation (4) is a perspective projection camera model expressed by a homogeneous
vector:

xλxI = PXW (4)

where XW is the 4 × 1 world point homogeneous vector (
[
X Y Z 1

]T), xI is the 3 × 1

image point homogeneous vector (
[
x y 1

]T), and P = diag( f , f , 1)[I | 0] is the 3 × 4
homogeneous camera projection matrix. Principal point offset, pixel ratio, and skew can be
applied using Equation (5):

 f X + Zpx
f Y + Zpy

Z

 =

α f 0 px 0
0 β f py 0
0 0 1 0




X
Y
Z
1

 (5)
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where
[
px py

]T represents the coordinates of the principal point; α, β are the pixel ratios;
and s is the skew parameter [20].

Figure 1 shows the process of converting two different coordinate systems (world
coordinate system and camera coordinate system) using rotation and translation. The
geometric camera model with camera rotation and translation is applied as follows [20]:

λxI = K[R | t]XW = PXW (6)
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2.2. Absolute Position/Orientation Estimation and Calibration Using Camera Models
2.2.1. DLT Model

The camera position and parameters can be calculated using the DLT model [19].
Equations (7) and (8) show the DLT and perspective projection models, respectively.

λxI =

L1 L2 L3 L4
L5 L6 L7 L8
L9 L10 L11 L12

XW (7)

λxI = K[R | t]XW = KR[I |−XO]XW (8)

where xI is the homogeneous image coordinates vector, K is the calibration matrix, R is
the rotation matrix, XO is the camera position vector, XW is the homogeneous object point
vector, and I is the identity matrix.

From Equations (7) and (8), Equation (9) can be derived:L1 L2 L3 L4
L5 L6 L7 L8
L9 L10 L11 L12

 = KR[I |−XO] (9)

Equation (9) can be rewritten as follows:

KR = D, D =

L1 L2 L3
L5 L6 L7
L9 L10 L11

 (10)

On the basis of Equations (9) and (10), the camera position and rotation matrix can be
computed as follows:

XO = −D−1d, R = K−1D (11)
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XO matrix means the camera position, and R matrix means the camera orientation. The
camera calibration matrix K can be calculated by Equation (10) and Choleski factorization:

(KR)(KR)T = DDT (12)

KKT = DDT (13)

2.2.2. Perspective Projection Model

Equation (14) is the geometric model of the perspective projection:

λxI,i = PXW,i (14)

where xI,i is the ith image point coordinates and XW,i is the ith world point coordinates.
Let us assume a typical camera (skew parameter ≈ 0 and pixel ratio ≈ 1). The camera
calibration matrix K will be K = diag(1, 1, w) for w = 1

f . With the assumptions, Equation
(14) can be written as follows:

λxI,i =

 r11 r12 r13 tx
r21 r22 r23 ty

wr31 wr32 wr33 wtz

XW,i (15)

Undistorted and distorted image coordinates are expressed by Equation (16), according
to Fitzgibbon’s radial distortion model [34].

pu ≈
pd

1 + k1r2
d + k2r4

d + k3r6
d

(16)

where k is the radial distortion parameter, pu =
[
xu yu 1

]T is an undistorted image

point, pd =
[
xd yd 1

]T is a distorted image point, and r2
d = x2

d + y2
d is the radius of pd

for distortion center. The image point can be written as follows:

xI,i =
[

xi yi 1 + k1
(
x2

i + y2
i
)
+ k2

(
x2

i + y2
i
)2

+ k3
(
x2

i + y2
i
)3
]T

(17)

In this step, we will use the properties of the skew-symmetric matrix. The skew-
symmetric matrix [a]× of vector a =

[
a1 a2 a3

]T is defined as:

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (18)

By the property of the skew-symmetric matrix, [xi]×xi = 0 can be obtained as

 0 −
(
1 + k1r2

i + k2r4
i + k3r6

i
)

yi
1 + k1r2

i + k2r4
i + k3r6

i 0 −xi
−yi xi 0

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34




Xi
Yi
Zi
1

 = 0 (19)

The third row of Equation (19) can be rewritten as follows:

− yi(p11Xi + p12Yi + p13Zi + p14) + xi(p21Xi + p22Yi + p23Zi + p24) = 0 (20)
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The seven parameters, p11, p12, . . . , p24, are unknown. If seven GCPs are obtained,
the seven equations can be expressed in the matrix form as

M1v1 =



−y1X1 −y1Y1 −y1Z1 −y1 x1X1 x1Y1 x1Z1 x1
−y2X2 −y2Y2 −y2Z2 −y2 x2X2 x2Y2 x2Z2 x2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

−y7X7 −y7Y7 −y7Z7 −y7 x7X7 x7Y7 x7Z7 x7





p11
p12
p13
p14
p21
p22
p23
p24


= 0 (21)

By decomposing Matrix M1 through SVD, the last column of matrix V can be selected
as a solution. A constant value λ is needed to obtain the actual solution because the norm
of the chosen solution is fixed at 1. Equation (22) shows the solution vector v′1 from the last
column vector of matrix V.

v′1 =
[
v1 v2 v3 v4 v5 v6 v7 v8

]T
=

1
λ

[
p11 p12 p13 p14 p21 p22 p23 p24

]T . (22)

As p11, p12, p13 are elements of the rotation matrix, Equations (23)–(25) can be established:

p2
11 + p2

12 + p2
13 = 1, (23)

p2
11 + p2

12 + p2
13 = λ2v2

1 + λ2v2
2 + λ2v2

3 = 1, and (24)

λ =

√
1

v2
1 + v2

2 + v2
3

. (25)

Using Equations (22) and (25), elements corresponding to 2/3 of the P matrix
(p11, p12, p13, p14, p21, p22, p23, p24) can be obtained.

Let a 3 × 3 submatrix of matrix P be P′. Matrix P′ can be written as Equation (26):

P′ =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 = KR (26)

Herein, R is the rotation matrix of the camera. The three rows of matrix P′ are perpen-
dicular because matrix K is a diagonal constraint matrix. In addition, the norm of the first
and second-row vectors of matrix P′ are the same; thus, Equations (27)–(30) established:

p11 p21 + p12 p22 + p13 p23 = 0, (27)

p31 p11 + p32 p12 + p33 p13 = 0, (28)

p31 p21 + p32p22 + p33 p23 = 0, and (29)

p2
11 + p2

12 + p2
13 − p2

21 − p2
22 − p2

23 = 0. (30)

Let p31 = δ. Subsequently, p32 and p33 can be parameterized for δ by using Equations
(27) and (28). The results are given as follows:

p32 = − δ(p11 p23 − p21 p13)

p12 p23 − p22 p13
= −δc1, (31)

p33 = − δ(p21 p12 − p11 p22)

p12 p23 − p22 p13
= −δc2 (32)
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where c1 = p11 p23−p21 p13
p12 p23−p22 p13

, c2 = p21 p12−p11 p22
p12 p23−p22 p13

. The remaining unknown parameters are
p31, p34, k1, k2, k3. These five unknown parameters can be obtained using the second row
of Equation (20):(

1 + k1r2
i + k2r2

i + k3r2
i

)
(p11Xi + p12Yi + p13Zi + p14)− xi(p31Xi + p32Yi + p33Zi + p34), (33)

M2v2 = vobservation, (34)

where

M2 =
[
xiXi + c1xiYi + c2xiZi xi − r2

i (p11Xi + p12Yi + p13Zi + p14)
−r4

i (p11Xi + p12Yi + p13Zi + p14) − r6
i (p11Xi + p12Yi + p13Zi + p14)

]
i×5

(35)

v2 =
[
δ p34 k1 k2 k3

] T
i×5. (36)

Here, M2 and v2 have dimensions of 7 × 5 and 7 × 1, respectively, because seven
GCPs are used. As a result, v2 can be calculated using LESS as Equation (37):

v̂2 =
(

MT
2 PM2

)−1
MT

2 Pvobservation. (37)

The values of each element of matrix P and camera distortion parameters can be
obtained using the equations described above. The principal distance is the final unknown
parameter. The relationship between the first and last rows of matrix P can be used
to calculate the principal distance. Based on Equation (14), Equations (38) and (39) are
obtained by multiplying the first row of P by w:

w2 p2
11 + w2 p2

12 + w2 p2
13 − p2

31 − p2
32 − p2

33, (38)

w2 =
p2

31 + p2
32 + p2

33

p2
11 + p2

12 + p2
13

. (39)

Finally, we can get focal length from Equation (39):

f =
1
w

=

√
p2

11 + p2
12 + p2

13
p2

31 + p2
32 + p2

33
. (40)

2.3. Equipment and Dataset

CCTV, unmanned aerial vehicles (UAVs), and smartphones, which can be used in
smart cities, were used as target sensor platforms. Images were captured in a variety
of environments with each sensor, and the estimation results were compared. EOPs
were estimated and compared to a total station surveying result (position parameters,
X, Y, Z) and the SPR result (orientation parameters ω, φ, κ). The process using the DLT
models and the perspective projection model is illustrated in Figure 2. Figure 3 shows
the camera platforms used in the experiments. Each sensor platform was calibrated using
a checkerboard and a camera geometric model.

Figure 4 shows images from each sensor platform. CCTV images were obtained from
locations under conditions similar to those found in a smart city. Two drones were used to
capture images: one in an oblique direction (rotary-wing UAV) and one in a nadir direction
(fixed-wing UAV). The image acquisition conditions were investigated by comparing the
results obtained from the two images. Smartphone images were acquired without any
specific photographic conditions. The GCP positions on the images are denoted by yellow
X marks.
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Figure 3. Camera sensor platforms.

Each image dataset has unique position and orientation properties. Although the
height of the platform is clearly different, Figure 4a,b shows they have a similar orientation
parameter of looking down diagonally. Figure 4b,c shows the camera mounted on a UAV,
and while the Z value of the position is similar, the orientation parameter is noticeably
different. Figure 4b examines the diagonal direction which can have a wide variety of GCPs,
whereas Figure 4c shows the cause of the GCPs to be distributed on an almost constant
plane. The Z diversity of GCP is particularly low in the park, which is the study’s target
area. Finally, the smartphone image is captured by the user while holding the phone and
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looking to the side, which can differ significantly from the image orientation parameters of
Figure 4a–c.
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MMS + UAV hybrid point cloud data were used in this study to acquire the 3D location
of GCPs and checkpoints (CKPs). The smart city point cloud was used because GCPs could
be easily obtained without direct surveys. In this study, the georeferencing point cloud
generated in Mohammad’s study [35] was used (as shown in Figure 5).
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3. Experimental Results
3.1. Simulation Experiments

Before conducting an experiment using a real sensor, simulation experiments were
performed to compare the performance of each algorithm using a 10 × 10 × 10 virtual
grid. Thirteen virtual grid points were chosen as GCPs at random from a pool of 1000.
The camera parameters, position, and rotation were calculated using 100,000 GCP combi-
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nations from a possible set of C(1000, 13) ≈ 1.4849× 1029. The camera parameters were
set close to the actual camera parameters. Camera IOPs/EOPs and the coordinates of
virtual points were also set based on the actual TM coordinate system. The set camera
parameters and IOPs/EOPs values are listed in Table 2. The estimated values were directly
compared with the true values. The reprojection error was calculated using 987 virtual
points. Figure 6a depicts the virtual grid and the camera position. Figure 6b depicts the
virtual grid, and Figure 6c depicts the virtual image generated by the virtual grid. The
simulation environment was Win 11, Matlab R2022b.

Table 2. Camera parameters, IOPs, and EOPs.

Camera Parameters Values

Principal distance 3500 pixels

Principal point xp 50 pixels
yp 20 pixels

Radial distortion parameter
k1 −7.86 × 10−9

k2 6.92 × 10−14

k3 −1.29 × 10−19

Rotation angle
ω 94.045◦

φ 45◦

κ 1◦

Camera position
XO 194,200 m
XO 551,400 m
ZO 20 m

Sensors 2023, 23, x FOR PEER REVIEW 10 of 22 
 

 

3. Experimental Results 
3.1. Simulation Experiments 

Before conducting an experiment using a real sensor, simulation experiments were 
performed to compare the performance of each algorithm using a 10 × 10 × 10 virtual grid. 
Thirteen virtual grid points were chosen as GCPs at random from a pool of 1000. The 
camera parameters, position, and rotation were calculated using 100,000 GCP combina-
tions from a possible set of 𝐶(1000,13) ≈ 1.4849 × 10ଶଽ. The camera parameters were set 
close to the actual camera parameters. Camera IOPs/EOPs and the coordinates of virtual 
points were also set based on the actual TM coordinate system. The set camera parameters 
and IOPs/EOPs values are listed in Table 2. The estimated values were directly compared 
with the true values. The reprojection error was calculated using 987 virtual points. Figure 
6a depicts the virtual grid and the camera position. Figure 6b depicts the virtual grid, and 
Figure 6c depicts the virtual image generated by the virtual grid. The simulation environ-
ment was Win 11, Matlab R2022b. 

Table 2. Camera parameters, IOPs, and EOPs. 

Camera Parameters Values 
Principal distance 3500 pixels 

Principal point 
𝑥௣ 50 pixels 𝑦௣ 20 pixels 

Radial distortion parameter 
𝑘ଵ −7.86 × 10−9 𝑘ଶ 6.92 × 10−14 𝑘ଷ −1.29 × 10−19 

Rotation angle 
𝜔 94.045° 𝜙 45° 𝜅 1° 

Camera position 
𝑋ை 194,200 m 𝑋ை 551,400 m 𝑍ை 20 m 

 

 

  

(a) Virtual grid and  
perspective center 

(b) Virtual grid (c) Virtual image 

Figure 6. Virtual grid and virtual image. 

Figure 7 shows a comparison of each-algorithm-estimated principal points and EOPs. 
Based on the Median value, all three algorithms were able to estimate the principal dis-
tance with an accuracy of 0.1 pixels or less. However, when comparing the maximum 
values, NDLT resulted in the least error. Figure 7c–e shows the camera orientation and 
position estimation results. It was shown that the perspective projection model, NDLT, 
and ODLT model showed good performance in order. All three algorithms showed an 

Figure 6. Virtual grid and virtual image.

Figure 7 shows a comparison of each-algorithm-estimated principal points and EOPs.
Based on the Median value, all three algorithms were able to estimate the principal distance
with an accuracy of 0.1 pixels or less. However, when comparing the maximum values,
NDLT resulted in the least error. Figure 7c–e shows the camera orientation and position
estimation results. It was shown that the perspective projection model, NDLT, and ODLT
model showed good performance in order. All three algorithms showed an error of less
than 1 degree. Figure 7f–h shows the camera position estimation results. The NDLT
model and perspective projection model showed good performance, and the ODLT model
also showed satisfactory performance. The maximum error when using the NDLT and
the perspective projection model did not exceed 1 m, but when the ODLT was used, the
maximum error was relatively large.
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Figure 8 shows box plots of the mean reprojection error of each algorithm. When
comparing the mean reprojection error, ODLT showed outstanding performance. The
maximum error of the ODLT model did not exceed 0.5 pixels. NDLT and Perspective
projection models also showed good performance, but the maximum errors were 1.71 pixels
and 3.72 pixels, respectively.
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Figure 8. Box plots of mean reprojection error results.

It is interesting to note that the X, Y, and Z distributions of GCP also affect the quality
of the estimation results. Aside from the distribution of GCPs on the image plane, the even
distribution of GCPs in a 3D object space is critical [36,37]. GCPs were randomly selected
on one plane as shown in Figure 9a, and GCPs were randomly selected on multiple planes
as shown in Figure 9b, and the results were compared.
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Figure 9. Three—dimensional distribution of GCPs.

When GCPs were selected on only one plane, IOP/EOP estimation was not performed
properly. Figure 10 is a visual representation of the results. Figure 10 shows the size and
direction of the reprojection error, and it can be seen that a visually unacceptable error has
occurred. None of the three algorithms produced significant estimation results. In addition
to the reprojection error, the estimation results of the camera IOPs and EOPs were also
unacceptable. As with many camera models, it is clear that the 3D distribution of GCPs
is critical.

Table 3 shows the camera EOPs and the mean reprojection errors. It is confirmed that
the camera parameter estimation and the reprojection results have remarkably improved.
The X, Y, and Z errors of all three models were all less than 50 cm. In particular, in the case
of perspective projection, it was confirmed that the size of positional error was more than
twice as small as that of other models. Orientation error and mean reprojection error were
also the smallest in the perspective projection model.
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Table 3. Estimated camera EOP errors and mean reprojection errors.

Errors X (m) Y (m) Z (m) ω (◦) φ (◦) κ (◦) MRE (Pixels)

ODLT 0.48 0.21 0.35 0.1847 0.0896 0.1019 0.1847
NDLT 0.44 0.28 0.13 0.1858 0.0855 0.0858 0.1858
P.Prj. 0.21 0.11 0.00 0.0011 0.0561 0.0025 0.0011

The degree of the 3D distribution can be determined by the distance between the
camera and the object. Let us compare close-range photogrammetry with an object–sensor
distance of about 20 m with aerial photogrammetry with a flight altitude of 200 m or
more. Even GCP distributions with the same depth range can be treated as near-planar
distributions in aerial photogrammetry [38]. As a result, GCPs must be carefully chosen by
the sensor platform.

3.2. Practical Experiments

This section describes experiments in which the ODLT, NDLT, and perspective pro-
jection models were used to estimate the actual sensor position/orientation and principal
distance. Sensor calibration was performed prior to the experiments to determine the IOP
values of each sensor. However, IOPs can change for a variety of reasons. For example, the
principal point varies due to lens group perturbation and may vary due to aperture and
focus changes [39–41]. The value of the radial distortion parameter changes with the princi-
pal distance, making generalized modeling difficult [40]. The estimated radial distortion
parameter value can also vary with the distance from the control points [42,43]. The camera
was set to manual mode to control various factors; however, the micromechanism that
operated the lens group was not. Therefore, in this study, a direct comparative analysis was
only used to estimate the camera EOPs. The focal length was shown to examine the trend
of the estimation result, but the principal point location and camera distortion parameters
were not shown.

To examine the accuracy of the estimated sensor position, a virtual reference station
VRS GPS survey was performed. Further, as the true value of EOPs, the SPR result based on
sensor measurement and camera calibration can be used as the initial value. The accuracy of
the orientation estimation result can be indirectly checked using the mean reprojection error
(MRE) and the comparison with the SPR result. In this paper, both orientation parameters
estimated by SPR and reprojection results are presented. The locations of the GCPs are
marked in Figure 4. Pixel coordinates and ground coordinates of GCPs were applied to xi
and Xw to estimate L1 to L12 in Equation (7). Based on L1 to L12, XO and K matrices were
estimated to estimate camera position, orientation, and principal distance. In addition,
pixel coordinates of GCPs were applied to xi and yi, and ground coordinates of GCPs
were applied to Xi, Yi, and Zi of Equation (20) to estimate p11 to p34 for camera position,
orientation, and principal distance.
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3.2.1. CCTV

The CCTV image was used to estimate the camera principal distance and EOPs. The
reprojection error was calculated for each image using the estimated IOPs/EOPs and
10 CKPs. Table 4 shows the estimated principal distance, whereas Table 5 shows the EOPs
of the camera based on the CCTV image. The estimated camera position error for each
method is shown in Figure 11a, and the rotation angle error is shown in Figure 11b. The
MRE for each model is depicted in Figure 11c.

Table 4. Calibration result and estimated principal distance of CCTV.

cx (Pixels) cy (Pixels)

Calibration result (Wisecon WD-HD540 P/T) 1627.14 1632.05

ODLT 1610.82 1650.28
NDLT 1648.60 1696.50
P.Prj. 1658.12 1658.12

Table 5. Estimated EOP and reprojection errors of CCTV.

Errors X (m) Y (m) Z (m) Position
Error (m) ω (◦) φ (◦) κ (◦) MRE

(Pixels)

ODLT 1.0545 1.6814 0.0601 1.9856 0.58 3.14 2.09 3.55
NDLT 0.4767 1.2956 0.2011 1.3951 0.66 0.22 2.09 3.37
P.Prj. 0.5131 0.0965 0.3590 0.6336 0.41 0.57 0.49 2.69
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In the case of the position estimation error, the perspective projection model produced
the most accurate estimation results. The position errors for the ODLT and NDLT models
were 1.9856 m and 1.3951 m, respectively. The perspective projection had an error of
0.6336 m, allowing for a more accurate position estimation. In the case of the rotation
angle estimation, the perspective projection model produced the best results, whereas
ODLT produced a large error in the rotation angle. However, the reprojection results were
consistent across all three models.

3.2.2. UAV

Table 6 shows the calibrated and estimated principal distance of the UAV camera sen-
sor. The estimated EOP errors and the reprojection errors are shown in Table 7. Interestingly,
as a result of experimenting with images taken in the direction of nadir (fixed-wing UAV),
an unacceptably large error occurred in the IOP and EOP estimation. It was estimated
very differently from the principal distance calibration result, and rotation and position
errors largely occurred in the case of EOP as well. In contrast, the experiment using the
image taken in the oblique direction to understand the rotary-wing UAV showed acceptable
results. This is related to the distribution of the GCPs described in Section 3.1. The image
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was taken at a high altitude (>200 m), but the height distribution of the GCPs was within
4.09 m. Because all GCPs and CKPs were on nearly the same plane, the reprojection results
were not large, but proper IOP/EOP estimation was not performed.

Table 6. Calibration result and estimated principal distance of UAVs.

cx (Pixels) cy (Pixels)

Calibration result (DJI Phantom 4 Pro v2) 877.61 878.62

Rotary-wing image
ODLT 880.37 885.97
NDLT 888.63 882.42
P.Prj. 884.05 884.05

Calibration result (SenseFly eBee) 3648.49 3649.33

Fixed-wing image
ODLT 6051.15 6239.31
NDLT 6315.11 6877.49
P.Prj. 6871.42 6871.42

Table 7. Estimated EOP and reprojection errors of UAVs.

Errors X (m) Y (m) Z (m) Position
Error (m) ω (◦) φ (◦) κ (◦) MRE

(Pixels)

Rotary-
wing
image

ODLT 1.1376 0.9332 0.8436 1.6960 4.89 7.15 0.14 7.27
NDLT 1.5469 1.0843 0.9294 2.1053 1.35 0.30 0.64 3.05
P.Prj. 0.3139 0.3031 0.6665 0.7966 2.55 1.03 1.06 3.53

Fixed-
wing
image

ODLT 5.1645 134.4646 91.2146 162.5654 74.45 40.83 21.61 5.42
NDLT 7.0843 141.4162 100.1883 173.4544 28.43 75.87 107.07 3.31
P.Prj. 47.8675 185.6578 164.1656 252.4093 37.26 18.08 7.71 5.79

Next, the results obtained using the rotary-wing UAV image are shown in Figure 12.
Figure 12a,b depicts the camera position and the camera rotation angle errors, respectively.
Figure 12c also displays the MRE. In terms of the camera position error, the perspective-
projection-model-based algorithm performed the best. The DLT-based algorithms also
produced acceptable estimation results with errors of less than 1.6960 m and 2.1053 m,
respectively. The position estimation accuracy of the perspective projection model was
within 0.7966 m. The ODLT model had a maximum rotation angle estimation error of 7.15◦,
but the other two algorithms were generally capable of accurate rotation angle estimation.
All three algorithms had the MRE of fewer than 5 pixels.
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3.2.3. Smartphone

The calibration and estimated principal distance of a smartphone camera are shown
in Table 8. Table 9 displays the estimated EOP errors and the reprojection errors. Figure 13a
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shows a comparison of each-algorithm-estimated camera position error, and Figure 13b
shows the estimated orientation angle error. The MRE is depicted in Figure 13c. All
three models produced accurate camera position estimation results. The same pattern
was observed in the results of orientation estimation. However, the ODLT position and
orientation estimation performance suffered significantly.

Table 8. Calibration result and estimated principal distance of a smartphone.

cx (Pixels) cy (Pixels)

Calibration result (Galaxy S10+) 3219.51 3230.58

ODLT 3286.63 3240.36
NDLT 3272.71 3276.77
P.Prj. 3191.00 3191.00

Table 9. Estimated EOP and reprojection errors of a smartphone.

Errors X (m) Y (m) Z (m) Position
Error (m) ω (◦) φ (◦) κ (◦) MRE

(Pixels)

ODLT 0.1318 0.3210 1.3729 1.4161 8.55 0.60 0.48 0.18
NDLT 0.0616 0.0814 0.0504 0.1138 0.22 0.74 0.61 0.00
P.Prj. 0.4662 0.0043 0.0528 0.4692 0.21 1.02 0.61 2.58
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Overall, the perspective projection model showed good results. This is because the
correlation between parameters affected the quality when DLT models were used. The
results of the three algorithms had lower reliability compared to the results of camera
calibration or SPR, which are widely used. However, there was not much difference
between the camera calibration result and the SPR result, and it is enough to be used as an
initial parameter value. Therefore, it is possible to estimate the IOP/EOPs of the sensor
precisely by fusion with the camera calibration and SPR.

4. Discussion
4.1. Simulation Experiments

When estimating IOPs (the principal distance and the principal point) in the two
DLT models, A and C components were used for the x component of IOPs, and B and C
components were used for the y component of IOPs. When estimating EOPs, all A, B, and
C components were used. Figure 14 shows the relationship between the ODLT parameters
calculated with the total least square.
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Overall, the DLT parameters correlated with each other in the case of ODLT. The
correlation between the parameters of the A, B, and C block components was high in the
case of NDLT. A strong relationship between parameters can reduce estimation precision
and increase error [44,45]. Because of high correlation between DLT parameters, errors in
some parameters may be used to correct other parameters, causing errors to propagate
to the accuracy of the IOP/EOP estimation [46]. In this regard, when IOPs/EOPs are
estimated using ODLT and NDLT, the correlation between parameters influences the result,
potentially lowering the estimation accuracy. In particular, it is expected that the estimation
accuracy of ODLT, which shows the overall correlation, will be lower than that of NDLT.

4.2. Practical Experiments

Experimental results using CCTV, UAV, and smartphone, camera EOPs estimation
results showed good results in regards to the point-based perspective projection model,
NDLT model, and ODLT model. In the case of camera position estimation, ODLT and NDLT
showed similar results, but the position estimation error was slightly larger when ODLT
was used. In the case of the rotation angle estimation, NDLT and the perspective projection
model showed significantly better results than ODLT. In the case of the reprojection error,
the three models showed similar results. It is judged that this is because the high correlation
between DLT model parameters affects the estimation result, as analyzed in Section 3.1.
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In addition, since DLT parameters are for the purpose of connecting 3D points and image
points, the amount of reprojection error is smaller than that of the perspective projection
model, but the quality of camera position and orientation estimation results are analyzed
to be inferior.

In general, it was possible to estimate IOPs/EOPs using three models, but good results
were not obtained using nadir images acquired from a UAV. The position estimation errors
were over 100 m, and the rotation angle estimation was not able to estimate a reasonable
result. The camera IOPs estimation result was also less reliable. This is because GCPs
are almost on the same plane due to high altitude imaging. The reprojection results
seem reasonable, but this is because the distribution of CKPs is also on the same plane as
presented in Section 3.1. Neither DLT nor the perspective projection model can be used in
this environment, but it is more appropriate to use the classic SPR.

4.3. Contribution and Limitations

A study was carried out in this paper to estimate the IOPs/EOPs of an optical sensor
in the absence of an initial value. Sensor positioning was performed using three different
algorithms, and the results were confirmed to be different. Experiments were carried out
using both real data and simulation levels. CCTV, UAV, and smartphones were used, and it
was discovered that applying the three algorithms was difficult if the diversity of GCP was
not secured.

The limitations of this study are discussed as follows. The first limitation of this study
is dependent on the quality of the point cloud from which GCP can be acquired. Many
MMS devices currently acquire city point clouds, but the quality of the point clouds varies.
When uncalibrated MMS equipment is used, the location accuracy of the point cloud is
greatly reduced, which has a direct impact on the optical sensor’s orientation/position
estimation result. The simplification of the camera distortion parameters is the study’s
second limitation. The tangential distortion parameter was ignored in this study, and the
radial distortion parameter was assumed to be small. This study did not include cases with
large lens distortion parameters, such as fisheye lenses. As a result, future research must
investigate how the location accuracy of the point cloud is propagated to the estimation
results. Furthermore, when using a lens with a high distortion parameter, a position
and orientation estimation process must be developed. However, in a situation where
sufficient GCP can be secured, for example, in the case of an indoor space where a point
cloud is acquired with terrestrial LiDAR, effective results can be produced for estimating
the position and orientation of the sensor. This research team is conducting additional
research related to point cloud registration using these characteristics and expects to obtain
interesting results.

5. Conclusions

In this study, the IOPs/EOPs of various smart city sensors were estimated using ODLT,
NDLT, and the perspective projection models. MMS + UAV hybrid point cloud data were
used to collect GCPs and CKPs. We tested two different images for each platform. In this
study, camera IOPs were not used as true values because calibration results could vary
depending on the experimental conditions and fine optical adjustment of the instrument
was not possible. Instead, the obtained calibration and estimation results were presented in
tables to confirm the trend of IOPs.

In general, the estimated camera EOP results are ranked in descending order: the
results of the perspective projection model, NDLT model, and ODLT model. In the case
of the camera position estimation, ODLT and NDLT produce similar results, but ODLT
produces slightly larger position estimation errors. The maximum error in estimating
the sensor’s position using the perspective projection model was 0.7966 m, and the av-
erage error was 0.6331 m. The ODLT and NDLT models had average errors of 1.6992 m
and 1.2047 m, respectively. In the case of the rotation angle estimation, NDLT and the
perspective projection model significantly outperforms ODLT. The average orientation
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angle errors for the perspective projection model and the NDLT model were 0.88◦ and
0.76◦, respectively, and 3.07◦ for the ODLT. The three models produce similar reprojection
error results. The average reprojection error of each model was 3.67 pixel, 2.14 pixel, and
2.93 pixel, respectively.

Herein, three models were used to estimate IOPs/EOPs. However, results obtained
from UAV-acquired nadir images are poor. The position estimation results exceed 100 m,
and the rotation angle estimation result is not reasonable. The estimation of camera IOPs is
also less reliable. Because of high altitude imaging, GCPs can be regarded as being almost
on the same plane. The reprojection results appear to be reasonable, but this is because the
distribution of CKPs is also on the same plane. Table 10 is the error summary table for each
sensor platform.

Table 10. Error summary for each sensor platform.

Errors Position Error (m) ω (◦) φ (◦) κ (◦) MRE (Pixels)

CCTV image
ODLT 1.9856 0.58 3.14 2.09 3.55
NDLT 1.3951 0.66 0.22 2.09 3.37
P.Prj. 0.6336 0.41 0.57 0.49 2.69

Rotary-wing image
ODLT 1.6960 4.89 7.15 0.14 7.27
NDLT 2.1053 1.35 0.30 0.64 3.05
P.Prj. 0.7966 2.55 1.03 1.06 3.53

Fixed-wing image
ODLT 162.5654 74.45 40.83 21.61 5.42
NDLT 173.4544 28.43 75.87 107.07 3.31
P.Prj. 252.4093 37.26 18.08 7.71 5.79

Smartphone
ODLT 1.4161 8.55 0.60 0.48 0.18
NDLT 0.1138 0.22 0.74 0.61 0.00
P.Prj. 0.4692 0.21 1.02 0.61 2.58

Through this study, it is possible to quickly estimate the camera information, position,
and orientation of various optical sensors distributed in a smart city. Because it uses the
geometric characteristics of a frame camera, it can be applied not only to the optical sensor
but also to the infrared camera. In addition, there is an advantage in that absolute or relative
coordinates of various sensor platforms can be calculated. In particular, the results of this
study can be significantly applied to indoor and underground spaces where positioning
systems such as global navigation satellite systems cannot be used. This research team
plans to apply the findings of this study to the coarse registration of point clouds in indoor
space in a future study.

Author Contributions: Conceptualization, N.K.; methodology, N.K.; software, N.K.; validation, N.K.;
formal analysis, N.K.; investigation, N.K.; resources, N.K.; data curation, N.K.; writing—original
draft preparation, N.K.; writing—review and editing, S.B. and G.K.; visualization, N.K.; supervision,
G.K.; project administration, N.K.; funding acquisition, N.K. and G.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT (MSIT), and the Ministry of
Education (No. 2022R1G1A1005391, No. 2021R1A6A1A03044326). Also, This work was supported
by research fund of Korea Military Academy (Hwarangdae Research Institute).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data not available due to the law of Korean government (ACT ON
THE ESTABLISHMENT AND MANAGEMENT OF SPATIAL DATA).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 742 20 of 21

References
1. The World Bank. World Development Report 2016: Digital Dividends; The World Bank: Bretton Woods, NH, USA, 2016.
2. National League of Cities. Trends in Smart City Development; National League of Cities: Washington, DC, USA, 2016.
3. Rausch, S.L. The Impact of City Surveillance and Smart Cities. Available online: https://www.securitymagazine.com/articles/90

109-the-impact-of-surveillance-smart-cities (accessed on 8 January 2023).
4. MOHW CCTV. Installation and Operation in Public Institutions. Available online: http://www.index.go.kr/potal/main/

EachDtlPageDetail.do?idx_cd=2855#quick_02 (accessed on 8 November 2022).
5. Habib, A.; Kelley, D. Single-photo resection using the modified hough transform. Photogramm. Eng. Remote Sens. 2001, 67,

909–914.
6. Habib, A.F.; Lin, H.T.; Morgan, M.F. Line-based modified iterated hough transform for autonomous single-photo resection.

Photogramm. Eng. Remote Sens. 2003, 69, 1351–1357. [CrossRef]
7. Seedahmed, G.H. On the Suitability of Conic Sections in a Single-Photo Resection, Camera Calibration, and Photogrammetric Triangulation;

The Ohio State University: Columbus, OH, USA, 2004.
8. Habib, A.; Mazaheri, M. Quaternion-based solutions for the single photo resection problem. Photogramm. Eng. Remote Sens. 2015,

81, 209–217. [CrossRef]
9. Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-Range Photogrammetry and 3D Imaging; Walter de Gruyter: Berlin, Germany,

2013; ISBN 3110302780.
10. Kim, N.; Lee, J.-S.; Bae, J.-S.; Sohn, H.-G. Comparative analysis of exterior orientation parameters of smartphone images using

quaternion-based SPR and PnP algorithms. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2019, 37, 465–472. [CrossRef]
11. Hong, S.P.; Choi, H.S.; Kim, E.M. Single photo resection using cosine law and three-dimensional coordinate transformation.

J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2019, 37, 189–198. [CrossRef]
12. Crosilla, F.; Beinat, A.; Fusiello, A.; Maset, E.; Visintini, D. Advanced Procrustes Analysis Models in Photogrammetric Computer Vision;

Springer: Berlin, Germany, 2019; ISBN 303011760X.
13. Fusiello, A.; Crosilla, F.; Malapelle, F. Procrustean point-line registration and the NPnP problem. In Proceedings of the 2015

International Conference on 3D Vision, Lyon, France, 19–22 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 250–255.
14. Garro, V.; Crosilla, F.; Fusiello, A. Solving the pnp problem with anisotropic orthogonal procrustes analysis. In Proceedings of the

2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland,
13–15 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 262–269.

15. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

16. Albl, C.; Kukelova, Z.; Larsson, V.; Pajdla, T. Rolling shutter camera absolute pose. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42,
1439–1452. [CrossRef]

17. Wang, Q.; Shi, L. Pose estimation based on pnp algorithm for the racket of table tennis robot. In Proceedings of the 2013
25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; IEEE: Piscataway, NJ, USA, 2013;
pp. 2642–2647.

18. Xu, D.; Li, Y.F.; Tan, M. A general recursive linear method and unique solution pattern design for the perspective-n-point problem.
Image Vis. Comput. 2008, 26, 740–750. [CrossRef]

19. Seedahmed, G.; Schenk, T. Comparative study of two approaches for deriving the camera parameters from direct linear
transformation. In Proceedings of the Annual Conference of ASPRS, St. Louis, MO, USA, 23–27 April 2001.

20. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2004;
ISBN 9780521540513.
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